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Summary. Knowledge discovery in databases (KDD) is an inherently statistical
activity, with a considerable literature drawing upon statistical science. However,
the usage has typically been vague and informal at best, and at worst of a seriously
misleading nature. In addition, much of the classical statistical methodology was
designed for goals which can be very different from those of KDD. The present paper
seeks to take a first step in remedying this problem by pairing precise mathematical
descriptions of some of the concepts in KDD with practical interpretations and
implications for specific KDD issues.

1 Introduction

The field of KDD has made extensive use of statistical methodology. Such
methodology is clearly of great potential, but is also fraught with a myriad
of pitfalls. A lack of insight into how the methods actually work may result
in unnecessarily weak KDD machinery. Moreover, naive “transplantation” of
many statistical methods to KDD arenas for which the methods were not
designed may result in poor or even misleading analyses.

The remedy is for KDD practitioners to on the one hand to gain a better,
more precise mathematical understanding of the statistical methodology, and
on the other hand to develop a better intuitive understanding of what the
methodology does.

In this paper, we will encourage KDD practitioners to

• devise simple mathematical models which will facilitate precise statements
of the problems at hand and deepen intuitive insight into possible solutions
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• take a close look at the goals of the statistical methodology they use,
assessing how well those methods fit the given KDD application

We will present a simple framework, consisting of some simple mathemat-
ical constructs motivated by intuitive notions tied to the actual practice of
KDD. It is important to note that the latter, i.e. the intuitive “philosophical”
issues, will play an integral role here.

It is assumed here that the reader has at least a first-level knowledge
of standard statistical methods, e.g. hypothesis testing, confidence intervals
and regression, and a basic background in probabilistic constructs such as
random variables, expected value and so on. We first develop some simple
infrastructure, some of which will be at least somewhat familiar to many
readers, and then move to detailed worked-out examples which illustrate the
issues.

2 Statistical Sampling

As is common in theoretical treatments, we will phrase the issues in terms
of a statistical prediction problem. This is not to say we consider KDD to
be limited to prediction settings, but rather that such settings are among
the most common KDD applications. We depart from tradition, though, by
engaging in an explicit discussion of the practical interpretation of what we
mean by “statistical.”

2.1 Notation

Denote our attribute set by X(1), ..., X(d). It is assumed that our database
constitutes a statistical sample of n observations on these attributes; the ith

observation on the jth attribute from this sample is denoted by X
(j)
i , i =

1,...,n, j = 1,...,d. We need to spend some time here on the question of what
this really means.

To make things concrete—again, this is one of our principle aims—let’s
consider the well-known KDD “market basket” example. Each row in the
database corresponds to some individual consumer. The jth attribute might
record whether the consumer bought a given item (1 for yes, 0 for no).1 We
wish to predict the event X(i) = 1 from several other simultaneous events
X(j) = 1. In other words, we wish to know whether a consumer’s purchase of
one item is related to his/her possible interest in buying a related item. For
example, in an online book sales site, if a consumer purchases a certain book,
the site may then suggest to the customer that he/she consider buying other
related books. Note that this is unlike typical statistical contexts, in which we
would be interested in predicting from events of the form X(j) = 0 as well.
1 In other KDD contexts, some of the attributes may be characteristics of a con-

sumer, say age, income or gender (say 1 for male, 0 for female), and so on.
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The vector (X(1)
i , ..., X

(d)
i ), representing the values of all our attributes in

the ith observation will be denoted by Xi. In relational database terms, this
vector is the ith row in our relation.

2.2 Sampling from Populations, Real or Conceptual

In considering our database to be a “statistical sample,” we mean that it is a
sample from some “population.” This interpretation is, in our view, key.

The population may be tangible, as in the “basket” example, where we are
sampling from the population of all customers of this business. Or, the pop-
ulation may be more conceptual in nature. A database consisting of students
in a new curriculum in a university could be considered as a sample from the
conceptual population of all students at this university who might be in this
major. If for example we imagine the university overall enrollment had been
20 percent larger this year, with no change in demographic or other makeup
of the enrollment, then some of the increased overall enrollment would have
been students choosing this major. This population is then conceptual. Similar
remarks hold when considering potential future students in the major.

Here is an example of a “population” which is even more conceptual in
nature. Consider the subject of quadratic equations, studied in school algebra
classes:

ax2 + bx + c = 0 (1)

The students learn that this equation has a real root if and only the discrim-
inant b2 − 4ac is nonnegative. Suppose one did not know this rule, and tried
to find it using KDD.

This sounds like an inherently non-statistical problem. Yet one could con-
vert it to a statistical problem in the following way. One could sample ran-
domly from a/b/c space, according to a distribution of one’s choice, and for
each sample triplet from this space, determine somehow (say by graphing the
quadratic polynomial) whether a real root exists. One could then apply vari-
ous statistical regression models (see below), trying to predict the 0-1 variable
w from a, b and c, where w is 1 if there are real roots and 0 otherwise. In this
manner, we might possibly stumble onto the discriminant rule.

2.3 Relation to Probability Distributions

It is important to relate the abstract mathematical variables to the population
being studied. When we speak of the distribution of the random variable X(j),
what we really mean is the distribution of that attribute in the population.
Say X(1) is age of the customer. When we say, for instance, that P (X(1) >
32) = 0.22, we mean that 22 percent of all customers in this population are
older than 32.
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A similar point holds for expected value. Some KDD practitioners with
an engineering or physical science background might be accustomed to inter-
preting E(X(1)) in terms of the physics metaphor of center of gravity. Yet for
statistical applications such as KDD, the relevant interpretation of this quan-
tity is as the mean age of all customers in this population. This interpretation
is especially important when considering sample-distribution issues such as
bias and variance, as we will see.

3 Prediction

As we have noted, our focus in the statistical nature of KDD is on prediction.
For notational convenience, in the remainder of this paper, let us suppose that
we are using X(1), ..., X(d−1) to predict X(d), and rename the latter attribute
Y .

Our focus here will largely be on predicting dichotomous, i.e. 0/1-valued,
attributes Y. (We do not make this restriction on the attributes X(j).) How-
ever, as will be seen, most of the issues which arise also occur in the case of
continuous-valued Y.

3.1 Statement of the Problem

Suppose for the moment that we know the population distributions of the at-
tributes, and we wish to minimize the overall probability of misclassification.2

Suppose that we observe X(j) to have the value vj , j = 1,...,d-1. Then we
would guess Y to be either 0 or 1, according to whether the quantity

r(v) = r(v1, ..., vd−1)

= P (Y = 1|X(1) = v1, ..., X
(d−1) = vd−1) (2)

is less than 0.5 or greater than 0.5, respectively, where v = (v1, ..., vd−1)).3

Let us then denote this guess as g[r(v)], where g(u) = floor(2u) for u in [0,1].
Note that in theory r(v) should converge to 1 or 0 (depending on v) as d →

∞. In other words, if you know enough about the situation, you can always
predict correctly! This of course is a very big “if”, but it puts in perspective
notions such as that of unexpected rules in [10]. Nothing is “unexpected,”
strictly speaking; we simply lack data. This issue will become relevant in our
discussion of the bias/variance tradeoff and Simpson’s Paradox later.
2 The latter would not be the case if we assigned different costs to different types

of errors. It may be more costly to falsely guess Y to be 1 than to falsely guess it
to be 0, for example.

3 Here and below, will write this function simply as r(), suppressing the dependence
on d, i.e. not writing it as rd−1. The dependence will be clear from the number
of arguments.
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3.2 Classification Vs. Regression

Some authors, e.g. Han [5] consider the case of dichotomous Y to be a concep-
tually separate case from that of continuous Y , and refer to it as classification
instead of prediction. However, mathematically it is the same problem, in the
following sense.

Classically, the problem of predicting a general attribute Y from a vector
of attributes X = (X(1), ..., X(d−1)) is posed as finding a function h() that
minimizes

E[(Y − h(X))2] (3)

One can easily show that the minimizing solution is the regression function,

h(t) = E(Y |X = t) (4)

Now, if Y is dichotomous, i.e. Y takes on the values 0 and 1, then

E(Y |X = t) = w · 1 + (1− w) · 0 = r(t) (5)

where w = P(Y=1|X=t).
In other words, the general formulation of the prediction problem yields

the regression function r() anyway.
Thus the classification and regression problems are the same. This is not

just a semantic issue. There are indeed some aspects of the classification prob-
lem which differ from the regression setting, but there is a great amount of
commonality. A vast literature exists on the general regression problem, with
much material relevant to the dichotomous case,4 and it would be a loss not
to draw upon it.5

3.3 The Function r() Must Be Estimated from Sample Data

The situation is complicated by the fact that we do not know the population
distributions of the attributes, as assumed in the previous few paragraphs.
We thus do not know the function r() above, and need to estimate it from the
observations in our database.

The estimated function, r̂(v), is obtained either by parametric or nonpara-
metric means. A common parametric approach, for instance, uses the logistic
regression model, which postulates that r(v) has the form

r(v1, ..., vd−1) =
1

1 + exp[−(β0 + β1v1 + ... + βd−1vd−1)]

4 A large separate literature on the classification problem has also been developed,
but much of it draws upon the material on regression.

5 By the way, some of these points are also noted (albeit rather abstractly) in [3].
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The parameters βj are estimated from our sample data X
(j)
i , yielding the

estimated parameters β̂j and the estimated r(v):6

r̂(v) =
1

1 + exp[−(β̂0 + β̂1v1 + ... + β̂d−1vd−1)]

Many nonparametric method have been used in KDD for estimating r(v),
such as CART [1].

4 Over/underfitting

There is a lot of talk about “noise mining,” “overfitting” and the like in the
KDD literature, but again this is rarely precisely defined.

4.1 Bias and Variance

In some theoretical papers, the literature does at least point out that the
“average” discrepancy between r̂(v) and r(v) can be shown to consist of two
components—(the square of) a bias component,

Er̂(v)− r(v) (6)

and a variance component,

E[(r̂(v)− Er̂(v))2] (7)

Note that v is fixed here, not random. Instead, the randomness involves the
fact that these expected values are averages over all possible n-observation
samples from the given population.7 This interpretation is very important
when one is assessing various competing types of prediction methodology,
and especially important in understanding the bias/variance problem.

A large bias is due to using too simple a model in the parametric case, or
to using too coarse a granularity in the nonparametric case (e.g. leaf nodes
too large in CART). In both cases, one common source of the problem is that
we are using too few predictor attributes.

However, any efforts to reduce the bias will increase the variance, i.e.
increase the amount of “noise.” This is due to having an insufficient sample
size n for the given model. In CART, for example, if we use smaller hyper-
rectangles in order to reduce bias, a given hyper-rectangle might contain very
few observations, thus causing r̂() to have a large variance within the rectangle.
The same rectangle, applied to a larger sample from the same population,
6 See for example the lrm procedure in the R statistical package [11].
7 We could also make v random. i.e. replace it by X in the expressions above, so

that the averaging is being done both over all possible n-observation samples and
over all values of v.
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might work fine. In the case of a logistic model, if we add more predictor
variables in order to reduce bias, then for each fixed j, V ar(β̂j) will tend to
increase.8

These phenonema arise in the “market basket” setting as well. If confidence
and support levels (see Section 6.1) are set too low, a bias problem occurs in
much the same way as it does if we have too large a rectangle in CART. If the
confidence and support levels are set too high, it becomes a variance problem.

4.2 Illustrative Model

Recall that our theme here has been that empirical research work in KDD
should include a mathematically precise statement of the problem, and should
present mathematical treatment of at least a small but illustrative model of
the effects being studied. In that light, we now present such a model of the
“noise fitting” problem. We ask the reader to keep in mind our specific goal
here in devising this model—we desire to devise a simple but precise model
in which the roles of both d and n in the bias/variance tradeoff are explicitly
visible in the model’s results.9 It is our hope that KDD practitioners will often
engage in setting up such simple models in order to gain insight into specific
applications.

Continue to assume the setting described at the beginning of Section 3,
but with the additional specialization that all the predictor attributes X(j), j
= 1,...,d-1 are dichotomous.

Suppose that X(j), j = 1,...,d-1 are all “coin tosses,” i.e. have probability
0.5 of taking on the value 1 and are statistically independent. Suppose in
addition that P (Y = 1|X(1) = v1) is equal to 0.6 for v1 = 1 and equal to 0.4
for v1 = 0, and that X(j), j = 2,...,d-1 have no predictive power for Y at all,
i.e.

r(v1, v2, ..., vd−1) = P (Y = 1|X(1) = v1) (8)

independent of v2, ..., vd−1.
But we would not have this information, since we would not have the

population data. We would have only sample estimates of r(v) to work with,
r̂(v). The point then is that that estimate will be subject to bias/variance
issues. We discuss the variance issue first, and focus our attention on the
estimation of r(1,1,...,1).

One decision we would need to make is which of the attributes X(j) to
use as predictors. Let us compare the effects of using just X(1) alone to pre-
dict Y, versus using X(1), X(2), ..., X(d−1) for that prediction. In the former
situation, note again that we would be modeling r(v) to be a function which

8 See [14] for an analytical proof of this in the linear regression setting.
9 A number of much more complex examples of this tradeoff for various kinds of

estimators are presented (without derivation) in [6].
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does not depend on X(2), ..., X(d−1) (see Equation (8)). Again, this modeling
assumption would be correct, but we would not know this.

Suppose we are not using a parametric model, and instead are simply using
straight sample proportions to estimate r(). Then if we use only X(1) as our
predictor, our estimate of r(1,1,...,1) would be the proportion of records in our
database for which Y = 1, among those for which X(1) = 1, i.e.

r̂(1, 1, ..., 1) =
∑

i X
(1)
i X

(d)
i∑

i X
(1)
i

=
T1

U1
(9)

Recalling that r(1,1,...,1) = 0.6, the question at hand is, “What is the prob-
ability that r̂(1, 1, ..., 1) will make the right decision for us in this situation,
which is to guess that Y = 1?”10 Well, this is

P (r̂(1, 1, ..., 1) > 0.5) = P (T1 > 0.5U1) (10)

To evaluate this probability, note first that T1 and U1, are binomially
distributed.11 Thus they have approximate normal distributions. But in ad-
dition, their bivariate distribution approximates that of a bivariate normal.12

The means and variances of T1 and U1 are then np, nq, np(1-p) and nq(1-q),
where p = P (X(1) = X(d) = 1) = 0.3 and q = P (X(1) = 1) = 0.5. Their
covariance is

Cov(T1, U1)
= n[E(X(1)X(d)X(1))− E(X(1)X(d)) · EX(1)]
= np(1− q) (11)

Any linear combination of T1 and U1, say aT1 + bU1, then has an approx-
imate normal distribution with mean n(ap+bq), and variance

n[a2V ar(T1) + b2V ar(U1) + 2abCov(T1, U1)] (12)

In our case here, a = 1 and b = -0.5. After doing the calculations we find
that E(T1 − 0.5U1) = 0.05n and V ar(T1 − 0.5U1) = 0.1225n, and thus

P (T1 > 0.5U1) ≈ 1− Φ(−0.14
√

n) (13)

where Φ is cumulative distribution function of a standard N(0,1) variate.

10 Note that the term “the right decision” means the decision we would make if
we had full knowledge of the population distributions, rather than just sample
estimates. It does not mean that our guess for Y is guaranteed to be correct.

11 The variable B = X(1)X(d) is 0-1 valued, and the terms are independent, so the
sum T1 is binomial.

12 This stems from the fact the vector form of the Central Limit Theorem.
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So, Equation (13) is the probability that we make the right decision if we
predict Y from only X(1). Let’s see how that probability changes if we predict
Y from X(1), ..., X(d−1).

In this setting, Equation (2) again reverts to (8), and (9) becomes

r̂(1, 1, ..., 1) =
∑

i X
(1)
i X

(2)
i ...X

(d−1)
i X

(d)
i∑

i X
(1)
i X

(2)
i ...X

(d−1)
i

=
Td−1

Ud−1
(14)

The analog of (13) is then (after a bit of algebraic approximation)

P (Td−1 > 0.5Ud−1) ≈ 1− Φ

(
−0.28 ·

√
n

2d

)
(15)

Compare Equations (13) and (15), focusing on the roles of d and n. They
are both of the form P (Z > c) for a negative c, and the algebraically smaller
(i.e. more negative) c is, the better. So, for fixed n, the larger d is, the worse
is our predictive ability for Y, if we use all d-1 predictors.

Now, remember the context: We devised a model here in which X
(2)
i ...X

(d−1)
i

had no predictive ability at all for Y in the population distribution, though
the analyst would not know this. In other words, not only will the analyst
not gain predictive ability by using these attributes, he/she would actually lose
predictive power by using them, i.e. “overfit.”

So, this is the variance side of the bias/variance tradeoff. The number of
records in our sample which have X(1) = 1, X(2) = 1, ..., X(d−1) = 1 will be
very small for large d (similar to having a small leaf node in CART), leading
to a high variance for r̂(1, 1, ..., 1).13

Equation (15) also shows the role of n in the overfitting issue: For fixed d,
as n increases the harmful effect of overfitting will diminish.

Now, what about the bias side of the bias/variance tradeoff? Suppose we
are considering using X(1), X(2)..., X(k) as our predictor attributes. Due to
the nature of the model here, i.e. the fact that X(2)..., X(k) have no predictive
power, the bias in using any k in the range 1 ≤ k < d− 1 is 0.14 So, if we use
k greater than 1, we are incurring the problem of increasing variance without
reducing bias, a pure loss.

On the other hand, using k = 0 would produce a bias, since X(1) does
have some predictive value for Y: If k were taken to be 0, then the population
value of r(1,1,...,1) would reduce to the unconditional probability P(Y = 1)
= 0.5, rather than the achievable value 0.6.
13 We did not directly calculate that variance here, showing the variance effects

only indirectly. However, V ar(r̂) could be calculated by using the delta method,
applied to the function f(t,u) = t/u [13].

14 Here we are using the term bias only informally, not quite as in Equation (6).
To make it formal, we would have to make the expected value conditional on
Uk, the latter defined analogously to U1 and Ud−1 for the case of k predictors.
The technical reason for this is that Uk may be 0, and thus r̂(1, 1, ..., 1) would be
undefined.
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Again, our point in devising this model here is to illustrate our theme
that even empirical KDD research should anchor its presentation with (a)
a precise mathematical statement of the problem being studied, and (b) a
simple mathematical model which explicitly illustrates the issues.

The word explicitly in (b) should be emphasized. Equation (15) explicitly
shows the roles of d and n. One sees that for a fixed value of n, use of a larger
d increases the variance. As d increases, at some point our predictive ability
based on sample data will begin to diminish, i.e. we will overfit. One also sees,
though, that for a larger value of n, that crossover point will occur for a larger
d, i.e. we can use more attributes as our predictors.

5 Attribute Selection

As we have seen, there is a tradeoff between bias and variance for fixed n. As
finer models are fitted, with more attributes, the bias is reduced (or stays the
same) but the variance increases. If too much attention is paid to minimizing
bias rather than variance, the decision rules found from the analysis may be
spurious, hence the term noise mining.

The problem of finding the attribute set which maximizes predictive abil-
ity, i.e. finding the optimal point in the bias/variance tradeoff spectrum, is
as old as the field of statistics itself. It must be emphasized in the strongest
possible terms that this is still an unsolved problem, in spite of numerous
papers in the KDD literature which report on “promising” solutions.

5.1 The Use of Hypothesis Testing

We wish to emphasize also the importance of phrasing the problem directly in
terms of the goals of the KDD settings being analyzed. For example, the clas-
sical statistical method for selecting predictor attributes, hypothesis testing,
is of questionable propriety. In the case of a logistic model, say, this approach
would involve testing the hypothesis

H0 : βj = 0 (16)

and then either including or excluding the attribute X(j) in our predictor set,
depending on whether the hypothesis is rejected or accepted. This procedure
is often applied sequentially, one potential predictor attribute at a time, to
determine which attributes to use; this algorithm is called stepwise variable
selection.

Yet the classic use of hypothesis testing in regression analysis is largely
aimed at descriptive, rather than predictive, types of applications. An example
of descriptive use is the identification of risk factors for a certain disease. The
attributes having large βj are considered to be the more important factors.
There the goal is more to understand how a disease arises in the population
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at large, rather than to actually predict whether a particular individual devel-
ops the disease. By contrast, in many KDD settings one really does want to
predict, and thus one should be hesitant to apply classical variable-selection
algorithms in the KDD context.

For example, in the classical use of regression, the hypotheses are typically
tested at traditional significance levels such as α = 0.05. Yet some studies (e.g.
[7]) have found that for the prediction of continuous variables, the best values
of α are in the range 0.25 to 0.40.15

Some readers will notice this as a statistical power issue; the term refers
to the probabilities of rejecting the null hypothesis under various scenarios of
the alternative hypothesis. As such, it is not a new concept, since the original
usage of hypothesis testing in the early 20th century did assume that analysts
would carefully balance the values of α and power in a manner suitable to the
application. However, modern usage has institutionalized the value of α to be
set to 0.05 or 0.01, so much so that a “star” notation has become standard in
research in the social and life sciences (a statistic is adorned with one or two
asterisks, depending on whether α is 0.05 or 0.01).16 Power is rarely discussed,
let alone calculated.

Again, in KDD the goals may be very different from classical statistical
usage, and thus that our analyses must not blindly mimic that usage. In this
case, the point is that if one does use hypothesis testing for model selection,
power considerations are crucial. Of course, it is not always clear how best to
use power analyses in a given situation, or even how to calculate it in many
cases, but it is certainly clear that classical values of α are not the best.

6 The Multiple Inference Problem

If hypothesis testing is used for attribute selection, there is not only the prob-
lem of considering power levels, but also the issue of accuracy of the α and
power levels. First there is the problem that even though each test has the
specified significance level, the collective significance level of all the tests may
be much greater. In addition, many attribute selection algorithms, e.g. step-
wise selection, are adaptive, and thus even the individual significance levels
may have values quite different from their nominal values.

The problem of the collective significance level being much greater than
the level applied to each individual test can be addressed by the use of mul-
tiple inference methods, which allow one to set an overall significance level
for multiple tests. In this light, a worthy future research project would be
to revisit past dismissals of the use of multiple inference for rule finding [8].

15 The picture is further muddled by the fact that the stated α value is nominal
anyway, due to issues such as multiple inference, discussed in Section 6.

16 Even if one’s goal is descriptive rather than predictive, the usage of these insti-
tutionalized values is questionable [9].
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Earlier authors had found such approaches to be too conservative, finding too
few rules. However, the point we made above in Section 5.1 suggests that with
a larger value of overall α, such methodology may work well.

6.1 Illustrative Example

Consider the market basket problem with two attributes, X(1) and X(2). Typ-
ically one is interested in finding all attributes for which the confidence, say

P (X(2) = 1|X(1) = 1) (17)

is greater than a given level c, and the support, say

P (X(2) = X(1) = 1) (18)

is a above s. If both conditions are satisfied, we will use the rule X(1) ⇒ X(2).
(For the sake of simplicity, we are using only two attributes in this ex-

ample. Typically there are many more than two attributes, in which case
combinations of attributes are considered. With three attributes, for in-
stance, we would assess not only potential rules such as X(1) ⇒ X(2) but
also some like X(1), X(3) ⇒ X(2). In the latter case, quantities such as
P (X(2) = 1|X(1) = X(3) = 1) would be checked.)

Let pij = P (X(1) = i,X(2) = j), i,j = 0,1. Then to determine whether to
use the rule X(1) ⇒ X(2), we might test the hypothesis

H0 : p11 ≤ s or
p11

p11 + p10
≤ c (19)

and then use the rule if the hypothesis is rejected. But for mathematical
tractability here, let us treat (19) as two separate hypotheses. Accounting
also for the possible rule X(2) ⇒ X(1), we have a total of three hypotheses
to test in all.17 We will now investigate how well we can assess the two rules
with a given value of α. We will calculate E(K), where K is the number of
hypotheses in which we make the correct decision; K varies from 0 to 3.

As a test case, let us take the matrix p = (pij) to be(
0.15 0.45
0.10 0.30

)
(20)

and take s = 0.35, c = 0.60. In this setting, the potential rules have confidence
and support as shown in Table 1. Then in this simple example,18 of the three
hypothesis tests to be performed, ideally two of them should be rejected and
one accepted. E(K) will be the sum of the probabilities of the two rejections
and one acceptance.

A standard method for multiple inference on a small number of tests in-
volves use of the Bonferroni Inequality.19 If one is performing k tests and
17 The two potential rules have one support test in comon.
18 A much more general study is being conducted for a separate paper.
19 A reference on this and many other multiple inference methods is [12].
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poss. rule conf. supp.

X(1) ⇒ X(2) 0.75 0.30

X(2) ⇒ X(1) 0.40 0.30

Table 1. Rule Results

wishes an overall significance level of at most α, then one sets the individual
significance level of each test at α/k. Here, to achieve an overall significance
level of 0.05, we use a level of 0.05/3 = 0.017 for each of the three tests.
For a one-sided test, this corresponds to a “Z value” of 2.12 in the normal
distribution, i.e. 1− Φ(2.12) = 0.017.

To test the potential rule X(1) ⇒ X(2) for our confidence level 0.35, we
reject if

p̂11 − 0.35√
ˆV ar(p̂11)

> 2.12 (21)

where

ˆV ar(p̂11) =
p̂11(1− p̂11)

n
(22)

Thus we need to compute

P

 p̂11 − 0.35√
ˆV ar(p̂11)

< 2.12

 (23)

in the setting p11 = 0.30. This probability is computed (approximately) via
standard normal distribution calculations as seen earlier in Section 4.2.20

For testing whether the potential rule X(1) ⇒ X(2) meets the confidence
criterion, note that

p11

p11 + p10
> c (24)

holds if and only if

(1− c)p11 − cp10 > 0 (25)

Thus the probability of making the correct decision regarding the confidence
level of X(1) ⇒ X(2) is

20 Here, though, one uses the exact variance in the denominator in (23), i.e. p11(1−
p11)/n = 0.18/n.
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P

 (1− c)p̂11 − cp̂10√
ˆV ar[(1− c)p̂11 − cp̂10]

> 2.12

 (26)

where, using (12) and the fact that Cov(p̂11, p̂10) = −p11p10/n,

σ2 = V ar[(1− c)p̂11 − cp̂10] =

1
n

[(1− c)2p11(1− p11) + c2p10(1− p10) + 2c(1− c)p11p10]

The probability of the correct decision is then

1− Φ

(
2.12− (1− c)p11 − cp10

σ

)
(27)

The probability of the correct decision for X(2) ⇒ X(1) (that the confidence
level is not met) is computed similarly.

After doing all this computation, we found that the value of E(K) for an
α of 0.05 turns out to be 2.70. After some experimentation, we found that
a very large level of 0.59 improves the value of E(K) to 2.94. Though this
amount of improvement is modest, it does show again that the best choice
of significance level in KDD settings may be quite different from those used
classically in statistical applications. Moreover, it shows that multiple infer-
ence methods may have high potential in KDD after all, if only one considers
nontraditional significance levels. And as mentioned, the multiple-inference
approach dismissed in [8] appear to be worth revisiting.

The fact that the relevant hypotheses involve linear combinations of the
pij , as in (25), suggests that the Scheffe’ method of multiple inference could be
used. That method can simultaneously test all linear combinations of the pij .
Those rules for which the confidence and support tests are both rejected would
be selected. Again, it may be the case that with suitable significance levels,
this approach would work well. As noted earlier, this is under investigation.

7 Simpson’s Paradox Revisited

A number of KDD authors have cautioned practitioners to be vigilant for
Simpson’s Paradox [4]. Let us first couch the paradox in precise mathematical
terms, and then raise the question as to whether, for predictive KDD settings,
the “paradox” is such a bad thing after all.

Suppose each individual under study, e.g. each customer in the market
basket setting, either possesses or does not possess traits A, B and C, and
that we wish to predict trait A. Let Ā, B̄ and C̄ denote the situations in
which the individual does not possess the given trait. Simpson’s Paradox then
describes a situation in which
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P (A|B) > P (A|B̄) (28)

and yet

P (A|B,C) < P (A|B̄, C) (29)

In other words, the possession of trait B seems to have a positive predictive
power for A by itself, but when in addition trait C is held constant, the relation
between B and A turns negative.

An example is given in [2], concerning a classic study of tuberculosis mor-
tality in 1910. Here the attribute A is mortality, B is city (Richmond, with B̄
being New York), and C is race (African-American, with C̄ being Caucasian).
In probability terms, the data show that:21

• P(mortality | Richmond) = 0.0022
• P(mortality | New York) = 0.0019
• P(mortality | Richmond, black) = 0.0033
• P(mortality | New York, black) = 0.0056
• P(mortality | Richmond, white) = 0.0016
• P(mortality | New York, white) = 0.0018

The data also show that

• P(black | Richmond) = 0.37
• P(black | New York) = 0.002

a point which will become relevant below.
At first, New York looks like it did a better job than Richmond. However,

once one accounts for race, we find that New York is actually worse than
Richmond. Why the reversal? The answer stems from the fact that racial
inequities being what they were at the time, blacks with the disease fared much
worse than whites. Richmond’s population was 37% black, proportionally far
more than New York’s 0.2%. So, Richmond’s heavy concentration of blacks
made its overall mortality rate look worse than New York’s, even though
things were actually much worse in New York.

But is this “paradox” a problem? Some statistical authors say it merely
means that one should not combine very different data sets, in this case white
and black. But is the “paradox” really a problem in KDD contexts?

The authors in [2] even think the paradox is something to be exploited,
rather than a problem. Noting that many KDD practitioners are interested in
finding “surprising” rules (recall [10]), the authors in [2] regard instances of
Simpson’s Paradox as generally being surprising. In other words, they contend
that one good way to find surprising rules is to determine all instances of
Simpson’s Paradox in a given data set. They then develop an algorithm to do
this.
21 These of course are sample estimates.
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That is interesting, but a different point we would make (which, to our
knowledge has not been made before) is that the only reason this example
(and others like it) is surprising is that the predictors were used in the wrong
order. As noted in Section 5, one normally looks for predictors (or explanatory
variables, if the goal is understanding rather than prediction) one at a time,
first finding the best single predictor, then the best pair of predictors, and so
on. If this were done on the above data set, the first predictor variable chosen
would be race, not city. In other words, the sequence of analysis would look
something like this:

• P(mortality | Richmond) = 0.0022
• P(mortality | New York) = 0.0019
• P(mortality | black) = 0.0048
• P(mortality | white) = 0.0018
• P(mortality | black, Richmond) = 0.0033
• P(mortality | black, New York) = 0.0056
• P(mortality | white, Richmond) = 0.0016
• P(mortality | white, New York) = 0.0018

The analyst would have seen that race is a better predictor than city, and
thus would have chosen race as the best single predictor. The analyst would
then investigate the race/city predictor pair, and would never reach a point in
which city alone were in the selected predictor set. Thus no anomalies would
arise.

8 Discussion

We have, in the confines of this short note, endeavored to argue for the need
for more mathematical content in empirically-oriented KDD research. The
mathematics should be kept simple and should be carefully formulated ac-
cording to the goals of the research. We presented worked-out examples of
how a simple mathematical model could be used to illustrate, and hopefully
gain insight into, the issues at hand.

We wish to reiterate, on the other hand, that very theoretical treatments,
written by and for mathematical statisticians, are generally inaccessible to
empirical KDD researchers and KDD practitioners. We hope that theoretical
work be made more intuitive and tied to practical interpretations.
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