Name:

Directions: MAKE SURE TO COPY YOUR AN-
SWERS TO A SEPARATE SHEET FOR SENDING
ME AN ELECTRONIC COPY LATER.

1. (10) Consider the example in Sec. 4.6.1, Nonblocking
Sockets. This problem will concern what would happen
if we had forgotten to include line 34 in the server code.

Treat this code as a very simple “game.” Suppose that:
there are two clients, run by Person A and Person B;
Person A starts playing at least several seconds before
Person B; the players will only type chatacters when
invited to do so by the prompt; Person A is planning to
type ’a’, then ’b’, then quit the game, while Person B
is planning to type ’'x’, 'y’ and ’z’, then quit.

Give the final value of v, output by the server.

2. (30) The function findtwins(x) below returns a
Python list of all indices i for which x[i] = x[i+1]
(excluding the last element of x, for which there is no
right-hand neighbor). It is assumed that none of the
(original) elements of x has the value None.

Example:

>>> x = [12, 5, 13, 13, 3, 4, 5, 5]
>>> findtwins (x)

[2, 6]
>>> findtwins ([1,12,5,13,13,13,8,8,12])
(3, 4, 6]

Fill in the blanks:
def findtwins (x):
nx = len(x)
x.append (None)
def compxiil (i):
if x[i] = x[i+1]: return blank (a)
else: return -1
indcs = map(compxiil ,blank (b)))
indcs now consists of the found
indices and —1s
del x[nx]
return filter (blank (c) ,indcs)

3. (60) Below is SimPy code that simulates the opera-
tion of a disk drive.

Recall how such a system works: Data is stored in con-
centric rings called tracks. Each track is divided into
sectors, and each read/write operation is done on a sec-
tor. Time needed to fulfill a disk access request consists
first of a seek, in which the read /write head is moved to
the desired track, then a rotational delay during which
the desired sector rotates around to the head, and fi-
nally a data transfer time to process the sector. In the
simple model here, we assume the latter is negligible.
The time to go from the innermost to outermost track is
endtoendsk, and the time for a full rotation is onerot.

We model the track number as a continuous variable
ranging from 0 (innermost track) to 1 (outermost track),
and the track number requested by a job is modeled as
a random number between 0 and 1. Similar statements
hold for the sector number.

Fill in the blanks:

import sys

import math

from SimPy.Simulation import =

from random import Random,expovariate ,random

class gb: # globals
rnd = Random(12345)
ddrproc = None
arrvproc = None

class ddr(Process):

def __init__(self ,endtoendsk,onerot):
Process. __init__(self)
self.endtoendsk = endtoendsk
self.onerot = onerot
self.currtrack = 0.5
state is used for code logic and debugging
self.state = ’'resting ’ # not processing a request
self.nrequestdone = 0
self . queue = []

def Run(self):
onerot = self.onerot
endtoendsk = self.endtoendsk
while True:

if self.queue = []:

self.state = ’resting’
blank (a)
self.state = ’seeking’
job = blank (b)
yield hold,self, blank (c)
self.currtrack = job
sector = gb.rnd.random/ ()
currangle = math.fmod(now(),onerot) / onerot
tmp = sector — currangle
if tmp > 0: rotdelay = tmp * self.onerot
else: rotdelay = (1—curranglet+sector)xself.onerot
self.state = ’waiting rotation’
yield hold,self ,rotdelay
blank (d)
class arrivals(Process):
def __init__(self 6 arrvrate):
Process. __init__(self)
self . arrvrate = arrvrate

def Run(self):
while True:
yield hold,self ,gb.rnd.expovariate(self.arrvrate)
track = gb.rnd.random ()
gb.ddrproc.queue.append (track)
if gb.ddrproc.state = ’resting ’:
blank (f)

def main():
initialize ()
ees = float (sys.argv[1l])
oner = float (sys.argv[2])
d = ddr(ees,oner)
gb.ddrproc = d
activate (d,d.Run())
arrvrate = float (sys.argv[3])
a = arrivals(arrvrate)
gb.arrvproc = a
activate (a,a.Run())
maxsimtime = float (sys.argv[4])
simulate (until=maxsimtime)
print ’throughput:’,d.nrequestdone/maxsimtime

Solutions:

1. Answer will depend somewhat on order of players’ “moves.” But any answer beginning with ’ax’ and ending with
'z’ is OK.

2.

goes through the list x and returns all indices i for which
x[i] = x[i+1]; elements in x are assumed to not be None

def findtwins (x):
nx = len(x)
x.append (None)
def compxiil (i):

if x[i] = x[i+1]: return i
else: return -1
indcs = map(compxiil ,range(nx))

del x[nx]
return filter (lambda u:u >= 0,indcs)

x = [12, 5, 13, 13, 3, 4, 5, 5]
findtwins (x)

Disk.py
usage
python Disk.py endtoendsk onerot arrvrate maxsimtime

import sys

import math

from SimPy.Simulation import =

from random import Random, expovariate ,random

class gb: # globals
rnd = Random(12345)
ddrproc = None
arrvproc = None

each instance of the ddr class will simulate one disk drive (but we
will have only one here)

current track is modeled as continuous value between 0 and 1

endtoendsk is time to go from innermost to outermost track; onerot
is time for one rotation; data transfer time assumed negligible here

FFH OH FHFH*

class ddr(Process):
def __init__(self endtoendsk, onerot):
Process. __init__(self)
self.endtoendsk = endtoendsk
self.onerot = onerot
self.currtrack = 0.5
state is used for code logic and debugging
self.state = ’'resting’
self.nrequestdone = 0
self . queue = []
def Run(self):

onerot = self.onerot
endtoendsk = self.endtoendsk
while True:

if self.queue = []:

self.state = ’'resting’
yield passivate ,self

self.state = ’seeking’

job = self.queue.pop(0)

yield hold,self ,abs(job—self.currtrack)*endtoendsk

self.currtrack = job
sector = gb.rnd.random ()
currangle = math.fmod(now(),onerot) / onerot

tmp = sector — currangle

if tmp > 0: rotdelay = tmp * self.onerot

else: rotdelay = (1—currangle+sector)xself.onerot
self.state = ’waiting rotation’

yield hold, self ,rotdelay

self .nrequestdone += 1

class arrivals(Process):

def __init__(self arrvrate):
Process. __init__(self)
self .arrvrate = arrvrate

def Run(self):
while True:
yield hold,self ,gb.rnd.expovariate(self.arrvrate)
track = gb.rnd.random ()
gb.ddrproc.queue.append (track)
if gb.ddrproc.state = ’resting ’:
reactivate (gb.ddrproc)

def main():
initialize ()
ees = float (sys.argv[1l])
oner = float (sys.argv[2])
d = ddr(ees,oner)
gb.ddrproc = d
activate (d,d.Run())

arrvrate = float (sys.argv[3])

a arrivals (arrvrate)

gb.arrvproc = a

activate (a,a.Run())

maxsimtime = float (sys.argv[4])

simulate (until=maxsimtime)

print ’throughput:’,d.nrequestdone/maxsimtime

