
Revisiting the Issue of Performance Enhancement of Discrete Event
Simulation Software ∗

Alex Bahouth, Steven Crites, Norman Matloff and Todd Williamson
Department of Computer Science
University of California at Davis

Davis, CA 95616 USA
matloff@cs.ucdavis.edu

Abstract

New approaches are considered for performance en-
hancement of discrete-event simulation software. In-
stead of taking a purely algorithmic analysis view, we
supplement algorithmic considerations with focus on
system factors such as compiler/interpreter efficiency,
hybrid interpreted/compiled code, virtual and cache
memory issues, and so on. The work here consists of a
case study of the SimPy language, in which we achieve
significant speedups by addressing these factors.

1 Introduction

As processing speeds increase, the perceived feasi-
ble size of discrete event simulations becomes larger.
Indeed, the latter seems to be growing faster than the
former. Thus performance of simulation software, say
in library form (which for convenience we assume here),
is a key issue.

Performance is an even larger issue in that it is now
common for simulation analysts to place a premium on
programming in languages they consider to be clearer,
safer or to have shorter development time. As these
typically are interpreted languages, such as Java and
Python, a price is paid in terms of execution speed.

There is a vast literature on the general performance
issue, most of it dealing with algorithm/data structure-
theoretic issues [10]. The typical analysis has been on
operation counts, or on timing synthetic versions of the
algorithms. The latter “simulations of simulations” are
definitely important, and will play a role in our work
here, but we also give major importance to aspects

∗We wish to thank Victor Castillo and the Lawrence Liver-
more National Laboratory for supporting this research.

which have typically not received much consideration,
if any:

• Compiler/interpreter issues: The focus here is on
the executable code. For example, an innocuous
looking array in Python, used for the event set in
the SimPy simulation language [12] [4], can actu-
ally be the source of much inefficiency, resulting in
significant deterioration of performance.

• Overcoming the slowness of interpreted languages:
Interpreted code tends to be considerably slower
than compiled code. The gap has been narrowing,
due for example to the use of Just in Time (JIT)
compilers [9]. However, much of the benefit of JIT
stems from avoidance or reduction of program load
time, with there being little gain from JIT in the
case of long-running programs.

• Memory hierarchy issues: On modern machines,
memory access considerations can be just as im-
portant as algorithmic ones. A cache miss, for
instance, is a major disruption to a program, with
line replacement causing a significant delay. A vir-
tual memory page fault is even more damaging
to performance, as the mechanical nature of disk
read/write implies times on the scale of millisec-
onds rather than the nanosecond scale of CPUs.

The aspect of this which is most relevant to simu-
lation is event set processing. Though not in the
simulation context, there has been a considerable
amount of work in memory hierarchy effects of pri-
ority queue and hashing algorithms. There was,
for instance, at least one early paper on page fault
behavior [6] and more recent ones concerning cache
behavior, including [11], [8] and many others.

In the investigation here, we consider memory be-
havior of such algorithms in actual simulation en-



vironments.

We address all of these issues through the vehicle of
a case study involving the SimPy language. Through
a combination of techniques, we are able to achieve
runtime speedups of as much as 30 to 60 percent.

The organization of the remainder of this paper is
as follows. Section 2 discusses some of the details
of SimPy and Python internals, and implications for
SimPy performance. It then presents a Python/C hy-
brid, using SWIG [13] as the “glue,” which achieves
faster execution speed while being transparent to the
SimPy application programmer.

Section 3 then discusses the various algorithms and
data structures we investigated in this study. Our focus
here is nontraditional, such as our consideration of the
number of page faults generated.

Section 4 then presents the results of our empiri-
cal investigations. As noted above, we will show that
the measures we have taken yield significant speedups.
Beyond that, we will compare the effects of using the
Python/C hybrid, versus the effects of using more so-
phisticated algorithms.

Section 5 presents conclusions and future work.

2 A Look at Internals

Python is a very elegant language that allows one
to perform complex operations compactly and clearly.
This is highly appealing to the simulation programmer,
and reduces development time, but it does raise serious
issues concerning implementation. For this reason, we
looked not only at SimPy’s internals but also at those
of Python, to explore how the interpreted nature of
Python may affect simulation speed.

SimPy’s event set consists of two main structures,
a Python list timestamps and a Python dictionary
events.

A Python list resembles a C array, but is more flexi-
ble; it is indexed, but also supports operations such as
append, insert, remove, etc., and will grow as needed.
In this paper we assume CPython, the popular C-
language implementation of Python. In CPython, lists
are in fact implemented as C arrays and support the
more flexible operations by resizing (with realloc())
and shifting elements. A Python dictionary is an asso-
ciative array, implemented as a hash table in CPython.

The structure events stores SimPy event objects by
using the events’ scheduled times as keys, with each key
mapping to a Python list of events scheduled for that
time. The structure timestamps stores those keys in
ascending sorted order. Hence, when an event is to be
inserted into SimPy’s event set, SimPy uses the event’s

scheduled time as an index into events to find the list
of events scheduled for that time (creating this list if
the new event is the first one to be scheduled for that
time) and adds the event to that list.

If the event’s scheduled time is a new time, i.e. there
had been no other events scheduled for that time be-
fore, the event’s time is inserted into the timestamps
list, using Python’s bisect library module. This mod-
ule inserts a new value into a sorted list, using binary
search to determine the insertion point.

Accesses to timestamps for SimPy enqueue oper-
ations would appear to take O(log n) steps, where n
is the size of the event set. However, this is not true
in a practical sense; the insertion of a new event time
causes an internal right-shift of a portion of the C ar-
ray implementing the Python list timestamps, taking
O(n) time.

Similarly, a SimPy dequeue operation is also more
complicated than would first appear. Theoretically of
O(1) complexity, it is actually O(n) as the entire re-
maining array will be internally left-shifted at the C-
array level. Though CPython uses the memmove()
function for efficiency, the operation is still quite slow
for large event sets.

In addition, there is the question of slowdown due to
hash table access for the structure events. However,
rather than investigating the CPython implementation
of dictionaries, we noticed that one could dispense with
the dictionary.

Specifically, we removed the dictionary, and instead
stored both the events and their times in the same
structure. This was accomplished by moving the in-
formation in events into timestamps. Each element
of the latter now is a Python 2-tuple of the form (event
time, event list for that time). The list timestamps
continues to be maintained in sorted time order via
Python’s bisect module. This is possible since com-
parison operations on Python tuples are handled lexi-
cographically: First the first elements of the two tuples
are compared, and the second elements are compared
if the first elements are found to be equal. To properly
handle identical event times the less-than operator for
the SimPy event object class was overloaded to always
return False.

Next, we decided to implement SimPy’s event list
operations in C. Since Python is dynamically typed it
must determine, among other things, how to compare
two objects. In the case of the event times it would
determine that both are Python floats (stored as C
doubles) and then compare them. Not only would it
be possible to improve performance by avoiding these
kinds of extra steps that Python must take, but it
would be a proof of concept that we could achieve a

2



performance gain by writing this time-critical piece of
code in C, possibly opening the door to exploring other
algorithms for further performance enhancement.

To achieve this, we turned to SWIG (Simplified
Wrapper and Interface Generator). SWIG generates
the “glue” code (calls to the Python C API) automati-
cally, so our C functions could be written without hav-
ing to worry too much about going to and from Python.
We did however have to properly manage the reference
counts, but this was not difficult.

3 Event Set Algorithms Viewed in a
Platform-Dependent Context

As stated in the previous section, SimPy uses a dic-
tionary and a Python list to represent its event list.
While this structure is functionally adequate, is it pos-
sible for us to do better? First, let us take a look at
the inherent problems that may cause complications
for the Python list.

We have already noted that due to the right-shift
operation in an enqueue action, that action takes O(n)
time. But let’s take a closer look.

Much previous research, both empirical and theoret-
ical, has shown that if an event set is stored as a linear
linked list, which is effectively the case in SimPy, most
insertions tend to be near the right-hand end of the list
[14]. The degree to which this is true varies from one
simulation application to the next, but it is clear that
in many cases the O(n) time complexity of the enqueue
operation is greatly ameliorated by this consideration.
It still will be O(n), but the multiplicative constant
may be small.

Dequeue, on the other hand, also of O(n) time com-
plexity, has its multiplicative constant essentially equal
1. Thus if SimPy is to be practical for large event sets,
an overhaul of the associated structures is imperative.
Again, it should be kept in mind that in selecting new
structures, we were taking a rather nonstandard point
of view, for instance attempting to minimize memory
page faults. We turned first to the calendar queue, a
priority queue structure developed by Randy Brown
specifically for simulation use [2].

A calendar queue is a multi-list structure whose
name derives from the structure’s similarities to a desk
calendar. It is implemented as an array of singly linked
lists. Each index in the array, referred to as a bucket,
represents an interval of simulated time, with the in-
terval size referred to as the bucket width. Each bucket
corresponds to a day in a given calendar year.

When inserting a new event, one uses the simple
formula bx/wc mod n, where x is the event time, w is
the bucket width, and n is the number of buckets. By

taking advantage of the modulo operator the structure
allows for inserting events from “future years” to wrap
around into the appropriate bucket of the calendar.

To prevent long linear searches for events through
the linked lists, the calendar queue keeps an average
of two events per bucket and dynamically resizes as
necessary. Also, to prevent the calendar queue from
being too sparsely populated, the number of buckets
shrinks by a factor of two when the number of events
pending is less than twice the number of buckets.

The other structure that we selected was the splay
tree, a self-balancing binary search tree. The splay
operation is very similar to that of an AVL tree in that
a series of tree rotations is performed to help balance
the tree. This allows operations to be executed in O(log
n) time, which is much better than the O(n) time in
SimPy. We used a modified version of Weiss’ splay tree
[15] implementation in our experiments.

Aside from the calendar queue and splay tree, we
explored the possibilities of sorted lists in the form
of arrays and linked lists, as well as binary heaps.
Initially our implementations of simple arrays and
linked lists suggested performance gain from their C-
implementations so long as event sets were sufficiently
small. However, once we began testing them with large
event sets, the program run times became so long that
time did not allow us to wait for them to finish. The
binary heap was a great improvement over the arrays
and lists. Yet it was not competitive with the calen-
dar queue nor with the splay tree. Also, [3] further
indicated that other structures would not have been
as competitive, and as such we omitted implementing
them.

4 Empirical Results

Our empirical study was conducted mainly on two
simulation applications. The first simulated a call cen-
ter. Here interarrival times for calls were exponentially
distributed with parameter λ1, which varied, and had
exponential duration with parameter λ2, which was
fixed at 2.5 in our experiments. The number of call
operators varied according to a set protocol which we
will not detail here.

The second “application ” was actually an abstrac-
tion, consisting of an implementation of the classical
Hold Model, in which enqueue and dequeue operations
strictly alternate. The parameter in this set of exper-
iments was the coefficient of variation, motivated by
findings in previous work that smaller values of this
quantity are associated with a tendency for most en-
queue operations to occur near the tail of the queue.

The timing results for our call center experiments

3



appear in Figures 1 through 4. We compared all the
structures described above (names in the graph labels
appear in parentheses):

• the original SimPy (SimPy)

• SimPy modified so that the data in events
is incorporated into timestamps, while retain-
ing an all-Python implementation (SimPyND, for
“SimPy no dictionary”)

• SimPy modified so that the original event struc-
tures are essentially retained but implementated
in C; basically, this is SimPyND converted to C
(PQArr)

• SimPy modified to use a C-language calendar
queue (CQ)

• SimPy modified to use a C-language splay tree
(Splay)

In general, the performance rankings of the vari-
ous structures in the call center experiments was, from
fastest to slowest,

CQ ≈ PQArr > SplayTree > SimPyND >
SimPy

In the experiments shown here, CQ and PQArr were
essentially tied for the best. However, PQArr’s perfor-
mance does not scale well when one moves to extremely
large event sets. For example, when we ran the Hold
Model on event sets of size 10,000, we found the fol-
lowing results:

struct user time sys. time event op. time
PQArr 79.47 4.50 57.87

CQ 33.24 3.95 12.69
We came to two tentative conclusions from these ex-

periments: First, implementing event set operations in
C does indeed produce a substantial speedup; PQArr
greatly outperforms SimPyND. Second, use of more
sophisticated data structures does pay off. Something
as simple as combining the original events and times-
tamps structures produced a worthwhile speedup, and
as noted above, CQ really shines for extremely large
event sets.

We spent considerable time comparing the calendar
queue and splay tree structures. We wrote C-language
versions of them for our further experiments, shown in
Figures 5 through 8. These used the Hold Model, and
were designed to explore which of the calendar queue
and splay tree methods has better performance. At
least in this case, the calendar queue was the better of
the two, though the splay tree was still a big improve-
ment over the original SimPy.

However, the picture changes when page faults are
accounted for. The splay tree substantially outper-
forms the calendar queue in this sense, as seen in Fig-
ures 9 and 10. (Other figures, not shown here, were
similar.) Our experiments were performed on 32-bit
PCs running Linux Fedora Core 5. We also performed
some limited experiments on a 64-bit machine running
the same operating system, with a preliminary indica-
tion that there is considerable variation from one ma-
chine to another. The fact that the calendar queue
displayed relatively poor paging performance suggests
that the splay tree may well work better on some sys-
tems.

Yet another dimension that can be considered is
time spent on system calls. The results of our exper-
iments, typified by Figure 11, indicate that the calen-
dar queue and splay tree structures also reduce system
time.

5 Conclusions and Discussion

While more thorough investigation would be fruit-
ful, including on other types of applications, our results
here clearly confirm that the hybrid approach—writing
most of our simulation in Python or Java, while im-
plementing the event set operations in C for speed—
is indeed very effective. This would allow simulation
programmers to write in languages they find superior
while not having to pay as large a performance penalty
as they do now.

We note, for instance, the comments at the be-
ginning of the file EventList.java in the package
DESMO-J [5]:

Since each step in the discrete simulation re-
quires searching and manipulating the event-
list, this is probably one of the best places
in the framework to optimize execution per-
formance. Especially if special models show
specific behaviour i.e. primarily inserting new
events at the very end of the event-list, other
implementations of the event-list might sup-
port faster access times.

DESMO-J is intended as a framework for developing
full simulation packages. Its default event list struc-
ture is an array, but as noted above, it is assumed
that users will develop their own event list structures
and algorithms. Since SWIG can be used for Java as
well as Python, our findings here would indicate that
the approach holds some promise for performance en-
hancement of packages built from DESMO-J. Our find-
ings here concerning calendar queues versus splay trees
seem to address the above comments too.

4



Further work is needed to compare this approach
with others. For instance, one might try to apply JIT
techniques to SimPy. The most commonly used JIT
compiler for Python is Psyco [7]. Its Web site claims
to offer “2X to 100X speed-ups, typically 4X,” and it is
quite easy to use. Our preliminary evaluation showed
only a very small improvement for unmodified SimPy,
but further work is needed here. Work is also needed
to compare the effectiveness of our approach here with
that of [1].

An aspect which we believe deserves much further
attention is that of memory hierarchy performance.
Recall that although we found that splay trees did not
work quite as well as calendar queues from an overall
performance standpoint, the splay trees triggered fewer
page faults. As the gap between RAM and disk access
continues to widen, it could well be the case that splay
trees become more attractive.

References

[1] R. Barr, Z.J. Haas, and R. van Renesse1. JiST:
An Efficient Approach to Simulation Using Virtual
Machines, Softw. Pract. Exper., 2004, 17.

[2] R. Brown. Calendar Queues: A Fast 0(1) Priority
Queue Implementation for the Simulation Event Set
Problem, CACM, 31(10).

[3] K. Chung, J. Sang, V. Rego. A Performance Com-
parison of Event Calendar Algorithms: an Empiri-
cal Approach, Software Practice and Experience, vol.
23(10), October 1993, 1107-1138.

[4] K. Muller. SimPy—Simulation in SimPy. Book
manuscript.

[5] Lechler, T. and B. Page. DESMO-J: An Object
Oriented Discrete Simulation Framework in Java. In
Proceedings of the 11th European Simulation Sym-
posium, ed. G. Horton, D. Mller, and U. Rde, 1999,
46-50. Erlangen: SCS Publishing House.

[6] D. Naor, C.U. Martel and N.S. Matloff. Perfor-
mance of Priority Queue Structures in a Virtual
Memory Environment, The Computer Journal, 34,
5, October 1991, 428-437.

[7] Psyco homepage, http://psyco.sourceforge.
net.

[8] H. Qi and C.U. Martel. Design and Analysis
of Hashing Algorithms with Cache Effects, cite-
seer.ist.psu.edu/92497.html.

Figure 1. Call Center, λ1 = 1.0

[9] R. Radhakrishnan, N. Vijaykrishnan, L.K. John, A.
Sivasubramaniam, J. Rubio, J. Sabarinathan. Java
Runtime Systems: Characterization and Architec-
tural Implications, IEEE Transactions on Comput-
ers, 131-146, Feb. 2001.

[10] R. Ronngren and R. Ayani. A Comparative Study
of Parallel and Sequential Priority Queue Algo-
rithms, ACM Trans. on Modeling and Simulation of
Computer System, Vol. 7, No. 2, April 1997, 157209.

[11] P. Sanders. Fast Priority Queues for Cached Mem-
ory, in Proceedings of the 1st Workshop on Algorithm
Engineering and Experimentation, Volume 1619 of
Lecture Notes in Computer Science, 1999, 312–327,
Springer-Verlag.

[12] SimPy homepage, http://simpy.sourceforge.net.

[13] SWIG homepage, http://www.swig.org.

[14] J. Vaucher. On the Distribution of Event Times
for the Notices in a Simulation Event List, INFOR,
June 1977.

[15] Mark Allen Weiss, Data Structures and Algorithm
Analysis in C++, Second Edition, 1999.

5

http://psyco.sourceforge.net
http://psyco.sourceforge.net


Figure 2. Call Center Model, λ1 = 1.5

Figure 3. Call Center Model, λ1 = 2.0

Figure 4. Call Center Model, λ1 = 3.5

0 100 200 300 400 500 600 700 800 900

3

4

5

6

7

8

9

Length of event list

T
im

e 
pe

r 
op

er
at

io
n(

m
ic

ro
se

co
nd

s)

CQ
SimPy
Splay

Figure 5. Hold Model, COV = 0.1

6



0 100 200 300 400 500 600 700 800 900

2

3

4

5

6

7

8

9

Length of event list

T
im

e 
pe

r 
op

er
at

io
n(

m
ic

ro
se

co
nd

s)

CQ
SimPy
Splay

Figure 6. Hold Model, COV = 1.0

0 100 200 300 400 500 600 700 800 900

2

3

4

5

6

7

8

9

10

Length of event list

T
im

e 
pe

r 
op

er
at

io
n(

m
ic

ro
se

co
nd

s)

CQ
SimPy
Splay

Figure 7. Hold Model, COV = 2.6

0 100 200 300 400 500 600 700 800 900

2

3

4

5

6

7

8

9

10

Length of event list

T
im

e 
pe

r 
op

er
at

io
n(

m
ic

ro
se

co
nd

s)

CQ
SimPy
Splay

Figure 8. Hold Model, COV = 4.0

7



0 150 300 450 600 750 900 1200 1500

10207

15088

19969

24850

29731

34612

39493

44374

Length of event list

CQ
SimPy
Splay
PQArr
SimPyND

Figure 9. Number of Page Faults: Call Center
Model, λ1 = 1.0

0 100 200 300 400 500 600 700 800 900

1168.750

1753.125

2337.500

2921.875

3506.250

4090.625

4675.000

Length of event list

CQ
SimPy
Splay

Figure 10. Number of Page Faults: Hold
Model, COV = 1.5

8



5 10 100 500 1000

Length of event list

S
ys

te
m

 ti
m

e(
s)

100

300

500

700

900

CQ
Splay
SimPy

Figure 11. Amount of System Time: Hold
Model, COV = 1.5

9


	Introduction
	A Look at Internals
	Event Set Algorithms Viewed in a Platform-Dependent Context
	Empirical Results
	Conclusions and Discussion

