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Notation and Acronyms

• n: number of data points in our training cata

• p: number of predictors/features

• ML: machine learning (= nonparametric regression)

• k-NN: k-nearest neighbor method

• RFs: random forests

• SVMs: Support Vector Machines

• NNs: neural networks
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Overview of k-NN

• Like all ML methods, does smoothing. Ê (Y | X = t) =
average Y among the k-nearest datapoints to t.

• Earliest ML method, e.g. (Fix and Hodges, 1951).

• Later, largely displaced in popularity by RFs, SVMs, NNs.

• Still common in some apps., e.g. recommender systems,
outlier detection.

• And has some real advantages:
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Comparison of Various ML
Methods

method tuning
pars.
(fewer
better)

iterative?
(no better)

unique
sol’n.?(yes
better)

k-NN k no yes

RFs depth,
leaf size,
split crit.
etc.

yes no

SVM d , C yes yes

NNs “∞” yes no
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Improved k-NN

• So, k-NN has the virtues of being simple, e.g. only 1
tuning parameter, and computationally attractive.

• We believe that, with improvements, k-NN can be quite
competitive with other methods.

• Two Innovations, one methodological and one diagnostic:

• Assigning different distance weights to different predictors.
• Exploring locally-determined values of k.
• This talk will focus on the first innovation.
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Different Distance Weigts for
Different Predictors

• E.g. done in (Han et al, 2001) for cosine “distance” for
text clasification. Optimization is performed.

• Here we’ll use (weighted) Euclidean distance.
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Empirical Examples

• Will use the regtools package (on CRAN, but latest at
github.com/matloff ).

• Over 50 tools for regression, classification and ML.

• Will use kNN() and fineTuning().
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The fineTuning() Function

• Advanced grid search tool for tuning parameter selection.

• Motivation: The reported “best” parameter combination
may not really be best. Avoid p-hacking problem.

• The tool allows exploring various good parameter
combinations. Bonferroni CIs.

• Includes a plotting facility.
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• Advanced grid search tool for tuning parameter selection.

• Motivation: The reported “best” parameter combination
may not really be best. Avoid p-hacking problem.

• The tool allows exploring various good parameter
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• Includes a plotting facility.
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Example: Major League Baseball
Data

• For convenience, a very simple example: Predict weight
from height, age.

• Dataset from regtools package.

• n = 1023, p = 2 (plus others not used here)
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MLB, cont’d.

> data (mlb ) # in r e g t o o l s pkg

> mlb ← mlb [ , c ( 4 , 6 , 5 ) ]
> mlb [ 1 , ]

He ight Age Weight
1 74 22 .99 180
> args (kNN)
f u n c t i o n ( x , y , newx=x , kmax , s ca l eX=TRUE,

PCAcomps=0, expandVars=NULL , expandVa l s=NULL ,
smooth ingFtn=mean , a l l K=FALSE , l e a v e 1ou t=FALSE ,
c l a s s i f=FALSE)
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MLB, cont’d

The fineTuning() function calls a user-defined function that
does the work:

# f i n eTun i n g ( ) f o rms c u r r e n t t r a i n i n g t e s t s e t s ,

# d t rn and d t s t , and c u r r e n t pa r ame t e r c omb i na t i o n

# ‘Mcmbi

knnCa l l ← f u n c t i o n ( dtrn , d t s t , cmbi ) {
knnOut ← kNN( d t rn [ , 1 : 2 ] , d t r n [ , 3 ] , d t s t [ , 1 : 2 ] ,

cmbi$k , expandVars=1, expandVa l s=cmbi$expandHt )
mean( abs ( d t s t [ , 3 ] − knnOut$ r e g e s t s ) )

}

And the call:

f t ← f i n eTun i ng (mlb , pa r s= l i s t ( k=c (5 , 20 , 50 , 100 ) ,
expandHt=c ( 1 . 8 , 1 . 5 , 1 . 2 , 1 , 0 . 8 , 0 . 5 , 0 . 2 ) ) ,
r e g C a l l=knnCa l l , nTst=500 , nXval=100)
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MLB Output

> f t
$ ou td f

k expandHt meanAcc seAcc bonfAcc
1 50 1 .8 13.81726 0.03721619 0.11625351
2 20 1 .8 13.84013 0.03122950 0.09755266
3 100 1 .8 13.87238 0.03471346 0.10843563
4 20 0 .8 13.87528 0.03619783 0.11307242
5 100 1 .2 13.89429 0.03805532 0.11887472
. . .
. . .
24 5 1 .2 14.84733 0.03666898 0.11454417
25 5 1 .5 14.89271 0.03242414 0.10128441
26 5 0 .2 14.89479 0.03801763 0.11875700
27 5 0 .5 14.90646 0.04020769 0.12559816
28 100 0 .2 15.14842 0.03691466 0.11531160
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MLB Comments

• As expected, the largest expansion value for Height seems
best; Height is more important than Age.

• Further investigation with even larger expansion seems
warranted.

• But beware of p-hacking!

• All results subject to sample variation.
• Thus fineTuning() displays radii of Bonferroni CIs.
• An earlier run with nXval (cross val. folds) at 25 had

ambiguous results; 100 works well here.
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MLB Plot

• The fineTuning() function has an associated generic plot
function.

• Use the parallel coordinates graphical method (Inselberg,
1997).

• View multidimensional data in 2-D.

• Implemented in cdparcoord (“categorical and discrete
parallel coordinates”) package.

• Latter uses Plotly, so can drag columns to change order
etc.
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Plot

> p l o t ( f t )
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Plot, Column Dragged

Can rotate columns by dragging.
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Plot, Zoomed in

Can zoom in, isolating only the best combinations.

> p l o t ( f t ,−10)
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Example: Prog/Engr Census Data

• Dataset from regtools package.

• Predict occupation, among 6 programmer/engineer job
titles. X = age, MS indicator, PhD indicator, gender (M),
wage income, weeks worked.

• n = 20070, p = 6
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Census cont’d.

knnCa l l ← f u n c t i o n ( dtrn , d t s t , cmbi ) {
d t rn ← as . matr ix ( d t rn )
d t s t ← as . matr ix ( d t s t )
knnOut ← kNN(

d t rn [ , − ( 4 : 9 ) ] , d t r n [ , 4 : 9 ] , d t s t [ , − ( 4 : 9 ) ] ,
cmbi$k ,
expandVars=c ( 1 : 6 ) ,
expandVa l s=c ( cmbi$age , cmbi$e14 , cmbi$e16 ,

cmbi$gend , cmbi$wks , cmbi$wage ) ,
c l a s s i f=TRUE)

p r ed s ← apply ( knnOut$ r e g e s t s , 1 , which .max)
newy ← apply ( d t s t [ , 4 : 9 ] , 1 , which .max)
mean( p r ed s == newy )

}
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Census cont’d.

f t ← f i n eTun i ng ( ped ,
pa r s= l i s t ( k=c (10 , 50 ) , age=c ( 0 . 5 , 2 ) ,
e14=c ( 0 . 5 , 2 ) , e16=c ( 0 . 5 , 2 ) , gend=c ( 0 . 5 , 2 ) ,
wks=c ( 0 . 5 , 2 ) , wage=c ( 0 . 5 , 2 ) ) ,
r e g C a l l=knnCa l l , nTst=500 , nXval=100)
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Census cont;d,

> f t $ ou td f
k age e14 e16 gend wks wage meanAcc seAcc

bonfAcc
1 10 0 .5 2 .0 0 .5 2 .0 0 .5 0 .5 0 .33602 0.002248141 0.007972667
2 10 0 .5 0 .5 0 .5 0 .5 2 .0 0 .5 0 .33792 0.002365906 0.008390302
3 10 0 .5 2 .0 2 .0 2 .0 0 .5 0 .5 0 .33810 0.002216809 0.007861554
4 10 2 .0 0 .5 2 .0 0 .5 0 .5 0 .5 0 .33812 0.002026455 0.007186495
5 10 0 .5 2 .0 2 .0 0 .5 2 .0 0 .5 0 .33820 0.002267647 0.008041842
. . .
. . .
124 50 0 .5 2 .0 0 .5 0 .5 0 .5 2 .0 0 .37990 0.002038493 0.007229186
125 50 2 .0 0 .5 2 .0 2 .0 0 .5 0 .5 0 .38038 0.002260365 0.008016017
126 50 2 .0 0 .5 0 .5 2 .0 0 .5 2 .0 0 .38042 0.002094205 0.007426757
127 50 0 .5 0 .5 0 .5 0 .5 0 .5 2 .0 0 .38100 0.002340767 0.008301152
128 50 0 .5 0 .5 2 .0 2 .0 0 .5 2 .0 0 .38248 0.002202867 0.007812110
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Further Comments

• Can be done for any value of p.

• Larger p means: (a) More potential for p-hacking. (b)
More columns in plot.

• Optimization not easy in k-NN case, due to lack of
derivatives, though could be done for kernel-based
smoothing.
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Locally-Adaptive Choice of k

• Classic relation:

MSE = variance + bias2 (1)

• If E (Y | X = t) has a large gradient at a point t, bias
may be large, especially on fringes of X .

• It thus may be worth sacrificing on variance, i.e. worth
using a smaller k.

• Thus locally-adaptive choice of k .
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Locally-Adaptive, cont’d.

• There have been a number of theoretical treatments, but
they do not appear in common software packages.

• The regtools package has the function bestKperPoint()

• At each Xi , asks, “Which k would have best predicted
Yi?”

> args ( r e g t o o l s : : : b e s tKpe rPo in t )
f u n c t i o n ( kNNout , y )

where kNNout is an object returned by kNN() and y is the
original Y vector.

> knnOut ← kNN(mlb [ , 1 : 2 ] , mlb [ , 3 ] , mlb [ , 1 : 2 ] , 5 0 ,
expandVars=1, expandVa l s =1.8)

> ks ← be s tKpe rPo in t ( knnOut , mlb [ , 3 ] )
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Just started on this, plan to develop into a diagnostic tool.
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Future Work

• Comparisons of “improved” k-NN and other ML methods,
in accuracy and comp time.

• Development of locally-adaptive approach.



Modernizing
k-Nearest
Neighbor
Software

Robin
Elizabeth
Yancey

Bochao Xin

Norm Matloff

Dept. of
Computer

Science
University of

California,
Davis

Future Work

• Comparisons of “improved” k-NN and other ML methods,
in accuracy and comp time.

• Development of locally-adaptive approach.


