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Taxonomy of Methods

Major current methods:

• Use only complete cases (CC).

• Multiple imputation (MI).

• MLE.

Forgotten method:

• Available cases (AC). Use partially-intact cases when
possible.
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Overview of AC Method

E.g. linear regreesion (random-X).

β̂ = (X ′X )−1X ′Y =

[
1

n
(X ′X )−1

] [
1

n
X ′Y

]
= A−1D (1)

A estimates quantities like

E [X (i)X (j)] (2)

while D estimates quanatities like

E [X (i)Y ] (3)
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AC Overview, cont’d.

CC seems wasteful.

• In estimating, say, E [X (2)Y ], why throw out cases in
which X (2) and Y are intact but X (5) is missing?

• Instead, estimate by E [X (i)Y ] by

1

M

∑
X (i), Y intact

X
(i)
k Yk (4)

where M = # of cases with both X (i) and Y intact.

• Same for the quantities E [X (i)X (j)].
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AC Sounds Good, But Not Popular

• AC should be more accurate that CC — uses more data.

• Yet, AC seems to have been dismissed early on in the
Missing Value literature, apparently because:

• The modified X ′X may not be positive definite.
• AC assumes MCAR, the strongest among the famous

assumption sets.

• Still, AC seems worth revisiting.

• Lack of positive definiteness is unlikely to occur, and it’s
unclear whether it’s important anyway.

• The most common alternative assumption set, MAR, is
also quite strong. (More on this later.)
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Our Study: AC vs. CC, MI

• Here we “reopen the case” regarding AC, comparing to
CC and MI.

• We look at the old application, linear regression, and 2
new ones: PCA and log-linear model.

• We look at these criteria:

• Applicability.
• Variance, bias.
• Run time.

• For MI, we use Amelia 2.
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Linear Regression

• All 3 methods are applicable.

• Simulation results: n = 10000, p = 3, 10% missing,
β1 = 1

method mean variance time

CC 0.9996 0.0002 0.79

MI 0.9784 0.0002 142.02

AC 1.0027 0.0010 23.80
Note: Most time in AC spent in finding numeric derivs for
standard errors.

• MI slightly biased.

• AC terrible MSE. (Some intuition....)

• MI terrible run time.

• Verdict: Use CC.
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PCA

• CC, AC methods applicable.

• MI sometimes gave error message (“perfectly collinear...”).
.

• Simulation results: n = 100, p = 10, 10% missing; largest
eigenvalue; ρ matrix

method mean variance

CC 2.3328 0.0517

AC 2.1012 0.0218
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A Note on PCA

• PCA is upward biased anyway (even with no NAs), since
PCA naturally overfits. (First comp. maxes var. of lin.
combs. of length 1.)

• The means of 2.1 and 2.3 we got for n = 100 become
about 1.97 for n = 1000.

• But in all simulation runs, AC was less upward biased, and
had small variance, compared to CC. This was severe for
larger values of p.
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Contingency Table Models

• MI not appropriate, since assumes MV normal data.
(Though MI methods do exist for this setting.)

• Example: Factors X ,Y ,Z ; (12)(13) model — Y and Z
independent, given X .

• In terms of marginal distributions:

pijk = pi ..
pi .j
pi ..

pi .k
pi ..

=
pi .jpi .k
pi ..

(5)

• E.g. set p̂i .k to the proportion of cases in which
X = i , Z = k , among cases in which X and Z are intact.

• Simulation example: (1)(23) model, n = 100, est. p111.
method mean var

CC 0.1246591 0.0009020450

AC 0.1249168 0.0007548656
AC advantage more if have more factors or higher NA %.
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On Assumptions

• CC, AC assume MCAR, stronger than MI’s MAR.

• However:

• Arguably, MAR ∩MCARc rare in practice.
• β̂ still unbiased for β under CC, AC even under

MAR ∩MCARc .
• In MAR ∩MCARc case, bias does arise if use CC or AC

to estimate EY or EX (i). In such case, use Matloff,
Biometrika, 1982.
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Software

• Code available at
https://github.com/maxguxiao/Available-Cases.git.
Currently under development; check current status.

• R’s cov(), cor() functions include the option use =
’pairwise.complete.obs’, which is the AC method. This
could be used to implement AC in two applications:

• For PCA, just run eigen() on either a covariance or
correlation matrix computed for AC as above.

• For linear regression, the matrices A and D both can be
computed using cov(), after adjusting via a centering
operation.
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Conclusions

• Final score: AC had 2 wins, 1 loss.

• MI quite time-consuming, not recommended unless MCAR
an issue.

These slides available at
http://heather.cs.ucdavis.edu/SeattleSlides.pdf
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