Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

Modernizing k-Nearest Neighbor Software

Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

URL for these slides (repeated on final slide):
http://heather.cs.ucdavis.edu/SDSSslidesKNN.pdf

> Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

Norm Matloff

Dept. of Computer Science University of California, Davis

Notation and Acronyms

• n: number of data points in our training cata

Norm Matloff

Dept. of Computer Science University of California, Davis

- n: number of data points in our training cata
- p: number of predictors/features

Norm Matloff

Dept. of Computer Science University of California, Davis

- n: number of data points in our training cata
- p: number of predictors/features
- ML: machine learning (= nonparametric regression)

Norm Matloff

Dept. of Computer Science University of California, Davis

- n: number of data points in our training cata
- p: number of predictors/features
- ML: machine learning (= nonparametric regression)
- k-NN: k-nearest neighbor method

Norm Matloff

Dept. of Computer Science University of California, Davis

- n: number of data points in our training cata
- p: number of predictors/features
- ML: machine learning (= nonparametric regression)
- k-NN: k-nearest neighbor method
- RFs: random forests

- n: number of data points in our training cata
- p: number of predictors/features
- ML: machine learning (= nonparametric regression)
- k-NN: k-nearest neighbor method
- RFs: random forests
- SVMs: Support Vector Machines

- n: number of data points in our training cata
- p: number of predictors/features
- ML: machine learning (= nonparametric regression)
- k-NN: k-nearest neighbor method
- RFs: random forests
- SVMs: Support Vector Machines
- NNs: neural networks

> Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

Dept. of Computer Science University of California, Davis

- Like all ML methods, does smoothing. $\widehat{E}(Y \mid X = t) =$ average Y among the k-nearest datapoints to t.
- Earliest ML method, e.g. (Fix and Hodges, 1951).
- Later, largely displaced in popularity by RFs, SVMs, NNs.

Dept. of Computer Science University of California, Davis

- Like all ML methods, does smoothing. $\widehat{E}(Y \mid X = t) =$ average Y among the k-nearest datapoints to t.
- Earliest ML method, e.g. (Fix and Hodges, 1951).
- Later, largely displaced in popularity by RFs, SVMs, NNs.
- Still common in some apps., e.g. recommender systems, outlier detection.

Dept. of Computer Science University of California, Davis

- Like all ML methods, does smoothing. $\widehat{E}(Y \mid X = t) =$ average Y among the k-nearest datapoints to t.
- Earliest ML method, e.g. (Fix and Hodges, 1951).
- Later, largely displaced in popularity by RFs, SVMs, NNs.
- Still common in some apps., e.g. recommender systems, outlier detection.
- And has some real advantages:

> Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

Comparison of Various ML Methods

Dept. of Computer Science University of California, Davis

Comparison of Various ML Methods

method	tuning pars. (fewer better)	iterative? (no better)	unique sol'n.?(yes better)
k-NN	k	no	yes
RFs	depth, leaf size, split crit. etc.	yes	no
SVM	d, C	yes	yes
NNs	"∞"	yes	no

Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

Improved k-NN

 So, k-NN has the virtues of being simple, e.g. only 1 tuning parameter, and computationally attractive.

Dept. of Computer Science University of California, Davis

Improved k-NN

- So, k-NN has the virtues of being simple, e.g. only 1 tuning parameter, and computationally attractive.
- We believe that, with improvements, k-NN can be quite competitive with other methods.

Dept. of Computer Science University of California, Davis

Improved k-NN

- So, k-NN has the virtues of being simple, e.g. only 1 tuning parameter, and computationally attractive.
- We believe that, with improvements, k-NN can be quite competitive with other methods.
- Two Innovations, one methodological and one diagnostic:

Dept. of Computer Science University of California, Davis

Improved k-NN

- So, k-NN has the virtues of being simple, e.g. only 1 tuning parameter, and computationally attractive.
- We believe that, with improvements, k-NN can be quite competitive with other methods.
- Two Innovations, one methodological and one diagnostic:
 - Assigning different distance weights to different predictors.
 - Exploring locally-determined values of *k*.
 - This talk will focus on the first innovation.

> Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

Different Distance Weigts for Different Predictors

Norm Matloff

Dept. of Computer Science University of California, Davis

Different Distance Weigts for Different Predictors

- E.g. done in (Han *et al*, 2001) for cosine "distance" for text clasification. Optimization is performed.
- Here we'll use (weighted) Euclidean distance.

> Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

Empirical Examples

Norm Matloff

Dept. of Computer Science University of California, Davis

Empirical Examples

- Will use the regtools package (on CRAN, but latest at github.com/matloff).
- Over 50 tools for regression, classification and ML.
- Will use kNN() and fineTuning().

> Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

The fineTuning() Function

• Advanced grid search tool for tuning parameter selection.

Dept. of Computer Science University of California, Davis

- Advanced grid search tool for tuning parameter selection.
- Motivation: The reported "best" parameter combination may not really be best.

Dept. of Computer Science University of California, Davis

- Advanced grid search tool for tuning parameter selection.
- Motivation: The reported "best" parameter combination may not really be best. Avoid p-hacking problem.

Norm Matloff

Dept. of Computer Science University of California, Davis

- Advanced grid search tool for tuning parameter selection.
- Motivation: The reported "best" parameter combination may not really be best. Avoid p-hacking problem.
- The tool allows exploring various good parameter combinations.

Norm Matloff

Dept. of Computer Science University of California, Davis

- Advanced grid search tool for tuning parameter selection.
- Motivation: The reported "best" parameter combination may not really be best. Avoid p-hacking problem.
- The tool allows exploring various good parameter combinations. Bonferroni Cls.

Dept. of Computer Science University of California, Davis

- Advanced grid search tool for tuning parameter selection.
- Motivation: The reported "best" parameter combination may not really be best. Avoid p-hacking problem.
- The tool allows exploring various good parameter combinations. Bonferroni Cls.
- Includes a plotting facility.

> Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

Example: Major League Baseball Data

Norm Matloff

Dept. of Computer Science University of California, Davis

Example: Major League Baseball Data

- For convenience, a very simple example: Predict weight from height, age.
- Dataset from **regtools** package.
- n = 1023, p = 2 (plus others not used here)

> Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis MLB, cont'd.

Norm Matloff

Dept. of Computer Science University of California, Davis

MLB, cont'd.

Norm Matloff

Dept. of Computer Science University of California, Davis

MLB, cont'd

Norm Matloff

Dept. of Computer Science University of California, Davis

MLB, cont'd

The **fineTuning()** function calls a user-defined function that does the work:

```
# fineTuning() forms current training test sets,
# dtrn and dtst, and current parameter combination
# 'Mcmbi
knnCall ← function(dtrn,dtst,cmbi) {
    knnOut ← kNN(dtrn[,1:2],dtrn[,3],dtst[,1:2],
        cmbi$k,expandVars=1,expandVals=cmbi$expandHt)
    mean(abs(dtst[,3] - knnOut$regests))
}
```

And the call:

```
ft \leftarrow fineTuning (mlb, pars=list (k=c(5,20,50,100), expandHt=c(1.8,1.5,1.2,1,0.8,0.5,0.2)), regCall=knnCall,nTst=500,nXval=100)
```

> Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

MLB Output

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

MLB Output

> ft													
\$ outdf													
	k	expandHt	meanAcc	seAcc	bonfAcc								
1	50	1.8	13.81726	0.03721619	0.11625351								
2	20	1.8	13.84013	0.03122950	0.09755266								
3	100	1.8	13.87238	0.03471346	0.10843563								
4	20	0.8	13.87528	0.03619783	0.11307242								
5	100	1.2	13.89429	0.03805532	0.11887472								
24	5	1.2	14.84733	0.03666898	0.11454417								
25	5	1.5	14.89271	0.03242414	0.10128441								
26	5	0.2	14.89479	0.03801763	0.11875700								
27	5	0.5	14.90646	0.04020769	0.12559816								
28	100	0.2	15.14842	0.03691466	0.11531160								

> Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

MLB Comments

 As expected, the largest expansion value for Height seems best; Height is more important than Age.

Norm Matloff

Dept. of Computer Science University of California, Davis

- As expected, the largest expansion value for Height seems best; Height is more important than Age.
- Further investigation with even larger expansion seems warranted.

Norm Matloff

Dept. of Computer Science University of California, Davis

- As expected, the largest expansion value for Height seems best; Height is more important than Age.
- Further investigation with even larger expansion seems warranted.
- But beware of p-hacking!

Dept. of Computer Science University of California, Davis

- As expected, the largest expansion value for Height seems best; Height is more important than Age.
- Further investigation with even larger expansion seems warranted.
- But beware of p-hacking!
 - All results subject to sample variation.
 - Thus **fineTuning()** displays radii of Bonferroni Cls.
 - An earlier run with nXval (cross val. folds) at 25 had ambiguous results; 100 works well here.

Yancey Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

MLB Plot

Dept. of Computer Science University of California, Davis

MLB Plot

- The fineTuning() function has an associated generic plot function.
- Use the parallel coordinates graphical method (Inselberg, 1997).
- View multidimensional data in 2-D.
- Implemented in cdparcoord ("categorical and discrete parallel coordinates") package.
- Latter uses Plotly, so can drag columns to change order etc.

Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

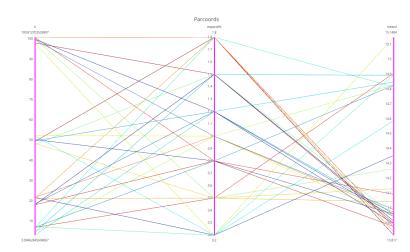
Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

Plot

> plot(ft)



> Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

Plot, Column Dragged

Robin Elizabeth Yancey

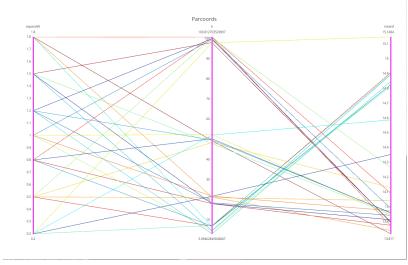
Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

Plot, Column Dragged

Can rotate columns by dragging.



> Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

Plot, Zoomed in

> Robin Elizabeth Yancey

Bochao Xin

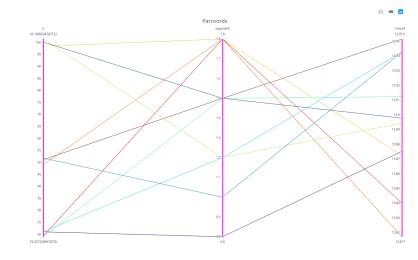
Norm Matloff

Dept. of Computer Science University of California, Davis

Plot, Zoomed in

Can zoom in, isolating only the best combinations.

$$>\,$$
 plot (ft , $-10)$



Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

Example: Prog/Engr Census Data

Dept. of Computer Science University of California, Davis

Example: Prog/Engr Census Data

- Dataset from regtools package.
- Predict occupation, among 6 programmer/engineer job titles. X = age, MS indicator, PhD indicator, gender (M), wage income, weeks worked.
- n = 20070, p = 6

> Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

```
knnCall ← function(dtrn, dtst, cmbi) {
   dtrn ← as. matrix (dtrn)
   dtst ← as. matrix (dtst)
   knnOut \leftarrow kNN(
       dtrn[, -(4:9)], dtrn[, 4:9], dtst[, -(4:9)],
       cmbi$k.
       expandVars=c(1:6).
       expand Vals=c (cmbi sage, cmbi sage), cmbi sage
          cmbi$gend, cmbi$wks, cmbi$wage).
       classif=TRUE)
   preds \leftarrow apply (knnOut$regests, 1, which . max)
   newy \leftarrow apply (dtst[,4:9],1, which.max)
   mean( preds == newy)
```

> Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

```
\begin{array}{l} \text{ft} \leftarrow \text{fineTuning(ped,} \\ \text{pars=list(k=c(10,50),age=c(0.5,2),} \\ \text{e14=c(0.5,2),e16=c(0.5,2),gend=c(0.5,2),} \\ \text{wks=c(0.5,2),wage=c(0.5,2)),} \\ \text{regCall=knnCall,nTst=500,nXval=100)} \end{array}
```

> Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

Census cont;d,

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

Census cont;d,

> ft\$outdf													
	k	age	e14	e16	gend	wks	wage	meanAcc	seAcc				
bonfAcc													
1	10	0.5	2.0	0.5	2.0	0.5	0.5	0.33602	0.002248141				
2	10	0.5	0.5	0.5	0.5	2.0	0.5	0.33792	0.002365906				
3	10	0.5	2.0	2.0	2.0	0.5	0.5	0.33810	0.002216809				
4	10	2.0	0.5	2.0	0.5	0.5	0.5	0.33812	0.002026455				
5	10	0.5	2.0	2.0	0.5	2.0	0.5	0.33820	0.002267647				
124	50	0.5	2.0	0.5	0.5	0.5	2.0	0.37990	0.002038493				
125	50	2.0	0.5	2.0	2.0	0.5	0.5	0.38038	0.002260365				
126	50	2.0	0.5	0.5	2.0	0.5	2.0	0.38042	0.002094205				
127	50	0.5	0.5	0.5	0.5	0.5	2.0	0.38100	0.002340767				
128	50	0.5	0.5	2.0	2.0	0.5	2.0	0.38248	0.002202867				

> Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

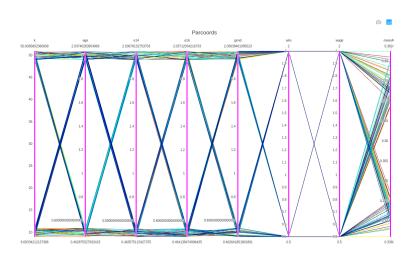
Dept. of Computer Science University of California, Davis

> Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis



> Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

Further Comments

Dept. of Computer Science University of California, Davis

Further Comments

- Can be done for any value of p.
- Larger p means: (a) More potential for p-hacking. (b)
 More columns in plot.
- Optimization not easy in k-NN case, due to lack of derivatives, though could be done for kernel-based smoothing.

> Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

Locally-Adaptive Choice of k

Norm Matloff

Dept. of Computer Science University of California, Davis

Locally-Adaptive Choice of k

Classic relation:

$$MSE = variance + bias^2$$
 (1)

- If $E(Y \mid X = t)$ has a large gradient at a point t, bias may be large, especially on fringes of X.
- It thus may be worth sacrificing on variance, i.e. worth using a smaller *k*.
- Thus locally-adaptive choice of *k*.

> Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

Locally-Adaptive, cont'd.

Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

Locally-Adaptive, cont'd.

- There have been a number of theoretical treatments, but they do not appear in common software packages.
- The regtools package has the function bestKperPoint()
- At each X_i, asks, "Which k would have best predicted Y_i?"

```
> args(regtools:::bestKperPoint)
function (kNNout, y)
```

where **kNNout** is an object returned by **kNN()** and y is the original Y vector.

```
> knnOut \leftarrow kNN(mlb[,1:2],mlb[,3],mlb[,1:2],50,

expandVars=1,expandVals=1.8)
```

> ks \leftarrow bestKperPoint(knnOut, mlb[,3])

> Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

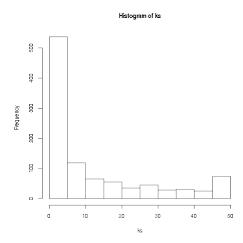
Dept. of Computer Science University of California, Davis

> Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis



Just started on this, plan to develop into a diagnostic tool.

> Robin Elizabeth Yancey

Bochao Xin

Norm Matloff

Dept. of Computer Science University of California, Davis

Future Work

Norm Matloff

Dept. of Computer Science University of California, Davis

Future Work

- Comparisons of "improved" k-NN and other ML methods, in accuracy and comp time.
- Development of locally-adaptive approach.