Name:

Directions: Frequently save your work to handin and your USB key! No quizzes accepted with timestamp past
10:55 a.m. Submit a .tar file (even though just one file will be in it) with naming convention as in the homework
(but with only names of those present).

1. (100)
Here you will modify the M/M/1 queue example included in the DES package.

The difference is simple. Instead of a First Come, First Served queuing policy, we will use a Shortest Time First
policy: Whenever the server becomes free, it will choose from the queue that job that has the smallest service time.
It is assumed that the service time is known upon arrival of the job to the system.

Note carefully: Your code does NOT have to be efficient. Just get code that works correctly. In particular, I suggest
that you do NOT have your code maintain sorted order in the queue.

Solution:

library (DES)

Shortest Time First scheduling; assumes that job service time is known
upon arrival; this will be required to be element 5 in event objects

assume appendfcfs() is still used to add to queue; this is probably
faster in R, as delstf() can use which.min(), at C level

delstf <— function (queue) {
which is shortest?
st <— which.min(queue$m/|[,5])
nextevnt <— queue$m [st ,]
queue$m <— queue$m[—st ,,drop=FALSE]
nextevnt

}

STF version of M/M/1 queue example from package
mmlstf <— function (meaninterarrv ,meansrv,timelim ,dbg=FALSE) {

set up structures

simlist <— newsim (dbg)
simlist$reactevent <— mmlreactstf
simlist$arrvrate <— 1 / meaninterarrv
simlist$srvrate <— 1 / meansrv
simlist$totjobs <— 0
simlist$totwait <— 0.0
simlist$queue <— newqueue(5)
simlist$srvrbusy <— FALSE
simlist$jobnum <— 0
simlist$arrvevnt <— 1
simlist$srvevnt <— 2

timetolstarrival <— rexp(1l,simlist$arrvrate)
jobnum <— incremjobnum (simlist)

in this app, each event will be a 5—tuple, consisting of the basic

2 (event time, type) plus arrival time, jobnum and service time

schedevnt (timetolstarrival ,simlist$arrvevnt ,simlist ,
c(timetolstarrival ,jobnum ,NA))

mainloop (simlist , timelim)

cat ("mean wait: 7)
print (simlist$totwait / simlist$totjobs)

}

incremjobnum <— function (simlist) {
jobnum <— simlist$jobnum + 1
simlist$jobnum <— jobnum
jobnum

}

what new events are triggered by the occurrence of an old one?
mmlreactstf<— function (evnt,simlist) {
etype <— evnt [2]
if (etype = simlist$arrvevnt) { # job arrival
determine service time upon arrival
srvduration <— rexp(1l,simlist$srvrate)
evnt [5] <— srvduration
schedule next arrival
timeofnextarrival <— simlist$currtime + rexp(l,simlist$arrvrate)
jobnum <— incremjobnum (simlist)
schedevnt (timeofnextarrival ,simlist$arrvevnt ,simlist ,
c(timeofnextarrival ,jobnum ,NA))
start newly—arrived job or queue it
if (!simlist$srvrbusy) { # server free, start job service
simlist$srvrbusy <— TRUE
schedevnt (simlist$currtime+srvduration ,simlist$srvevnt ,
simlist ,evnt [3:5]) # copy over previous data for this job

} else { # server busy, add job to queue
appendfcfs (simlist$queue ,evnt)

} else if (etype = simlist$srvevnt) { # job completion
bookkeeping
simlist$totjobs <— simlist$totjobs + 1
wait time = job completion time — job arrival time
simlist$totwait <— simlist$totwait + simlist$currtime — evnt[3]
simlist$srvrbusy <— FALSE
check queue for waiting jobs
if (nrow(simlist$queue$m) > 0) { # nonempty queue
ghead <— delstf(simlist$queue)
start job service
simlist$srvrbusy <— TRUE
srvduration <— ghead[5]
schedevnt (simlist$currtime+srvduration ,simlist$srvevnt ,simlist ,

qhead [3:4])

