Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Efficient R Parallel Loops on Long-Latency
Platforms

Norm Matloff
University of California at Davis

Interface 2012
Rice University, May, 2012

The Basic Problem

(O @ (=»

«E»

Q>

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

The Basic Problem

Given a loop of independent tasks,

parallel for
i

do task

1,2,...,n

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

The Basic Problem

Given a loop of independent tasks,

parallel for i = 1,2,...,n
do task i

how to make this fast in R?

Example: Kendall's 7 Correlation

«O>r «Fr «=>»

«E)»

DA

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

=

Example: Kendall's 7 Correlation

- 2
~n(n—1)

n—=1 n
Z Z 1((X,-,Y,-)00n00rd. with(X;,Y;)
i=1 j=i+1

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Example: Kendall's 7 Correlation

A) n—=1 n
T = m Z Z 1((X,-,Y,-)00rlcord. with(X;,Y;)

i=1 j=i+1
parallel for i = 1,2,...,n-1
// here is task i:
count = 0
(nonparallel) for j =i+41,...,n
count = count -+

I[((X[i],Y[i]) concord. with (X[j].Y[]j])

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Example: Kendall's 7 Correlation

A) n—=1 n
T = m Z Z 1((X,-,Y,-)Concord. with(X;,Y;)

i=1 j=i+1
parallel for i = 1,2,...,n-1
// here is task i:
count = 0
(nonparallel) for j =i+41,...,n
count = count -+

I[((X[i],Y[i]) concord. with (X[j].Y[]j])

Major point: time(task i) N\, in i, thus issue of load balancing.

Example: All Possible Regressions

«O>r «Fr «=>»

«E)»

DA

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Example: All Possible Regressions

e Have n obs. on p vars.

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Example: All Possible Regressions

e Have n obs. on p vars.

e Find "best” predictor set accord to some criterion, e.g.
adjusted R?.

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Example: All Possible Regressions

e Have n obs. on p vars.

e Find "best” predictor set accord to some criterion, e.g.
adjusted R?.

e Evaluate criterion on all predictor sets of size < some k.

Efficient R
Parallel Loops

. Example: All Possible Regressions
ong-Latency

Platforms

Norm Matloff

University of

California at
Davis

e Have n obs. on p vars.

e Find "best” predictor set accord to some criterion, e.g.
adjusted R?.

e Evaluate criterion on all predictor sets of size < some k.

parallel for i = 1,2,...,tot. # of models
do regression i

Efficient R
Parallel Loops

. Example: All Possible Regressions
ong-Latency

Platforms

Norm Matloff

University of

California at
Davis

e Have n obs. on p vars.

e Find "best” predictor set accord to some criterion, e.g.
adjusted R?.

e Evaluate criterion on all predictor sets of size < some k.

parallel for i = 1,2,...,tot. # of models
do regression i

Here time(task i) " in i.

Goals of This Talk

(O @ (=»

«E»

Q>

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Goals of This Talk

e Overview of classical shared-memory loop scheduling
methods.

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Goals of This Talk

e Overview of classical shared-memory loop scheduling
methods.

e Discussion of how well these might adapt to parallel R.

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Goals of This Talk

Overview of classical shared-memory loop scheduling
methods.

Discussion of how well these might adapt to parallel R.

Proposal of a new loop scheduling method, shown
“optimal.”

Efficient R
Parallel Loops

B Goals of This Talk
ong-Latency

Platforms
Norm Matloff
University of

California at
Davis

e Overview of classical shared-memory loop scheduling
methods.

e Discussion of how well these might adapt to parallel R.

e Proposal of a new loop scheduling method, shown
“optimal.”

e Case study (all possible regressions).

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Goals of This Talk

Overview of classical shared-memory loop scheduling
methods.

Discussion of how well these might adapt to parallel R.

Proposal of a new loop scheduling method, shown
“optimal.”

Case study (all possible regressions).

Discussion of a possible algorithmic shortcut.

Research Literature

«O>r «Fr «=>»

«E)»

DA

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Research Literature

e Very extensively studied, e.g. (Hagerup, 1997).

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Research Literature

e Very extensively studied, e.g. (Hagerup, 1997).

e However, most are for shared-memory machines, in which
the overhead (task queue access latency) is low.

Efficient R
Parallel Loops
on

o Research Literature
ong-Latency

Platforms
Norm Matloff
University of
California at

Davis

e Very extensively studied, e.g. (Hagerup, 1997).

e However, most are for shared-memory machines, in which
the overhead (task queue access latency) is low.

e Some work for the long-latency case, e.g. (Yang and
Chang, 2011), but limited.

Overhead Issues with Parallel R

«O>r «Fr «=>»

«E)»

DA

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Overhead Issues with Parallel R

e snow: serializes/deserializes communications; often used
on clusters, incurring network delay

Efficient R
Parallel Loops

e e Overhead Issues with Parallel R

Platforms
Norm Matloff

University of
California at

forni e snow: serializes/deserializes communications; often used
on clusters, incurring network delay

e Rmpi: more flexible than snow, but still has the above
serialization and network problems

Efficient R
Parallel Loops

e e Overhead Issues with Parallel R

Platforms
Norm Matloff
University of
California at

forni e snow: serializes/deserializes communications; often used
on clusters, incurring network delay

e Rmpi: more flexible than snow, but still has the above
serialization and network problems

e mclapply/multicore: each call involves new Unix process
creation

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Overhead Issues with Parallel R

snow: serializes/deserializes communications; often used
on clusters, incurring network delay

Rmpi: more flexible than snow, but still has the above
serialization and network problems

mclapply/multicore: each call involves new Unix process
creation

gputools: each call involves a GPU kernel invocation,
major overhead

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Overhead Issues with Parallel R

snow: serializes/deserializes communications; often used
on clusters, incurring network delay

Rmpi: more flexible than snow, but still has the above
serialization and network problems

mclapply/multicore: each call involves new Unix process
creation

gputools: each call involves a GPU kernel invocation,
major overhead

These can be especially problematic with iterative
algorithms, overhead incurred at every iteration.

Efficient R
Parallel Loops

on Overhead Issues with Parallel R

Long-Latency
Platforms

Norm Matloff

University of

California at °
Davis

snow: serializes/deserializes communications; often used
on clusters, incurring network delay

e Rmpi: more flexible than snow, but still has the above
serialization and network problems

e mclapply/multicore: each call involves new Unix process
creation

e gputools: each call involves a GPU kernel invocation,
major overhead

e These can be especially problematic with iterative
algorithms, overhead incurred at every iteration.

Bottom line: R typically needs larger applications, compared
to C, in order to yield a “win.”

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Taxonomy of Classical Loop
Scheduling Parameters

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

e static:

Taxonomy of Classical Loop
Scheduling Parameters

iterations pre-assigned to processes

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Taxonomy of Classical Loop
Scheduling Parameters

e static: iterations pre-assigned to processes

e dynamic: task queue or equivalent

Efficient R
Parallel Loops

. Taxonomy of Classical Loop
ong-Latency
Platforms .

' Scheduling Parameters

Norm Matloff

University of

California at
Davis

e static: iterations pre-assigned to processes
e dynamic: task queue or equivalent

e chunk size: number of consecutive values of i handled by a
process

Efficient R
Parallel Loops

i Iaxonomy of Classical Loop
ong-Latency
Scheduling Parameters

Platforms

Norm Matloff

University of

California at
Davis

static: iterations pre-assigned to processes

dynamic: task queue or equivalent

chunk size: number of consecutive values of i handled by a
process

e above are options in the shared-memory system OpenMP

(O @ (=»

«E»

v

e static case:

«Or Fr o«

i
v
a
it

Q>

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

e static case:
e no task queue overhead, but

Tradeoffs

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Tradeoffs

e static case:

e no task queue overhead, but
e possible load balance problem (idle processes near end).

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Tradeoffs

e static case:

e no task queue overhead, but
e possible load balance problem (idle processes near end).

e dynamic case:

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Tradeoffs

e static case:

e no task queue overhead, but
e possible load balance problem (idle processes near end).

e dynamic case:

o larger chunk size = smaller overhead but poorer load
balance

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Tradeoffs

e static case:
e no task queue overhead, but
e possible load balance problem (idle processes near end).
e dynamic case:
o larger chunk size = smaller overhead but poorer load
balance

e smaller chunk size = larger overhead but better load
balance

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Tradeoffs

e static case:

e no task queue overhead, but
e possible load balance problem (idle processes near end).

e dynamic case:

o larger chunk size = smaller overhead but poorer load
balance

e smaller chunk size = larger overhead but better load
balance

e time-varying chunk size:

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Tradeoffs

e static case:

e no task queue overhead, but
e possible load balance problem (idle processes near end).

e dynamic case:

o larger chunk size = smaller overhead but poorer load
balance

e smaller chunk size = larger overhead but better load
balance

e time-varying chunk size:

e large for early i, smaller near the end;

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Tradeoffs

e static case:
e no task queue overhead, but
e possible load balance problem (idle processes near end).

e dynamic case:

o larger chunk size = smaller overhead but poorer load
balance
e smaller chunk size = larger overhead but better load
balance
e time-varying chunk size:

o large for early i, smaller near the end; aims for “best of
both worlds”

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Tradeoffs

e static case:
e no task queue overhead, but
e possible load balance problem (idle processes near end).
e dynamic case:
o larger chunk size = smaller overhead but poorer load
balance
e smaller chunk size = larger overhead but better load
balance

e time-varying chunk size:

o large for early i, smaller near the end; aims for “best of
both worlds”

e guided option in OpenMP

A “New” Scheduling Method

DA

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

A “New” Scheduling Method
Notation:

e ni: Total number of iterations in loop.

e np: Number of processes (e.g. num. workers in snow).

Efficient R
Parallel Loops

Lo ey A “New” Scheduling Method

Platforms

Norm Matloff NOtat'On:
University of
California at

s e ni: Total number of iterations in loop.
e np: Number of processes (e.g. num. workers in snow).
Method:

e Randomly permute the i's , i.e. (1,2,...,ni);

Efficient R
Parallel Loops

Lo ey A “New” Scheduling Method

Platforms

Norm Matloff NOtat'On:
University of
California at

s e ni: Total number of iterations in loop.
e np: Number of processes (e.g. num. workers in snow).
Method:

e Randomly permute the i's , i.e. (1,2,...,ni); use static,

Efficient R
Parallel Loops

Lo ey A “New” Scheduling Method

Platforms

Norm Matloff NOtat'On:
University of
California at

s e ni: Total number of iterations in loop.
e np: Number of processes (e.g. num. workers in snow).
Method:

e Randomly permute the i's , i.e. (1,2,...,ni); use static, with
full chunk size (ni/np).

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

A “New” Scheduling Method

Notation:

e ni: Total number of iterations in loop.
e np: Number of processes (e.g. num. workers in snow).
Method:
e Randomly permute the i's , i.e. (1,2,...,ni); use static, with
full chunk size (ni/np).

e Sometimes mentioned briefly in lit., but “new,” since not
studied analytically before.

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

A “New” Scheduling Method
Notation:

e ni: Total number of iterations in loop.
e np: Number of processes (e.g. num. workers in snow).
Method:
e Randomly permute the i's , i.e. (1,2,...,ni); use static, with
full chunk size (ni/np).

e Sometimes mentioned briefly in lit., but “new,” since not
studied analytically before.

e Easy to show this method asymp. vyields full load balance.

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

A “New” Scheduling Method

Notation:

e ni: Total number of iterations in loop.
e np: Number of processes (e.g. num. workers in snow).
Method:
e Randomly permute the i's , i.e. (1,2,...,ni); use static, with
full chunk size (ni/np).

e Sometimes mentioned briefly in lit., but “new,” since not
studied analytically before.

e Easy to show this method asymp. vyields full load balance.

e Has zero overhead, achieves full load balance =- optimall!

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

A “New” Scheduling Method

Notation:

e ni: Total number of iterations in loop.

e np: Number of processes (e.g. num. workers in snow).

Method:

Randomly permute the i's , i.e. (1,2,...,ni); use static, with
full chunk size (ni/np).

Sometimes mentioned briefly in lit., but “new,” since not
studied analytically before.

Easy to show this method asymp. vyields full load balance.
Has zero overhead, achieves full load balance =- optimall!

But only asympotically. :-)

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

A “New” Scheduling Method

Notation:

ni: Total number of iterations in loop.

np: Number of processes (e.g. num. workers in snow).

Method:

Randomly permute the i's , i.e. (1,2,...,ni); use static, with
full chunk size (ni/np).

Sometimes mentioned briefly in lit., but “new,” since not
studied analytically before.

Easy to show this method asymp. vyields full load balance.
Has zero overhead, achieves full load balance =- optimall!
But only asympotically. :-)

Not a bad choice, if you don't want to bother tweaking
chunk size, etc.

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

A “New” Scheduling Method

Notation:

ni: Total number of iterations in loop.

np: Number of processes (e.g. num. workers in snow).

Method:

Randomly permute the i's , i.e. (1,2,...,ni); use static, with
full chunk size (ni/np).

Sometimes mentioned briefly in lit., but “new,” since not
studied analytically before.

Easy to show this method asymp. vyields full load balance.
Has zero overhead, achieves full load balance =- optimall!
But only asympotically. :-)

Not a bad choice, if you don't want to bother tweaking
chunk size, etc. Simplify your life!

Proof of Load Balance

«O>r «Fr «=>»

«E)»

DA

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Proof of Load Balance

e No assumptions (contrast to other research); data not
even considered random.

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Proof of Load Balance

e No assumptions (contrast to other research); data not
even considered random.

e Chunk size c is ni / np.

Efficient R

Parallel Loops

oy Proof of Load Balance
Platforms

Norm Matloff .
oozt * No assumptions (contrast to other research); data not
alifornia at .
Davis even considered random.

e Chunk size c is ni / np.

e Set t; = task time for iter. j; set u and o2 to mean and
variance of t,...,tn;.

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Proof of Load Balance

No assumptions (contrast to other research); data not
even considered random.

Chunk size c is ni / np.

Set t; = task time for iter. j; set 1 and o2 to mean and
variance of t,...,tn;.

Cast the problem as one of sampling without replacement.

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Proof of Load Balance

No assumptions (contrast to other research); data not
even considered random.

Chunk size c is ni / np.

Set t; = task time for iter. j; set 1 and o2 to mean and
variance of t,...,tn;.

Cast the problem as one of sampling without replacement.
Total time for iters. for process j has coeff. of variation

(1— £)co?

ni

—0asc— o
9

Etc.

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Proof of Load Balance

No assumptions (contrast to other research); data not
even considered random.

Chunk size c is ni / np.

Set t; = task time for iter. j; set 1 and o2 to mean and
variance of t,...,tn;.

Cast the problem as one of sampling without replacement.
Total time for iters. for process j has coeff. of variation

(1— £)co?

ni

—0asc— o
9

Etc.

So, total task time & constant across processes, i.e. have
load balance.

Scheduling Options in Snow

«O>r «Fr «=>»

«E)»

DA

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Scheduling Options in Snow

Our analysis here will focus on snow.

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Scheduling Options in Snow

Our analysis here will focus on snow. Scheduling options:

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Scheduling Options in Snow

Our analysis here will focus on snow. Scheduling options:

e clusterApply(): static

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Scheduling Options in Snow

Our analysis here will focus on snow. Scheduling options:

e clusterApply(): static
e clusterApplyLB(): dynamic

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Scheduling Options in Snow

Our analysis here will focus on snow. Scheduling options
e clusterApply(): static
e clusterApplyLB(): dynamic
e both limited to a fixed chunk size of 1

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Scheduling Options in Snow

Our analysis here will focus on snow. Scheduling options:

clusterApply(): static
clusterApplyLB(): dynamic
both limited to a fixed chunk size of 1

chunk size > 1 must be programmed with user's own code

Code for All Possible Regressions

«O>r «Fr «=>»

«E)»

DA

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Code for All Possible Regressions

Norm Matloff 1 prsnow <— function(cls ,x,y, k,

University of
California at 2
Davis 3

o ~NO O b~

11
12
13
14
15
16

rnd=F, chunk=NULL, dyn=F) {
p <— ncol(x); allc <<— genallcombs(p,k)
if (rnd) allc <— randperm(allc)
ni <<— nrow(allc; np <— length(cls))
if (is.null(chunk)) chunk <— floor(ni/np))
chunk <<— chunk
clusterExport(cls,c("allc”,” ni”," chunk”,” x"
clusterExport(cls,” dolpset”)
is <— seq(1l,ni,chunk)
if (dyn) { ar2s <<—
clusterApply(cls,is ,dochunk)
} else { ar2s <<—
clusterApplyLB(cls ,is , dochunk)
}

Code, cont'd.

(O @ (=»

«E»

v

Efficient R
Parallel Loops)
. Code, cont'd.
ong-Latency
Platforms

1 dochunk <— function(psetchunk) {

Norm Matloff

University of D lasttask <— min(psetchunk+chunk—1,nc)
P G out <— NULL
4 for (tasknum in psetchunk:lasttask) {
5 out <— c(out,dolpset(tasknum))
6 }
7 return (out)
8 }
9
10 dolpset <— function(pset) {
11 onerow <— allcombs|[pset]
12 nps <— onerow[1]
13 ps <— onerow[2:(1+4+nps)]
14 slm <— summary(Im(y = x[,ps]))
15 return (Reduce(paste,c(sIlm$adj.
16 r.squared , myinfo$id ,onerow[—1])))

Options

(O @ (=»

«E»

v

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Options

e chunk: Chunk size. Default value is ni/np.

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Options

e chunk: Chunk size. Default value is ni/np.

e dyn: Use dynamic scheduling, i.e. clusterApplyLB()
instead of clusterApply(). Default value is False.

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Options

e chunk: Chunk size. Default value is ni/np.

e dyn: Use dynamic scheduling, i.e. clusterApplyLB()
instead of clusterApply(). Default value is False.

e rnd: Use random scheduling. Default value is False.

Timings

(O < o«

it
v

v

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

10,000
obs., 8
predictors
k=4 (ie.
up to 4
preds.)

2 procs.,
same
machine
chunk sizes
1,5,10,...,50;
5 reps.

each

Timings

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

10,000
obs., 8
predictors
k=4 (ie.
up to 4
preds.)

2 procs.,
same
machine
chunk sizes
1,5,10,...,50;
5 reps.

each

time

Timings

chunk

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

10,000
obs., 8
predictors
k=4 (ie.
up to 4
preds.)

2 procs.,
same
machine
chunk sizes
1,5,10,...,50;
5 reps.

each

time

Timings

e

chunk

Chunks too small = overhead problem.

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Timings

e 10,000
obs., 8
predictors

e k=4 (e

up to 4
preds.)] L/\/\/
e 2 procs.,

same
machine

time

e chunk sizes
1,5,10,...,50;
5 reps.
each

chunk

Chunks too small = overhead problem.
Chunks too large = load balance problem.

Network Platform

(O @ (=»

«E»

Q>

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Network Platform

Same setting, but on a network platform.

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Network Platform
Same setting, but on a network platform.

Worker nodes chosen to be distant from manager node, to
highlight overhead issue.

Efficient R
Parallel Loops

oy Network Platform
Flatforms Same setting, but on a network platform.
Univerdi o Worker nodes chosen to be distant from manager node, to

California at

Davis highlight overhead issue.

12-
10-

setting
loc

\/ o

time
T

0= | | | |

30
chunk

Efficient R
Parallel Loops

on Network Platform

Long-Latency
Platforms

Same setting, but on a network platform.
Univerdi o Worker nodes chosen to be distant from manager node, to

California at

Davis highlight overhead issue.

IR Impact
\ of choice
setting

o of chunk

- / : size more
\/ .
| dramatic

here.

time
\
\
//

chunk

Comparison to Random Scheduling

«O>r «Fr «=>»

«E)»

DA

Efficient R
Parallel Loops . .
o Comparison to Random Scheduling
ong-Latency
Platforms

Norm Matloff

University of

California at
Davis

setting | best chunk | worst chunk | random
localhost 3.410 4.873 3.794
network 4.582 10.455 4.723

Efficient R
Parallel Loops
on

. Comparison to Random Scheduling
ong-Latency

Platforms

Norm Matloff

University of

California at
Davis

setting | best chunk | worst chunk | random
localhost 3.410 4.873 3.794
network 4.582 10.455 4.723

Again, random method only asymp. optimal, but good choice
if don't want to spend time tweaking the chunk size.

Scalability

(O @ (=»

«E»

v

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

e 10000 obs., 20
vars.

e np =
2,4,8,16,32,64,
on localhost (>
64 cores)

e Random sched.

(“representa-
tive").

Scalability

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

e 10000 obs., 20
vars.

e np =
2,4,8,16,32,64,
on localhost (>
64 cores)

e Random sched.

(“representa-
tive").

100

40

Scalability

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

100

e 10000 obs., 20
vars.

e np =
2,4,8,16,32,64,
on localhost (>
64 cores)

e Random sched. w0

(“representa-
tive").

Scalability

Overhead = diminishing returns

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Scalability

100

e 10000 obs., 20
vars.

e np =
2,4,8,16,32,64,
on localhost (>
64 cores)

e Random sched. w0

(“representa-
tive").

Overhead = diminishing returns—eventually negative.

Algorithmic Speedup

(g <Fr

it
v

Q>

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Algorithmic Speedup

e Exploit matrix update:

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Algorithmic Speedup

e Exploit matrix update: Get new (X’X)~! from the old one
when add a new variable.

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Algorithmic Speedup

e Exploit matrix update: Get new (X’X)~! from the old one
when add a new variable. Possibly get a speedup?

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Algorithmic Speedup

e Exploit matrix update: Get new (X’X)~! from the old one
when add a new variable. Possibly get a speedup?

e Scheduling may be rather intricate.

it
v

v

http://heather.cs.ucdavis.edu/parprocbook

Efficient R
Parallel Loops
on
Long-Latency
Platforms

Norm Matloff

University of

California at
Davis

Slides available at
http://heather.cs.ucdavis.edu/RiceSlides. pdf.

To learn about parallel programming, see my open source book
at http://heather.cs.ucdavis.edu/parprocbook.

http://heather.cs.ucdavis.edu/parprocbook

