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Ah, so the family argument is a function! There are built-in ones we can
use, such as the poisson one we used above, or a user could define her own
custom function.

Well, then, what are the arguments to such a function? A key argument is
link, which is obviously the link function q−1() discussed above, which we
found to be log() in the Poisson case.

For a logistic model, as noted earlier, FY |X is binomial with number of
trials m equal to 1. Recall that the variance of a binomial random variable
with m trials is mr(1−r), where r is the “success” probability on each trial,
Recall too that the mean of a 0-1-valued random variable is the probability
of a 1. Putting all this together, we have

σ2(t) = µ(t)[1− µ(t)] (4.17)

Sure enough, this appears in the code of the built-in function binomial():

> binomial
function ( l ink = ” l o g i t ” )
{
. . .

va r i ance <− function (mu) mu ∗ (1 − mu)

Let’s now turn to details of two of the most widely-used models, the logistic
and Poisson.

4.3 GLM: the Logistic Model

The logistic regression model, introduced in Section 1.1, is by far the most
popular nonlinear regression method. Here we are predicting a response
variable Y that takes on the values 1 and 0, indicating which of two classes
our unit belongs to. As we saw in Section 1.17.1, this indeed is a regression
situation, as E(Y | X = t) reduces to P (Y = 1 | X = t).

The model, again, is

P (Y = 1 | X = (t1, ..., tp)) =
1

1 + e−(β0+β1t1+....+βptp)
(4.18)



4.3. GLM: THE LOGISTIC MODEL 155

4.3.1 Motivation

We noted in Section 1.1 that the logistic model is appealing for two reasons:
(a) It takes values in [0,1], as a model for probabilities should, and (b) it
is monotone in the predictor variables, as in the case of a linear model, a
common situation in practice.

But there’s even more reason to choose the logistic model. It turns out
that the logistic model is implied by many familiar distribution families. In
other words, there is often good theoretical justification for using the logit.

To illustrate that, consider a very simple example of text classification,
involving Twitter tweets. Suppose we wish to automatically classify tweets
into those involving financial issues and all others. We’ll do that by having
our code check whether a tweet contains words from a list of financial terms
we’ve set up for this purpose, say bank, rate and so on.

Here Y is 1 or 0, for the financial and nonfinancial classes, and X is the
number of occurrences of terms from the list. Suppose that from past
data we know that among financial tweets, the number of occurrences of
words from this list has a Poisson distribution with mean 1.8, while for
nonfinancial tweets the mean is 0.2. Mathematically, that says that FX|Y=1

is Poisson with mean 1.8, and FX|Y=0 is Poisson with mean 0.2. (Be sure to
distinguish the situation here, in which FX|Y is a Poisson distribution, from
Poisson regression, in which it is assumed that FY |X is Poisson.) Finally,
suppose 5% of all tweets are financial.

Recall once again (Section 1.17.1) that in the classification case, our regres-
sion function takes the form

µ(t) = P (Y = 1 | X = t) (4.19)

Let’s calculate this function:

P (Y = 1 | X = t) =
P (Y = 1 and X = t)

PX = t)
(4.20)

=
P (Y = 1 and X = t)

P (Y = 1 and X = t or Y = 0 and X = t)

=
π P (X = t | Y = 1)

π P (X = t | Y = 1) + (1− π) P (X = t | Y = 0)

where π = P (Y = 1) is the population proportion of individuals in class 1.
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The numerator in (4.20) is

0.05 · e
−1.8 1.8t

t!
(4.21)

and similarly the denominator is

0.05 · e
−1.8 1.8t

t!
+ 0.95 · e

−0.2 0.2t

t!
(4.22)

Putting this into (4.20) and simplifying, we get

P (Y = 1 | X = t) =
1

1 + 19e1.6(
1
9 )

t
(4.23)

=
1

1 + exp(log 19 + 1.6− t log 9)
(4.24)

That last expression is of the form

1

1 + exp[−(β0 + β1t)]
(4.25)

with

β0 = − log 19− 1.6 (4.26)

and

β1 = log 9 (4.27)

In other words the setting in which FX|Y is Poisson implies the logistic
model!

This is true too if FX|Y is an exponential distribution. Since this is a
continuous distribution family rather than a discrete one, the quantities
P (X = t|Y = i) in (4.23) must be replaced by density values:

P (Y = 1 | X = t) =
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π f1(X = t | Y = 1)

π f1(X = t | Y = 1) + (1− π) f0(X = t | Y = 0)
(4.28)

where the within-class densities of X are

fi(w) = λie
−λiw, i = 0, 1 (4.29)

After simplifying, we again obtain a logistic form.

Most important, consider the multivariate normal case (Section 2.6.2): Say
for groups i = 0, 1, FX|Y=i is a multivariate normal distribution with mean
vector µi and covariance matrix Σ, where the latter does not have a sub-
script i. This is a generalization of the classical two-sample t-test setting,
in which two (scalar) populations are assumed to have possibly different
means but the same variance.5 Again using (4.28), and going through a lot
of algebra, we find that again P (Y = 1 | X = t) turns out to have a logistic
form,

P (Y = 1 | X = t) =
1

1 + e−(β0+β
�
t)

(4.30)

with

β0 = log(1− π)− log π +
1

2
(µ�

1µ1 − µ�
0µ0) (4.31)

and

β = (µ0 − µ1)
�Σ−1 (4.32)

where t is the vector of predictor variables, the β vector is broken down into
(β0,β), and π is P (Y = 1). The messy form of the coefficients here is not
important; instead, the point is that we find that the multivariate normal
model implies the logistic model, giving the latter even more justification.

In summary:

Not only is the logistic model intuitively appealing because it is
a monotonic function with values in (0,1), but also because it

5It is also the setting for Fisher’s Linear Discriminant Analysis, to be discussed in
Section 5.6.
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is implied by various familiar parametric models for the within-
class distribution of X.

No wonder the logit model is so popular!

4.3.2 Example: Pima Diabetes Data

Another famous UCI data set is from a study of the Pima tribe of Native
Americans, involving factors associated with diabetes. There is data on 768
women.6 Let’s predict diabetes from the other variables:

> pima <− read . csv ( ’ pima−ind ians−d i abe t e s . data ’ )
> head ( pima )

NPreg Gluc BP Thick In su l BMI Genet Age Diab
1 6 148 72 35 0 33 .6 0 .627 50 1
2 1 85 66 29 0 26 .6 0 .351 31 0
3 8 183 64 0 0 23 .3 0 .672 32 1
4 1 89 66 23 94 28 .1 0 .167 21 0
5 0 137 40 35 168 43 .1 2 .288 33 1
6 5 116 74 0 0 25 .6 0 .201 30 0
# Diab = 1 means has d i a b e t e s
> l o g i t o u t <− glm(Diab ∼ . , data=pima , family=binomial )
> summary( l o g i t o u t )
. . .
C o e f f i c i e n t s :

Estimate Std . Error z va lue
( I n t e r c ep t ) −8.4046964 0.7166359 −11.728
NPreg 0.1231823 0.0320776 3 .840
Gluc 0.0351637 0.0037087 9 .481
BP −0.0132955 0.0052336 −2.540
Thick 0.0006190 0.0068994 0 .090
In su l −0.0011917 0.0009012 −1.322
BMI 0.0897010 0.0150876 5 .945
Genet 0.9451797 0.2991475 3 .160
Age 0.0148690 0.0093348 1 .593

Pr(>| z | )
( I n t e r c ep t ) < 2e−16 ∗∗∗
NPreg 0.000123 ∗∗∗
Gluc < 2e−16 ∗∗∗
BP 0.011072 ∗

6The data set is at https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes.
I have added a header record to the file.
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Thick 0.928515
In su l 0 .186065
BMI 2 .76 e−09 ∗∗∗
Genet 0 .001580 ∗∗
Age 0.111192
. . .

4.3.3 Interpretation of Coefficients

In nonlinear regression models, the parameters βi do not have the simple
marginal interpretation they enjoy in the linear case. Statements like we
made in Section 1.9.1.2, “We estimate that, on average, each extra year of
age corresponds to almost a pound in extra weight,” are not possible here.

However, in the nonlinear case, the regression function is still defined as
the conditional mean, which in the logit case reduces to the conditional
probability of a 1. Practical interpretation is definitely still possible, if
slightly less convenient.

Consider for example the estimated Glucose coefficient in our diabetes data
above, 0.035. Let’s apply that to the people similar to the first person in
the data set:

> pima [ 1 , ]
NPreg Gluc BP Thick In su l BMI Genet Age Diab

1 6 148 72 35 0 33 .6 0 .627 50 1

Ignore the fact that this woman has diabetes. Let’s consider the subpopu-
lation of all women with the same characteristics as this one, i.e., all who
have had 6 pregnancies, a glucose level of 148 and so on, through an age of
50. The estimated proportion of women with diabetes in this subpopulation
is

1

1 + e−(8.4047+0.1232·6+...+0.0149·50) (4.33)

We don’t have to plug these numbers in by hand, of course:

> l <− function ( t ) 1/(1+exp(−t ) )
> pima1 <− unlist ( pima [1 , −9 ] )
> l ( coef ( l o g i t o u t ) %∗% c (1 , pima1 ) )

[ , 1 ]
[ 1 , ] 0 .7217266
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Note that pima[1,-9] is actually a data frame (having been derived from
a data frame), so in order to multiply it, we needed to make a vector out
of it, using unlist().

So, we estimate that about 72% of women in this subpopulation have dia-
betes. But what about the subpopulation of the same characteristics, but
of age 40 instead of 50?

> w <− pima1
> w[ ’Age ’ ] <− 40
> l ( coef ( l o g i t o u t ) %∗% c (1 ,w) )

[ , 1 ]
[ 1 , ] 0 .6909047

Only about 69% of the younger women have diabetes.

So, there is an effect of age on developing diabetes, but only a mild one; a
10-year increase in age only increased the chance of diabetes by about 3.1%.
However, note carefully that this was for women having a given set of the
other factors, e.g., 6 pregnancies. Let’s look at a different subpopulation,
those with 2 pregnancies and a glucose level of 120, comparing 40- and
50-year-olds:

> u <− pima1
> u [ 1 ] <− 2
> u [ 2 ] <− 100
> v <− u
> v [ 8 ] <− 40
> l ( coef ( l o g i t o u t ) %∗% c (1 , u ) )

[ , 1 ]
[ 1 , ] 0 .2266113
> l ( coef ( l o g i t o u t ) %∗% c (1 , v ) )

[ , 1 ]
[ 1 , ] 0 .2016143

So here, the 10-year age effect was somewhat less, about 2.5%. A more
careful analysis would involve calculating standard errors for these numbers,
but the chief point here is that the effect of a factor in nonlinear situations
depends on the values of the other factors.

P (Y = 0 | X(1) = t1, ..., X
(p)) = tp) = 1− �(β0 + β1t1 + ...+ βptp) (4.34)
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Some analysts like to look at the log-odds ratio,

log
P (Y = 1 | X(1) = t1, ..., X

(p)) = tp)

P (Y = 0 | X(1) = t1, ..., X(p)) = tp)
(4.35)

in this case the logaritihm of the ratio of the probability of having and not
having the disease. By Equation (4.8), this simplifies to

β0 + β1t1 + ...+ βptp (4.36)

a linear function. Thus, in interpreting the coefficients output from a lo-
gistic analysis, it is convenient to look at this log-odds ratio, as it gives us
a single marginal-effect number for each factor. This may be sufficient for
the application at hand, but a more thorough analysis should consider the
effects of the factors on the probabilities themselves.

4.3.4 The predict() Function Again

In the previous section, we evaluated the estimated regression function (and
thus predicted values as well) the straightforward but messy way, e.g.,

> l ( coef ( l o g i t o u t ) %∗% c (1 , v ) )

The easy way is to use R’s predict() function:

> predict ( ob j e c t=l og i t ou t , newdata=pima [1 , −9 ] ,
type=’ re sponse ’ )

1
0 .7217266

We saw that in Section 1.10.3 for objects of ’lm’ class. But in our case
here, we invoked it on logitout. What is the class of that object?

> class ( l o g i t o u t )
[ 1 ] ”glm” ”lm”

So, it is an object of class ’glm’, and, we see, the latter is a subclass of the
class ’lm’. For that subclass, the predict() function, i.e., predict.glm(),
there is an extra argument (actually several), type. The value of that
argument that we want here is type = ’response’, alluding to the fact
that we want a prediction on the scale of the response variable, Y .
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4.3.5 Overall Prediction Accuracy

How well can we predict in the Pima example above? For the best measure,
we should use cross validation or something similar, but we can obtain a
quick measure as follows.

The value returned by glm() has class ’glm’, which is actually a subclass of
’lm’. The latter, and thus the former, includes a component fitted.values,
the ith of which is

�µ(Xi) (4.37)

i.e., the estimated value of the regression function at observation i. If we
did not know Yi, we would predict it to be 1 or 0, depending on whether
�µ(Xi) is greater than or less than 0.5. In R terms, that predicted value is
simply

round( l o g i t o u t$f itted . va lue s [ i ] )

Using the fact that the proportion of 1s in a vector of 1s and 0s is simply the
mean value in that vector, we have that the overall probability of correct
classification is

> mean( pima$Diab == round( l o g i t o u t$f itted . va lue s ) )
0 .7825521

That seems pretty good (though again, it is biased upward and cross val-
idation would give us a better estimate), but we must compare it against
how well we would do without the covariates. We reason as follows. First,

> mean( pima$Diab )
[ 1 ] 0 .3489583

Most of the women do not have diabetes, so our strategy, lacking covariate
information, would be to always guess that Y = 0. We will be correct a
proportion

> 1 − 0.3489583
[ 1 ] 0 .6510417

of the time. Thus our 78% accuracy using covariates does seem to be an
improvement.
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4.3.6 Example: Predicting Spam E-mail

One application of these methods is text classification. In our example here,
the goal is machine prediction of whether an incoming e-mail message is
span, i.e., unwanted mail, typically ads.

We’ll use the spam dataset from the UCI Machine Learning Data Repos-
itory. It is also available from the CRAN package ElemStatLearn [66],
which we will use here, but note that the UCI version includes a word list.
It has data on 4601 e-mail messages, with 57 predictors. The first 48 of
those predictors consist of frequencies of 48 words. Thus the first column,
for instance, consists of the proportions of Word 1 in each of the 4601 mes-
sages, with the total number of words in a message as the base in each
case. The remaining predictors involve measures such as the numbers of
consecutive capital letters in words.

The last column is an R factor with levels spam and e-mail. This R type
is explained in Section 4.7.2, and though glm() can handle such variables,
for pedagogical reasons, let’s use dummies for a while. (We will begin using
factors directly in Section 5.6.3.)

Let’s fit a logistic model.

> l ibrary ( ElemStatLearn )
> data ( spam)
> spam$spam <− as . integer ( spam$spam == ’spam ’ )
> glmout <− glm( spam ∼ . , data=spam ,

family=binomial )
> summary( glmout )
. . .

C o e f f i c i e n t s :
Estimate Std . Error z va lue

( I n t e r c ep t ) −1.569 e+00 1 .420 e−01 −11.044
A.1 −3.895e−01 2 .315 e−01 −1.683
A.2 −1.458e−01 6 .928 e−02 −2.104
A.3 1 .141 e−01 1 .103 e−01 1 .035
A.4 2 .252 e+00 1 .507 e+00 1 .494
A.5 5 .624 e−01 1 .018 e−01 5 .524
A.6 8 .830 e−01 2 .498 e−01 3 .534
A.7 2 .279 e+00 3 .328 e−01 6 .846
A.8 5 .696 e−01 1 .682 e−01 3 .387
. . .

Pr(>| z | )
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( I n t e r c ep t ) < 2e−16 ∗∗∗
A.1 0.092388 .
A. 2 0.035362 ∗
A.3 0.300759
A.4 0.135168
A.5 3 .31 e−08 ∗∗∗
A.6 0.000409 ∗∗∗
A.7 7 .57 e−12 ∗∗∗
A.8 0.000707 ∗∗∗
. . .

Let’s see how accurately we can predict with this model:

> mean( spam$spam == round( glmout$f itted . va lue s ) )
[ 1 ] 0 .9313193

Not bad at all. But much as we are annoyed by spam, we hope that a
genuine message would not be likely to be culled out by our spam filter.
Let’s check:

> spamnot <− which( spam$spam == 0)
> mean(round( glmout$f itted . va lue s [ spamnot ] ) == 0)
[ 1 ] 0 .956241

So if a message is real, it will have a 95% chance of getting past the spam
filter.

4.3.7 Linear Boundary

In (4.18), which values of t = (t1, ..., tp)
� will cause us to gues Y = 1 and

which will result in a guess of Y = 0? The boundary occurs when (4.18)
has the value 0.5. In other words, the boundary consists of all t such that

β0 + β1t1 + ....+ βptp = 0 (4.38)

So, the boundary has linear form, a hyperplane in p-dimensional space. This
may seem somewhat abstract now, but it will have value later on.
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4.4 GLM: the Poisson Regression Model

Since in the Pima data (Section 4.3.2) the number of pregnancies is a count,
we might consider predicting it using Poisson regression.7 Here’s how we
can do this with glm():

> po i sout <− glm(NPreg ∼ . , data=pima , family=poisson )
> summary( po i sout )
. . .
C o e f f i c i e n t s :

Estimate Std . Error z va lue
( I n t e r c ep t ) 0 .2963661 0.1207149 2 .455
Gluc −0.0015080 0.0006704 −2.249
BP 0.0011986 0.0010512 1 .140
Thick 0.0000732 0.0013281 0 .055
In su l −0.0003745 0.0001894 −1.977
BMI −0.0002781 0.0027335 −0.102
Genet −0.1664164 0.0606364 −2.744
Age 0.0319994 0.0014650 21 .843
Diab 0.2931233 0.0429765 6 .821

Pr(>| z | )
( I n t e r c ep t ) 0 .01408 ∗
Gluc 0.02450 ∗
BP 0.25419
Thick 0.95604
In su l 0 .04801 ∗
BMI 0.91896
Genet 0 .00606 ∗∗
Age < 2e−16 ∗∗∗
Diab 9 .07 e−12 ∗∗∗
. . .

On the other hand, even if we believe that our count data follow a Poisson
distribution, there is no law dictating that we use Poisson regression, i.e.,
the model (4.10). As mentioned following that equation, the main motiva-
tion for using exp() in that model is to ensure that our regression function
is nonnegative, conforming to the nonnegative nature of Poisson random
variables. This is not unreasonable, but as noted in a somewhat different
context in Section 3.3.7, transformations — in this case, the use of exp()
— can produce distortions. Let’s try the “unorthodox” model, (4.11):

7It may seem unnatural to predict this, but as noted before, predicting any variable
may be useful if data on that variable may be missing.
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> quas iout <− glm(NPreg ∼ . , data=pima ,
family=quasi ( var i ance=”muˆ2” ) , start=rep ( 1 , 9 ) )

This “quasi” family is a catch-all option, specifying a linear model but here
allowing us to specify a Poisson variance function:

V ar(Y | X = t) = [µ(t)]2 (4.39)

with µ(t) = t�β. This is (4.11), not the standard Poisson regression model,
but worth trying anyway.

Well, then, which model performed better? As a rough, quick look, ignoring
issues of overfitting and the like, let’s consider R2. This quantity is not
calculated by glm(), but recall from Section 2.9.2 that R2 is the squared
correlation between the predicted and actual Y values. This quantity makes
sense for any regression situation, so let’s calculate it here:

> cor ( po i sout$f itted . va lues , po i sout$y )ˆ2
[ 1 ] 0 .2314203
> cor ( quas iout$f itted . va lues , quas iout$y )ˆ2
[ 1 ] 0 .3008466

The “unorthodox” model performed better than the “official” one! We
cannot generalize from this, but it does show again that one must use
transformations carefully.

4.5 Least-Squares Computation

A point made in Section 1.4 was that the regression function, i.e., the con-
ditional mean, is the optimal predictor function, minimizing mean squared
prediction error. This still holds in the nonlinear (and even nonparametric)
case. The problem is that in the nonlinear setting, the least-squares estima-
tor does not have a nice, closed-form solution like (2.28) for the linear case.
Let’s see how we can compute the solution through iterative approximation.

4.5.1 The Gauss-Newton Method

Denote the nonlinear model by

E(Y | X = t) = g(t,β) (4.40)


