
Overview of Computer Networks

Norman Matloff
Dept. of Computer Science

University of California at Davis
c©2001-2005, N. Matloff

April 11, 2005

Contents

1 Significance of Networks 3

1.1 History . 3

1.2 What Are Networks Used For? . 3

1.3 Which Aspects of Networks Are Important to Know? . 3

2 An Introductory Example 3

3 The Famous, Overrated But Useful 7-Layer Model 5

3.1 Overview of the Layers . 5

3.1.1 Physical Layer . 5

3.1.2 Data Link Layer . 6

3.1.3 Network Layer . 6

3.1.4 Transport Layer . 6

3.1.5 Session Layer . 7

3.1.6 Presentation Layer . 7

3.1.7 Application Layer . 7

3.2 How the Layers Interact . 7

4 More on TCP/IP 8

4.1 TCP/IP Overview . 8

1

4.1.1 TCP . 9

4.1.2 UDP . 9

4.1.3 Stream Vs. Datagram Communication . 10

4.1.4 IP Addresses . 11

4.1.5 Peer Communication . 11

4.1.6 Viewing Current Socket Status . 11

4.1.7 What Makes a Connection Unique . 12

4.2 Sample TCP/IP Application: NFS . 12

5 Network Programming 13

5.1 TCP Socket Example . 13

5.1.1 Source Code . 14

5.1.2 Who Shall I Say Is Calling? . 19

5.2 UDP Socket Examples . 20

5.2.1 Basic Example . 20

5.2.2 Advanced Use of Sockets . 21

5.3 Nonblocking I/O . 23

5.4 Debugging Client/Server Programs . 23

6 Packet/Frame Formats 24

6.1 TCP . 24

6.2 IP . 24

6.3 Ethernet . 25

7 Putting It All Together 25

8 Application-Layer Protocols 27

9 Routing Issues 28

2

1 Significance of Networks

1.1 History

The key to the computer revolution of the 1980s was the invention of the microprocessor in the 1970s. This
gave rise to the cheap computers which have become ubiquitous in homes, schools and offices, and to the
embedded computerswhich serve as controllers inside cameras, cars, washing machines and so on.

The computer revolution of the late 1990s, now continuing int the 21st century, involves computer networks,
whose existence is enriching our society in countless different ways.

1.2 What Are Networks Used For?

A simplified but worthwhile description of the uses of computer networks might be as follows:

• Sharing of hardware: For example, several PCs might be networked together in a wired or wireless
local area network (LAN) to share a printer.

• Sharing of information:Distributed databases, e-mail, the World Wide Web and so on are examples
of this. Here the sharing involves both LANs andwide area networks(WANs), especially the latter.

1.3 Which Aspects of Networks Are Important to Know?

Networks touch upon virtually every aspect of computing today. A good workingknowledge (i.e. not of the
“partial credit on an extra problem” type) is of enormous value.

It should be noted carefully that it is important to know both the software and non-software aspects of
networks—the latter meaning the hardware, the protocols,1 the quantitative performance issues and so on.
If you interview for a job involving networks, you can expect that at least half of the questions will be
on the non-software aspects, even if the job itself deals mainly with software. Moreover, many jobs you
might interview for might be as system administrators; in such positions, knowing the physical structure of
networks is just as important as knowing how the network software works.

2 An Introductory Example

Consider the following structure:

1A protocol is simply an organized set of rules for performing some task, usually with two entities cooperating with each other.

3

Here we have three individual LANs, labeled A, B and C, tied together in aninternet. (Note the lower-
case ‘i’.) The address names of the nodes here, such assaturn.xyz.com, use the IP format which will be
discussed later. This internet should not be confused with “the Internet,” distinguished by the capital ‘I’.
The Internet is a special internet connecting TCP/IP networks worldwide.2

Each node here is a computer, connected to one or more networks via one or more network interface cards
(NICs). Recall that in any computer, each I/O device’s interface has a specificport number or address.
The keyboard interface, for instance, might be port 50. Whenever a program, usually the operating system
(OS), reads from the keyboard, the value 50 would go onto the computer’s address bus. Similarly, a NIC has
an address too, say 60. Whenever the OS reads from or writes to the LAN, it does so via the NIC, using the
NIC’s assigned address.

This can be confusing, because there will be several addresses at work here:

• The NIC address from the CPU’s point of view is 60, in the sense that the NIC is connected to the
computer’s address bus at that address.

• The NIC also has a LAN address, typically a 48-bit Ethernet ID number hardwired into the NIC at the
time of manufacture and unique among all NICs in the world of that LAN type.

• If the computer is part of the Internet, the NIC will be assigned an Internet (IP) address, a 32-bit
identifier unique among all Internet hosts in the world.3

• At the TCP layer of the network software, we also speak ofports which are purely software IDs that
have nothing to do with port numbers like 60 above. In essence, each TCP port is a different element in
a large array in the TCP software, each element corresponding to a different service such assendmail
(a program that actually puts your outgoing e-mail onto the network, and receives incoming mail for
you, as opposed to the program you use to compose and read mail with),ftp , sshand so on.

2Another similar term isintranet , which refers to a private collection of networks, say within a particular company, which we
do not wish to make accessible worldwide.

3Extended to 128 bits in IP version 6.

4

Suppose I buy an Ethernet card and install it insaturn, but later swap it with the one incitroen. Then the
card’s Ethernet ID will still be the same, but its IP address will change, and maybe its I/O port number
(previously 60) will change too.

A computer can be connected to more than one network, as is the case withmars.xyz.com here. For each
NIC a given computer has, the computer would answer to a different name. In addition, a computer can even
have more than one name associated with the same NIC. Here the machine has the namesmars.xyz.comand
xyz.comassociated with the interface to network A, and its namesabc.comandjeep.abc.com are associated
with network B.

Basically, TCP/IP is ubiquitous today for general-purpose usage. But there are other protocols for special-
purpose usage, such as one designed for fast communication in parallel processing applications.

Since the protocol ID (e.g. 0x0800 for TCP/IP, 0x8137 for Netware, etc.) will be placed into the bit frames
going out onto the Ethernet, each computer on the network will be able to determine what protocol an
incoming message was sent under. This is especially useful if the same computer is running two or more
protocols. An incoming message from the Ethernet at the computer causes a hardware interrupt, and the
interrupt service routine can then pass on the message to the proper protocol software, according to the
protocol ID specified in the Ethernet frame.

The jagged line betweencitroen.abc.comandangus.moo.eduis a phone line, dedicated to communication
between the two machines, operating 24 hours a day.

So you can see that there are two ways that we can connect two LANs together:

• We can install a computer and connect it to both LANs.

• We can put in a phone line (or microwave link, etc.) between a computer on one LAN and a computer
on another LAN.

3 The Famous, Overrated But Useful 7-Layer Model

Every network textbook includes a picture of the famous “seven-layer” model. Actually, this model is vague,
and it does not always correspond to specific portions of specific networks. Nevertheless, it serves as a useful
overview of the field. Here is how some of the layers relate to our sample network above.

3.1 Overview of the Layers

The layers collectively are often referred to as theprotocol stack.

3.1.1 Physical Layer

This is concerned with the nature of the physical media (metal or optical cable, free-space microwave, etc.)
used to send signals, the nature of the signals themselves, and so on.

5

There is also the question of signal form; the signals themselves may be in the form of pure 0-1 bits, or may
be in the form of certain frequencies. In addition there are questions concerning how a receiver distinguishes
two bits which are adjacent in time.

A major issue is the form of the medium, both in terms of the materials it uses and its topology. A basic
wired Ethernet, for example, consists of cable conducting electrical signals; the connections could also be
wireless. More complicated networks, including Ethernets, may consist of more than one cable, with all of
them connected via ahub. The latter has become common even at the household level.

3.1.2 Data Link Layer

For example, in an Ethernet, this layer is concerned with ensuring that two network stations connected to
the same cable do not try to access the line at the same time.4 For this reason the Ethernet operation is an
example of what is called aMedium Access Control(MAC) Protocol.5

Here is an overview of how the Ethernet MAC protocol works, using a “listen before talk” approach. When
a network node has a message ready to send, it first senses the cable to see if any node is currently sending.
If so, it generates a randombackoff time, waiting this amount of time before trying again. If the node does
not “hear” any other node sending, it will go ahead and send.

There is a small chance that another node actually hadbeen sending but due to signal propagation delay the
transmission had not yet reached the first node. In that case acollision will occur, destroying both messages.
Both nodes will sense the collision, and again wait random amounts of time before trying again.

This layer also does the setting up offramesof bits (i.e. sets of consecutive bits sent along the wire), which
not only include the message itself but also information such as (say, in the Ethernet case) the Ethernet ID
number of the destination machine.6

Messages may be broken up into pieces before being sent. This may be handled at the transport level (see
below), but may also be done at the data link level.

3.1.3 Network Layer

This is the routing layer. Questions addressed in this layer include: If in our example abovesaturn wants
to send a message toholstein, how is that accomplished? Obviously its first step is to send the message to
mars; how doessaturn know this? How can alternate routes be found if traffic congestion occurs?

3.1.4 Transport Layer

Supposesaturn’s message toholsteinconsists of a large file transfer, say 100 megabytes. This transfer will
take a long time (by network standards), and we certainly don’t want it to monopolize the network during

4In a small Ethernet, we would not even have two nodes on one cable; we would just have each station connected to a different
port in the hub.

5And the address of an Ethernet or other LAN card is known as theMAC addressof the card.
6This phrasing implies that the frame will be sent only to another machine on the same Ethernet. This is true, but it may be that

the frame’s ultimate destination is on another LAN, and the current Ethernet destination ID is for a machine which plays the role of
a intermediary router to other LANs. See the description of the Network layer below.

6

that time. We also must deal with the fact that the buffer space atholstein won’t be large enough to deal
with a 100-megabyte message. Also, one 100-megabyte message would have a sizable probability of having
at least one bit in error, and if so, we would have to retransmit the entire message!

So, the file transfer must be done in pieces. But we don’t want to burden the user atsaturn with the task of
breaking up the 100 megabytes into pieces, nor do we want to burden the user atholsteinwith the reassembly
of the messages.7 Instead, the network software (again, typically in the OS) should provide these services,
which it does at the transport layer, as for example is the case with TCP.

3.1.5 Session Layer

This layer is concerned with management of asession, i.e. the duration of a connection between two network
nodes. The wordconnectionhere does not mean something physical, but rather refers to an agreement
between two nodes that some chunks of data with some relation to each other will be exchanged for some
time. Actually, TCP does this in some senses, as does thesocketinterface to TCP, which is very much like
the interfaces for reading or writing a file (described in more detail later).

3.1.6 Presentation Layer

This layer deals with such matters as translating between character codes, if the source uses one and the
destination the other. In the old days, this could mean ASCII at one end and EBCDIC on the other end.
Today, though, it could mean for example two different coding systems for Chinese characters, Big 5 and
GB.

3.1.7 Application Layer

You can write programs at the application layer yourself, and of course you use many programs written by
others, such asftp , Web browsers, e-mail utilities, and so on.

3.2 How the Layers Interact

The Physical Layer is obviously implemented in hardware. So is the Data Layer, in the sense that the NIC
will handle this layer and is hardware.8 These days the Network Layer is also usually hardware; as noted
above, Ethernet hubs are now common in the home, and include routing capabilities. The Transport Layer
and above are usually implemented in software, actually as part of the OS.

Information is communicated from one layer to the next.9 For instance, think of the file-transfer example
presented earlier. The file-transfer program, sayftp , works in the Application Layer. It will call socket
service functions in the Session Layer, such as thesocket()function, which opens a network connection in
a manner very similar to theopen() function which opens a file. These functions will in turn call functions

7The “users” here are the application programs being run, e.g.ftp atsaturn andftpd (the FTP server) atholstein.
8More technically,firmware—software stored in ROM.
9In some cases a layer is “skipped.” At the Session Layer, araw socket can be opened, in which the socket communicates

directly with IP in the Network Layer.

7

for TCP operations in the Transport Layer, which will themselves call functions for IP operations at the
Network layer. The latter will then—say we are on an Ethernet—issue machine instructions (e.g. IN and
OUT in the case of Intel CPUs) to the Ethernet NIC, which will use the Data Link and Physical Layers to
put frames out onto the LAN. At any given layer, a function passes the message in apacket of bits to the
next lower layer. The packet grows larger at each layer, because each layer adds more information.

Say we are using theput command inftp to copy a file namedzyx to the destination machine. When we do
this, ftp calls thewrite() function to send data,10 A typical call towrite() will contain the actual data to be
transferred, in this case part ofzyx. At this point the packet consists only of the data, the socket number and
the number of bytes of data, and will be handed over to TCP.

TCP will then add to the frame the TCP source and destination port numbers, packetsequence numbers
(when a long message is being sent in small pieces, each piece gets a sequence number to identify it), and
so on, and then pass the packet to IP.

IP will add to the packet a code indicating the fact that this is a TCP packet (as opposed to UDP, another type
of communication service offered in the TCP/IP protocol), plus the source and destination IP addresses, and
so on, and pass the packet to the NIC.

In for example the Ethernet case, the NIC will then add to the packet the source and destination Ethernet
addresses, a code indicating that this message uses the TCP/IP protocol suite.

The packets sent at the physical level have a special name,frames.

When a frame reaches the destination machine, a mirror image of the above process occurs. The packet will
now travel upthe protocol stack, and will shrink as it does so. In theftp example, the “top” of the stack will
beftpd , which is the “partner” program offtp running on the destination machine.

Note also that as the packet gets routed through intermediate machines on its way to the destination, at each
of these intermediate machines it will travel up the protocol stack to the Network Layer (i.e. IP), which will
check to see whether it has reached the destination, and then upon finding that it hasn’t, it will be sent back
down the stack for transmission to the next machine in its path to the destination.

4 More on TCP/IP

TCP/IP is a very complex system, the subject of numerous thick books, and we cannot go into detail on it in
this document. We will give only a short introduction.

4.1 TCP/IP Overview

A famous and very common network protocol is TCP/IP. It was originally invented as part of the UNIX OS,
and later became the basis for the Internet (the Internet was developed mainly on UNIX machines). For the
latter reason, it is now part of other OSs, such as Windows.

10We are “writing” to the socket, as if we were writing to a file, but the effect is to send the data through the network. This is a
nice feature in UNIX, as it gives us a uniform interface to both files and sockets. In Windows systems, this is not available and thus
use, for example, thesendto()function instead; this function is also available in UNIX.

8

TCP/IP actually includes two protocols at the transport level, TCP and UDP, and one at the network level,
IP.

4.1.1 TCP

TCP is aconnection-orientedprotocol. As mentioned earlier, the termconnectiondoes not refer to a
physical connection, but rather to a temporary agreement set up between the source and destination nodes
concerning the processing of a sequence of ordered packets, such as the sizes of the pieces of a file sent
during a file transfer. The TCP Layer at the destination end will:

• let the TCP Layer at the source know how many packets the destination currently has room for

• watch for the packets

• piece them together as they arrive, possibly out of order (again, to reassemble them properly, we use
the sequence numbers within the packets)

• send acknowledgement messages to the source node as packets arrive

The destination will also look at the error-checking bits in each package, and will give negative acknowl-
edgements if errors are detected. If the source does not receive an acknowledgement for a given packet
within a preset amount of time, it willtime out and resend the packet. It will also do so if it receives a
negative acknowledgement for a packet. For this reason, TCP is called areliable protocol (though this term
should not be taken to mean “100% reliable”).

4.1.2 UDP

UDP, on the other hand, isconnectionlessandunreliable. UDP is pretty reliable if confined to a LAN, but
problems may occur elsewhere, because for example a buffer at a router might be full and thedatagram
(the term used instead ofpacketin the UDP case) is dropped. UDP’s virtue is that it is simple and thus has
very little overhead, compared to TCP, which spends a lot of time negotiating and maintaining a connection
between the source and destination nodes.

UDP is useful in applications in which we can afford to lose some messages, such as a time server, which
broadcasts time of day to client machines; if a client misses one message this is no problem, as it will pick
up the next one. Thus the unreliability of UDP is not a problem, and the low overhead of UDP is a virtue.

Similarly, suppose we are broadcasting a graphics animation or a movie over a network. Loss of one message
would result in nothing more than a tiny “blip” on the screen, barely noticeable to the viewer, so again
reliability is not an issue. Moreover, inreal-time applications like this, we can hardly afford the delay
caused by retransmitting when messages are lost or corrupted, which is what TCP would do.

Also, UDP is capable ofbroadcasting, i.e. sending out just one copy of a message to all machines connected
to the same Ethernet. If we do wish to send the same message to everyone, the ability to do so using just
one copy can really help reduce traffic on the network.

9

4.1.3 Stream Vs. Datagram Communication

It is extremely important to keep in mind that TCP views all the bytes it sends during one socket
connection to consist of one long stream of bytes, with no subdivisions of any kind.

Suppose for example machine A executes

write(SDA,BufA1,20);
write(SDA,BufA2,30);

whereSDA is a TCPsocket. You will see the details of writing to a socket later, but for now suffice it to say
that these two calls write 20 bytes from an arrayBufA1 and 30 bytes from an arrayBufA2 to the socket,
and those bytes will be sent to machine B.

From TCP’s point of view this is just a set of 50 bytes—not two sets of bytes, one of 20 and the other of 30.
There will be no “fence”, no “dotted line,” etc. delineating some kind of boundary between the two sets of
bytes. Moreover, on the receiver end at machine B, with aread() inside awhile loop, we may, for instance,
receive first 15 bytes, then 25, then 10. (However, the call toread() will not return until at least one byte is
read, unless the socket isnonblocking, to be discussed later.) In that second chunk of 25 bytes, the first 5
of them would in this example be from the first call towrite() on the sender end, with the other 5 from the
second call, but again there will be no demarcation between these two sets of 5.

On the receiver end, we can keep reading untilread() returns a nonpositive value; this indicates that the
sender has closed the socket, either by callingclose()or by simply exiting the program. (Just as exiting a
program automatically closes all files, it also closes all sockets.) We would do this by, say, code like

char Buf[BUFSIZE],*Ptr;
...
Ptr = Buf;
do {

NBytesRead = read(SD,Ptr,BUFSIZE);
TotMsgSize += NBytesRead;
Ptr += NBytesRead;

} while (NBytesRead > 0);

So, even a single call towrite() at the sender will need a loopcontainingread() on the receiver end, rather
than just a single call toread().11

By contrast, in UDP one call to write() at the sender does need to be matched by only one call to read()
by the receiver.As opposed to TCP, in which the totality of bytes sent by the sender is just considered to be
one longstream, the bytes sent by separate calls towrite() are considered to be separate from each other.
The set of bytes sent by a single call to write() is called adatagram.12

So, the application programmer must make a decision.If TCP is used, the programmer must add his/her
own code to separate the various messages within the stream. Things would thus be easier under UDP,

11 On the sending end, it is conceivable that even a call towrite() may not send as many bytes as requested, if the OS kernel’s
write buffer is nearly full. However, the best reference on TCP/IP programming (UNIX Network Programming, by Richard Stevens,
pub. Prentice-Hall, vol. 1, 2nd ed., p.77) says that this “is normally seen withwrite() only if the socket is nonblocking.”

12Not to be confused with the same term for a packet at the IP level.

10

since there messages are received in the same sizes as they are sent. But on the other hand, with UDP the
programmer would have to add his/her own code for “chunking,” error checking, etc. (if needed).

Note that TCP has a slow startup time, due to thehandshakingbetween the two nodes as the connection
is established. Note also that there are limits to the length of a UDP datagram, typically around 8K or so,
depending on the platform.

4.1.4 IP Addresses

Each node on the Internet has anIP address, a 32-bit number.13 Usually this is written for human consump-
tion as four numbers, specifically the values in each of the four bytes of the address. The IP address of the
machinegarnacha.engr.ucdavis.edu, for instance, is 169.237.126.236.14

When TCP or UDP passes a packet to IP, the latter will determine where it should be sent in order to
ultimately reach its proper destination. For instance, if the machine has two NICs, IP must decide which
one to pass the packet to.

4.1.5 Peer Communication

An application program using TCP or UDP will be communicating with itspeer using TCP or UDP on the
remote machine. Typically one of these programs will be a service provider and thus is termed theserver,
and the other will be the service requester, called theclient. For instance, when you use theftp program, it
is a client, and the server is theftpd program (“ftp daemon”) running on the remote machine.15

For the application programmer, it would be extremely inconvenient to have to code the actual packet for-
mation. Thus it would be nice to provide functions which access TCP and IP from a somewhat higher level.
One popular type of such functions issockets, which to the programmer look very similar to file handles.
Again the sockets form peer relationships with each other. Considerftp again, for instance, with aput
operation. On your end,ftp writes data to its socket, and at the destination machineftpd will read from its
socket.16 The two sockets were associated with each other at the time they were created. Similarly, the TCP
layer on your machine will think of itself communicating with the TCP layer at the destination machine.

4.1.6 Viewing Current Socket Status

On UNIX machines, thenetstat command will show you the current status of all open sockets; there is a
version on Microsoft Windows machines too.

Next time you are on a UNIX machine, run thenetstatcommand twice, once before and once during an ftp

13128 bits in the new IP 6 system.
14This node no longer exists. The College of Engineering “Mexican food series” of machines was phased out some years ago,

but I’ve kept the examples. Of course, the principles are still valid, regardless of which machines we use.
15The next time you are on a UNIX system, type “ps ax” (or “ps -e” or “ps -ux”, depending on the system) to see all the currently-

resident processes. You will may see one or moreftpd processes there. If not, do an ftp from another machine to this one, and list
the processes again; you should now seeftpd . There is another daemon,inetd, which intercepts calls to services likeftpd , invoking
these services as needed.

16In the case of agetopeation, these two operations would be reversed.

11

operation; you should see the new socket listed.17

4.1.7 What Makes a Connection Unique

Several socket programs might be running concurrently on the same machine. They may even all be ac-
cepting messages from the same remote machine. So, when a message arrives, how can the OS tell which
program it should be routed to? The answer is that different socket programs are distinguished by theirport
numbers. Theftpd service is on port 21, for instance. A communication between two machines must be
defined by five pieces of information:

• protocol (TCP, UDP, etc.)

• server IP address

• server socket port number

• client IP address

• client (ephemeral) socket port number

The server, for example, may be involved in several TCP transactions sent from the same machine, and thus
the server needs to have some way of distinguishing between them. And similarly, when the server sends
messages back to a client, the TCP system at the client’s machine has to have some way of determining
which program the server’s message is intended for.

Say for example, there are two users currently on machine X, one usingftp to port 21 at machine Y, and
another usingtelnet to port 23 at machine Z. But the programs being run by the two users will also have
ephemeral ports at their own machines, say 2592 and 5009, temporarily assigned to them by the TCP
system at machine X. Theftp program will inform the FTP server at machine Y about this 2592 number
when it first connects to Y, and when the server sends back to X it will use this number. The TCP system at
X will see this number, and route the message to theftp program accordingly. Similar statements hold for
telnet, etc. And even if the two users had both been usingftp , their two different ephemeral port numbers
would distinguish them from each other.

4.2 Sample TCP/IP Application: NFS

As mentioned earlier, NFS allows machines to share files, in a manner transparent to the user. NFS uses the
UDP transport protocol.18

When I ran thedf command on the ACS machinetaco, the output included a line

rosarita:/usr/pkg 2077470 1556279 313444 83% /usr/pkg

17You may also some “UNIX” sockets, which don’t involve networks.
18NFS actually uses Remote Procedure Call (RPC), which in turn uses UDP. RPC is just what the name implies: A program can

actually call a function—with parameters—which will execute on another machine. We have earlier referred to UDP’s “unreliable”
nature, which means RPC must take its own reliability measures.

12

This says that the directory/usr/pkg on the machinerosarita has been mounted ontaco, in a directory of
the same name,/usr/pkg (the name need not have been the same). This directory contains a number of
utilities, such as the GNU C compiler,gcc, in the file/usr/pkg/gnu/bin/gcc. Thus for instance the user can
type

gcc x.c

as ifgccwere ontaco’s local disk.

How does this work? At boot time,taco is set up to execute shell scripts in files like/etc/rc, /etc/rc.local
and so on. In one of these files, there will be a command like

mount -t nfs rosarita.engr.ucdavis.edu:/usr/pkg /usr/pkg

On the other end, one ofrosarita’s bootup files will include anexport command, saying that it is all right
to allow its directory/usr/pkg to be mounted by other machines. The OS is set up so that if ontaco I try to
access a file in/usr/pkg, my request will actually be redirected torosarita, transparently to me.

Here is why the RPC mechanism is convenient. On a UNIX system, input/output is done via system calls
open(), read(), write() and so on.19 So, in the example above, when a file within/usr/pkg is referenced at
taco (our use ofgccwill consist of a read to the file/usr/pkg/gnu/bin/gcc), the functionopen(), read(), and
so on will then do RPCs to the corresponding functions atrosarita.

5 Network Programming

5.1 TCP Socket Example

Below are two C programs, a client and a server. To explain what they do, suppose the server is running on
machine X and the client on Y. The server will report to the client the load at X (defined by the output of the
UNIX commandsw andps -ax). Suppose for example we compiled the client and server under the names
wps andsvr on toto.berkeley.eduandgarnacha.engr.ucdavis.edu, respectively. We would runsvr on the
latter (probably as a background process), and on the former might testwpsas follows:

toto% wps garnacha.engr.ucdavis.edu w
1:01pm up 37 days, 17:54, 2 users, load average: 0.06, 0.00, 0.00

User tty login@ idle JCPU PCPU what
matloff ttyp1 12:58pm 1 4 1 script
matloff ttyp2 1:00pm 1 2 1 w
bslouie ttyp3 11:43am 1 42 13 tin-new
toto%

(Note that my name appeared in the output. This is just a coincidence, arising from the fact that I had
telnet-ed intogarnachafrom toto in order to start upsvr.)

19You might not have used these before, and instead be more familiar withfopen(), fscanf(), fprint() , and so on.

13

5.1.1 Source Code

Here are the programs:

1
2 /* WPsClient.c */
3
4 /* Client for the server for remote versions of the
5 w and ps commands.
6
7 User can check load on machine without logging in
8 (or even without being able to log in).
9

10 Usage: wps remotehostname command (where "command"
11 is either w or ps).
12 */
13
14
15 /* these are needed for socket calls */
16 #include <stdio.h>
17 #include <sys/types.h>
18 #include <sys/socket.h>
19 #include <netinet/in.h>
20 #include <netdb.h>
21
22
23 #define WPSPORT 2000 /* server port number */
24 #define BUFSIZE 1000
25
26
27 main(argc,argv)
28 int argc; char **argv;
29
30 { int SD,MsgSize;
31 struct sockaddr_in Addr;
32 struct hostent *HostPtr,*gethostbyname();
33 char Buf[BUFSIZE];
34
35 /* open a socket */
36 SD = socket(AF_INET,SOCK_STREAM,0);
40
41 /* set up for an Internet connection to the host whose
42 name was specified by the user on the command line */
43 Addr.sin_family = AF_INET;
44 Addr.sin_port = WPSPORT;
45 /* get IP address of host */
46 HostPtr = gethostbyname(argv[1]);
47 memcpy(&Addr.sin_addr.s_addr,
48 HostPtr->h_addr_list[0],HostPtr->h_length);
49
50 /* OK, now connect */
51 connect(SD,&Addr,sizeof(Addr));
55
56 /* send user command */
57 write(SD,argv[2],strlen(argv[2]));
58
59 /* display response */
60 MsgSize = read(SD,Buf,BUFSIZE);

14

61 write(1,Buf,MsgSize);
62 }
63

1 /* WPsServer.c */
2
3 /* A server for remote versions of the w and ps
4 commands.
5
6 User can check load on machine without logging
7 in (or even without being able to log in).
8 */
9

10
11 /* these are needed for socket calls */
12 #include <stdio.h>
13 #include <sys/types.h>
14 #include <sys/socket.h>
15 #include <netinet/in.h>
16 #include <netdb.h>
17
18
19 /* this is needed for the disk read */
20 #include <fcntl.h>
21
22
23 #define WPSPORT 2000 /* server port number */
24 #define BUFSIZE 1000
25
26
27 int ClntDescriptor, /* socket descriptor to client */
28 SrvrDescriptor; /* socket descriptor for server */
29
30
31 char InBuf[BUFSIZE], /* messages from client */
32 OutBuf[BUFSIZE]; /* messages to client */
33
34
35 Write()
36
37 { int FD,NB;
38
39 FD = open("tmp.client",O_RDONLY);
40 NB = read(FD,OutBuf,BUFSIZE);
41 write(ClntDescriptor,OutBuf,NB);
42 unlink("tmp.client");
43 }
44
45
46 Respond()
47
48 { memset(OutBuf,0,sizeof(OutBuf)); /* clear buffer */
49 if (!strcmp(InBuf,"w"))
50 system("w > tmp.client");
51 else if (!strcmp(InBuf,"ps"))
52 system("ps -ax > tmp.client");
53 else
54 system("echo ’invalid command’ > tmp.client");

15

55 Write();
56 }
57
58
59 main(argc,argv)
60 int argc; char **argv;
61
63 { struct sockaddr_in BindInfo;
66
67 /* create an Internet TCP socket */
68 SrvrDescriptor = socket(AF_INET,SOCK_STREAM,0);
73
74 /* bind it to port 2000 (> 1023, to avoid the
75 "well-known ports"), allowing connections from
76 any NIC */
77 BindInfo.sin_family = AF_INET;
78 BindInfo.sin_port = WPSPORT;
79 BindInfo.sin_addr.s_addr = INADDR_ANY;
80 bind(SrvrDescriptor,&BindInfo,sizeof(BindInfo));
86
87 /* OK, set queue length for client calls */
88 listen(SrvrDescriptor,5);
91
93 while (1) {
94 /* wait for a call */
95 ClntDescriptor = accept(SrvrDescriptor,0,0);

106 /* read client command */
107 memset(InBuf,0,sizeof(InBuf));
108 read(ClntDescriptor,InBuf,sizeof(InBuf));
113 /* process the command */
114 Respond();
115 }
116 }
117

Note the #include files. Also, here are some other notes on programming:

• On Solaris machines, you may need to add-lsocketand possibly-lxnet to your compile command.

• On some platforms, you will have to be more careful with C casts than I have in the code above, for
example in the second argument toconnect(). This is especially true for C++.

• Though in the code here we have not done error-checking, in order to avoid distraction from the main
concepts, you definitely should check the return values of the system calls, so that if one fails you will
know which one it was.

• Even after a socket is closed, TCP will keep that socket alive for a while (e.g. 30 seconds or so), just
in case there are still some packets to come in. Thus a given port will not be immediately reusable,
unless we callsetsockopt()with SO REUSEADDR after opening the socket on the server end.20

Let’s see how the programs work, taking the client first.

Line 23:
20This should be used with care, though, since the streams from two clients might get mixed.

16

We have chosen to put our server on port 2000. Ports 0-1023 are reserved for the so-calledwell-known
ports corresponding to standard TCP/IP services. You can see a list of well-known ports in the UNIX file
/etc/services.

Line 24: We will use arrays for ourread() andwrite() system calls. They need to be large enough for the
data we send. In this case, 1000 characters will be sufficient. Note carefully, though, that this limit is NOT
there for the purpose of keeping our packets small; we can send as long a message as we like, with a single
call towrite() . Remember, TCP will break up long messages into shorter ones for us, without us even seeing
it, so we do not have to worry about it.

Lines 36-39:

We open a socket, using thesocket()system call. The first parameter indicates whether this is an Internet
socket, versus a socket purely local to this machine (a “UNIX socket”), not going out onto the Internet; the
Internet case here is designated by AFINET. The second parameter indicates the service, i.e. TCP, UDP or
others; it is TCP in this case, designated by SOCKSTREAM.21 We have defaulted the third parameter here
(and will not worry about what other possibilities there are for it).

The function’s return value, assigned toSDhere, is asocket descriptor, quite analogous to a file descriptor.

Lines 41-54:

We are building up a data structure named Addr (“address”) which we will use in line 51. Its type,sock-
addr in (line 31) comes from the #include file and is a standard socket type. Clearly, it is a complex type,
with many fields, and we will not go into the details here. See the man pages if you are interested for more
information.

One thing to beware of is that for the system call connect() and many other socket functions, you will see
that the man pages say you should use a struct of typesockaddr, as opposed to thesockaddr in type we
have used here. Yet thesockaddr type is just meant as a dummy, to be replaced by another struct type
which is specific to the network protocol being used. In our case, we are using TCP/IP, so we choose the
sockaddr in type, where “in” stands for “Internet.” There are also types such assockaddr ns for the Xerox
Networks Systems protocol, though of course TCP/IP has become virtually ubiquitous.

Having already opened a socket, we have to connect it to a specific port at a specific machine. Recall that
the user specifies an Internet host name, such asgarnacha.engr.edu. But we need the machine’s numerical
Internet address. This is obtained on line 46. The return value is a pointer to another standard data structure.

In line 47, we callmemcopy(), a system call which copies strings from one part of memory to another, in
this case from various fields of the struct pointed to byHostPtr to Addr . A given host may have several
addresses; here we are not bothering to check for that, but simply using the first address, contained in
h addr list[0] . (Here ‘h’ stands for “host.”) Theh length field gives the length of the address.

In line 51, we now connect the socket to the destination host. (It is here that the negotiation between source
and destination hosts will occur, as to packet sizes, and so on.)

Note that the port number we have specified is for the port at the server, not the client. There is a hidden
port number for the client here, which we will discuss later.

Line 57:
21There are also various others, such as SOCKRAW for raw sockets.

17

Here we write either “w” or “ps” to the destination host, depending on what the user requested. Note that
the functionwrite() is identical to the one used for low-level file access, except that we have as the first
parameter a socket descriptor instead of a file descriptor.

Lines 60-61:

On line 60 we read the message sent by the destination host, which will be the output of that host’s running
either thew or ps command. On line 61 we then write that message to the user’s screen. (For convenience,
we do so again usingwrite() , making use of the fact that the standard output has file descriptor 1, though of
course could have usedprintf() .)

Note carefully that if we had been expecting more voluminous data from the server than is the case here, we
may have had to do repeated calls toread().

In addition toread() andwrite() , we may also access sockets via other very similar system callsrecv(),
send(), recvfrom() and sendto(). (And in non-UNIX environments, wemustuse these, since those OSs do
not treat socket and file I/O the same.)

Now let’s take a look at the server code.

Line 68:

Here the server creates a socket.

Lines 77-85:

The system functionbind() is called in line 80. This associates the socket with a particular port and with
a particular IP address on the local machine, i.e. the machine on which the program which callsbind() is
running, in this case the server machine. Recall that machine may have multiple IP addresses, either because
it has several NICs, or because it may have multiple IP addresses assigned to the same NIC.

For example, suppose one of the NICs at the server machine corresponds to a local private intranet. Then
we could specify that particular address in our call tobind(), which would enable our making the program
available only on this intranet.

Or, suppose we are running an Internet service provider (ISP). We may be hosting many different customer
Web sites, all with different names (www.acmegroceries.com, www.flatearthsociety.org, etc.), each with
a different IP address. We want a given server, say the one for Acme Groceries, to respond only to clients
accessing thewww.acmegroceries.com, so our call tobind() would specify that address.

In our case here, we wish this server to be accessible from via of its IP addresses, which we specify in line
79 by using the constant INADDRANY.

Note that we did not have a call tobind() in our client code. We could have had one if we wanted the client
to access this port only through a particular one of the IP addresses of the client machine. In the intranet
example above, for instance, if the information to be exchanged by the client and server really needs full
security, it might be safer to make sure the client does not accidentally send its information outside the
intranet (say because a routing table becomes corrupted).22

To summarize, in a server program, callingbind() associates with the given socket the port number and IP
address that “phone calls” to this socket will be allowed on.

22If we do callbind() in a client, this must be done before callingconnect().

18

Normally we do not need to callbind() in a client program. Yet the client still needs a port number and IP
address to use in accepting messages which come from the server. If we do not callbind() in the client, then
calling connect()in the client will cause the OS to assign to the client a port, called anephemeral port, as
well as an IP address (in the case that the client has more than one IP address).23

Note that nowhere in the client or server code above do we see any mention of the client’s ephemeral port
number. (WPSPORT is the number of a port at the server, not at the client.) But the OS at the client will
indeed notify the server regarding the identity of the ephemeral port (when the client callsconnect()),

Normally we do not need to know which ephemeral port has been assigned at a client, but if we need it then
we can get it by callinggetsockname()in the client after callingconnect().

Line 88:

Be calling thelisten() function, we are notifying the OS that this program will be a server, not a client. We
also notify the OS as to how many incoming calls (in the form of clients invoking theconnect()function)
will be allowed to be pending at one time, in this case five. If a call arrives when the queue is full, the call
will be discarded (so it is best when writing the client to put the call toconnect() in a loop, looping until
connect()succeeds).

Lines 93-115:

Here we loop indefinitely, continuing to process calls one at a time. Theaccept()function (line 95) accepts
a pending call, returning a socket which we will use to exchange messages to the client. By making it a
separate socket, we can have several client sessions active simultaneously, though we are not doing so here.
The original socket is then called alistening socket, whose job is only to listen for connection requests from
clients, rather than for actual information exchange with client. The sockets created byaccept(), which do
the actual message exchange with the clients, are calledconnected sockets.

We read the client’s command, ”w” or ”ps”, on line 108, and then respond to the client on line 114.

Lines 35-56:

There are two systems calls you might not be familiar with here. The functionsystem()(lines 50, 52 and
54) actually submits a shell-level command. Note that we are saving the response in a file,tmp.client.
The file is later removed, using theunlink() function (line 42), which is the system-call level analog of the
shell-levelrm command.

5.1.2 Who Shall I Say Is Calling?

There are many other TCP/IP functions available. For example, after line 95 in the server code, we could
call getpeername()if we needed to know the Internet address of the client. To use this function, declare a
variable, says, of typesockaddr in and initialize itssin family field to AF INET. Also, declare a variable,
say i, of type int and initialize it tosizeof(sockaddrin). Then the call togetpeername()will have as
its arguments to the socket descriptor (ClntDescriptor in our example here),&s and&i . To then get the
address as a character string in “Internet dot” form, call the functioninet ntoa() ons.sin addr.

That would give us the numerical Internet address, and if we needed the alphabetic name, we could get this

23This is for TCP. In the case of UDP, where one normally does not callconnect(), this function is performed by the call to
sendto().

19

by calling gethostbyaddr(), as follows. Define a variable, say hp, of type “struct hostent *”. Then call
gethostbyaddr()with the arguments &s.sinaddr, 4 and “AFINET”, assigning the return value to hp. The
alphabetic host name will then be available as a character string inhp->h_name .

5.2 UDP Socket Examples

5.2.1 Basic Example

Following are a pair of programs which communicate using UDP sockets:

1 /* BasicCln.c */
2

3 /* introductory UDP example (client), with client sending a one-line
4 message to server at port 4000 */
5

6 #include <sys/types.h>
7 #include <sys/time.h>
8 #include <sys/socket.h>
9 #include <netinet/in.h>

10 #include <netdb.h>
11

12 main()
13

14 { struct hostent *h_name;
15 int sockfd;
16 char buf[10];
17 struct sockaddr_in your;
18

19 your.sin_family = AF_INET;
20 your.sin_port = htons(4000);
21 h_name = gethostbyname("sgi8.cs.ucdavis.edu");
22 your.sin_addr.s_addr = *(u_long *) h_name->h_addr_list[0];
23

24 if ((sockfd = socket(AF_INET,SOCK_DGRAM,0)) < 0) {
25 printf("socket error\n");
26 exit(1);
27 }
28

29 strcpy(buf,"OK");
30

31 if (sendto(sockfd,buf,strlen(buf),0,&your,sizeof(your)) < strlen(buf)) {
32 printf("send error\n");
33 exit(1);
34 }
35 }

1 /* BasicSrv.c */
2

3 /* introductory UDP example (server), with client sending a one-line
4 message to server at port 4000 */
5

6 #include <sys/types.h>
7 #include <sys/time.h>
8 #include <sys/socket.h>

20

9 #include <netinet/in.h>
10 #include <netdb.h>
11

12 main()
13

14 { struct hostent *h_name;
15 int sockfd;
16 char buf[10];
17 struct sockaddr_in mine;
18 /* these two are needed as placeholders but are not used here: */
19 struct sockaddr_in rcvaddr;
20 int addlen;
21

22 mine.sin_family = AF_INET;
23 mine.sin_port = htons(4000);
24 mine.sin_addr.s_addr = INADDR_ANY;
25

26 if ((sockfd = socket(AF_INET,SOCK_DGRAM,0)) < 0) {
27 printf("socket error\n");
28 exit(1);
29 }
30

31 if (bind(sockfd,(struct sockaddr *)&mine,sizeof(mine)) < 0) {
32 close(sockfd);
33 printf("bind error\n");
34 exit(1);
35 }
36

37 recvfrom(sockfd,buf,sizeof(buf),0,&rcvaddr,&addlen);
38 printf("%s\n",buf);
39 }

We have used thehtons() function error, in order to guard against problems in communicating between big-
and little-endian machines. The Internet uses big-endian order, while for example Intel-based machines use
little-endian order. To be safe, this should always be used.

Note that therecvfrom() function has an argument in which the system will place the client’s address. If the
server needs to reply (which it doesn’t in this case but does in most applications), it does a call tosendto(),
using the same socket and the client address which it discovered in its call torecvfrom().

5.2.2 Advanced Use of Sockets

There are myriad options available for sockets, which can be set by calling the functionsetsockopt(). Here
is an example:

One nice feature of UDP is that if it is used on a single network on which broadcast is physically possible,
UDP can arrange us tosimultaneouslysend a packet to every node on that network. A typical example of
this is that of an Ethernet; a packet going to one node on the network will be “seen” by all other nodes on
the network, so a physical broadcast is possible, and UDP has the capability of exploiting this.24

You can determine the broadcast address (given in IP address form) by running theifconfig command on
UNIX machines, orwinipcfg on Microsoft Windows platforms.

24The College of Engineering ACS machines apparently have the broadcast capability turned off, but it works on CSIF.

21

Here is how we could change the client in the above example to do a broadcast (using the same server, but
now running on many nodes on the Ethernet):

1 /* BCastCln.c */
2

3 /* introductory UDP example (client), with client sending a one-line
4 message to all servers on the given network (see below), at port 4000
5

6 the server is still BasicSrv.c, no change */
7

8 #include <sys/types.h>
9 #include <sys/time.h>

10 #include <sys/socket.h>
11 #include <netinet/in.h>
12 #include <netdb.h>
13

14 main()
15

16 { struct hostent *h_name;
17 int sockfd;
18 char buf[10];
19 struct sockaddr_in your;
20

21 const int turn_option_on = 1;
22

23 your.sin_family = AF_INET;
24 your.sin_port = htons(4000);
25 /* UCD CS and Engrg. machines are on the network 128.120.*.*,
26 i.e. hex IP addresses 0x8078zzzz, so the broadcast address
27 replaces zzzz by ffff (after this program was written,
28 the addresses became 169.237.*.*; in general, run
29 /sbin/ifconfig to determine broadcast address */
30 your.sin_addr.s_addr = 0x8078ffff;
31

32 if ((sockfd = socket(AF_INET,SOCK_DGRAM,0)) < 0) {
33 printf("socket error\n");
34 exit(1);
35 }
36

37 setsockopt(sockfd,SOL_SOCKET,SO_BROADCAST,&turn_option_on,
38 sizeof(turn_option_on));
39

40 strcpy(buf,"OK");
41

42 if (sendto(sockfd,buf,strlen(buf),0,&your,sizeof(your)) < strlen(buf)) {
43 printf("send error\n");
44 exit(1);
45 }
46 }

Another example of the advanced use of sockets israw sockets. Here one can build up one’s own IP frame,
giving one very minute control of IP operations by setting the various fields ourselves. A program which
uses raw sockets must have root privileges.

22

5.3 Nonblocking I/O

In many applications a server has sockets open to several clients at once. In this case, the server needs a
mechanism for determining which sockets have data waiting and which do not. One way to handle this is to
make the socketsnonblocking, which means that a call toread() will not wait until data is ready. If data
is ready at that socket, the call toread() will read that data, but if not, the call immediately returns, with a
value of -1. You code can then repeatedly poll all sockets, testing for input data at each one, and reading
that data if it is there. Here is an example of code to make a socket nonblocking:

Flag = 1;
ioctl(S,FIONBIO,&Flag);

HereS was the return value from a call tosocket(). You will need the proper include-files; check theman
page forioctl().

A much more flexible and sophisticated tool for dealing with multiple sockets is theselect()function. A
newer such tool ispoll().

5.4 Debugging Client/Server Programs

As a quick check, you can first try to usetelnet to check whether the server has calledbind(), listen() and
accept()properly. Though you are probably accustomed to usingtelnet simply as a means of remote login,
it also can be used to communicate with servers at specified ports. Whattelnet does is open a connection to
a given host at a given port; whatever bytes the user types will be sent to that port, and whatever bytes the
port sends will appear on the user’s screen.

This could be used to help our debugging process. If for example we have a server onpc8.cs.ucdavis.edu,
running on port 1088, we could type

telnet pc8.cs.ucdavis.edu 1088

If we get a response here but not from our own client program, the latter may have an error inconnect()or
whatever, such as misspecifying the server’s IP address or port. (On the other hand, if we get no response, it
may also be due to the system configuration not allowingtelnet access to that port.)

In general, debugging a server/client pair, using a debugging tool(which you should do when debugging
any program) will be a bit more difficult, because you will need to invoke the tool once for the server and
once for the client. So, even though I typically use a GUI togdb, such asddd, for debugging a server/client
pair I sometimes use just the plain-textgdb, since my screen would not conveniently fit two GUIs at the
same time. Or, I might just use the debugging tool on the client while running the server without a debugging
tool, or vice versa.

You may find a tool such asstrace, available on many UNIX systems (and also similar programs such as
ktrace, truss, etc.) to be useful. It will print out each system call made by a program, and the result of
each call. In our case here, that means calls toaccept(), connect(), etc. Since the ouptut ofstracemay be
voluminous, you may wish to pipe itsstderr output throughmore, say as

strace application_program_name application_arguments |& more

23

6 Packet/Frame Formats

In order to get a more concrete understanding of some of the concepts introduced here, we now take a look
at the specific formats in which some of the protocols send data.

6.1 TCP

Bytes 0-1:Source Port.

Bytes 2-3:Destination Port.

Bytes 4-7:Sequence number.

Bytes 8-11:Acknowledgement.

Byte 12: The first four bits comprise the Header Length field (the other four bits are 0s), meaning the
number of words (not bytes) from the beginning of the packet to the first data byte within the packet. Most
of the header is of fixed length, so we would not need this, except for the fact that the Options field below is
of variable length. The software thus uses this field to deduce where in the packet the data starts.

Byte 13: Flags, which are various bits giving control information such as a PUSH command (which tells the
host not to continue accumulating bytes to send; “send whatever you have now, without waiting for more”).

Bytes 14-15:Advertised Window, a value that the recipient uses to say, “OK, you can now send me sequence
numbers such-and-such.”

Bytes 16-19:Check Sum (two bytes), for error checking, and a two-byte Urgent Pointer field.

Bytes 20-whatever:Options field.

Remaining Bytes:Data, e.g. your e-mail message in the case ofsendmail. (Note: No length field is needed
for specifying the amount of data, since this can be deduced from a similar field in the IP header which will
contain this TCP packet.)

6.2 IP

Byte 0: The first four bits are the Version Number (currently 4, going to 6), and the other four bits are the
Header Length in words.

Byte 1: Type of Service field, intended to give priority to some packets but not used much in practice.

Bytes 2-3:Length field, giving length of the entire IP packet including data.

Bytes 4-7:Miscellaneous fields.

Byte 8: Time to Live field. If this equals, say, k, then this packet will be allowed k more hops through the
network. If it hasn’t reached its destination by then, it is discarded, to prevent infinite routing loops.

Byte 9: Transport-layer protocol (e.g. 6 for TCP, 17 for UDP).

Bytes 10-11:Checksum, to check for errors within this packet.

24

Bytes 12-15:Source IP address.

Bytes 16-19:Destination IP address.

Bytes 20-whatever:Options including blank padding to make an integral number of words.

Remaining Bytes:Data. Remember, from the point of view of the IP layer, the “data” consists of a TCP or
UDP packet (or other packet from a higher layer).

6.3 Ethernet

Preamble: Start-of-frame indicator, a special 64-bit pattern.

Destination Ethernet ID: 48 bits; burned into the NIC by the manufacturer.

Source Ethernet ID: See Destination Ethernet ID above.

Type (protocol ID): 16 bits. Indicates the protocol being used, e.g. 0x0800 for IP and 0x809b for Appletalk.
This is the mechanism by which different protocols can coexist on the same Ethernet.

Data: This consists of the IP packet (in the case of the IP protocol). Its length is inferred by subtracting the
lengths of the other fields from the overall frame length.

CRC: 32 bits. An error-checking field for this frame.

Postamble:End-of-frame indicator, a special 8-bit pattern.

7 Putting It All Together

Suppose that in our earlier examples,svr is running onvenus, andwps is running onhonda. Suppose we
have the following IP and Ethernet (MAC) addresses:

machine IP address MAC address
Earth 192.0.0.0 0x0123456789ab
Mars 192.0.0.1 0x1123456789ab
Venus 192.0.0.2 0x2123456789ab
Saturn 192.0.0.3 0x3123456789ab
Jeep 193.0.0.0 0x4123456789ab
Honda 193.0.0.1 0x5123456789ab

All of the machines here haveClass C IP addresses, which consist of a 24-bit network number and 8-bit
host-within-network number. For example,mars is host 1 on network 192.0.0.0. Here is what will happen
whenwpsexecutes

write(SD,argv[2],strlen(argv[2]));

athonda. Recall thatargv[2] is either “w” or “ps”; let’s say it’s “ps”. Recall also thatSD is a socket which
wps has already opened in TCP. Also, the call whichwps made earlier toconnect()had connected this
socket to port 2000 atvenus, and the OS athondahad assignedwpsan ephemeral port number, say 3056.

25

So, the effect of thewrite() is that the socket numberSD and the stringargv[2] will be sent fromwps,
which is running in the Application Layer athonda, to the Session Layer athonda.

The Session Layer will find in its records that this socket is for ephemeral port 3056 on TCP. So, the Session
Layer athondawill pass “ps” and this port number to TCP in the Transport Layer athonda. (Note that this
passing is done by a simple function call, since we are at the same machine.)

TCP athondawill first have to decide how much “chunking” to do—none in this case, since the data consist
of only two bytes! TCP will now prepare a TCP packet containing that data, using the TCP packet format
shown above:

TCP will first note that ephemeral port 3056 is associated with the destination port and IP numbers 2000
and 192.0.0.2, respectively. TCP will then fill in the packet, putting 3056 and 2000 for the Source and
Destination Port numbers; it will fill in the Sequence number, etc., and finally put “ps” into the Remaining
Bytes (i.e. data) field. After creating this packet, TCP athonda will pass it to IP in the Network Layer of
honda, along with the information that the destination will be 192.0.0.2.

IP athonda will now prepare an IP packet. It will fill in 193.0.0.1 for the Source IP address, and 192.0.0.2
for the Destination IP. Note carefully that for the Remaining Bytes field in this case, IP will put in the entire
packet that it received from TCP.

IP athondawill now decide how to route the IP packet it has created. It first will ask whether the destination
host, is on the same network ashonda. The answer to that question will be no, sincehonda is on the network
193.0.0 andvenusis on 192.0.0. So, IP athondawill need to send the packet to a router onhonda’s network.
There are two such routers,jeepandcitroen.

IP athondawill send the packet tojeep. (This will probably have been hand-coded; more on this in our unit
on routing.) Note that IP athondawill not know thatvenusis just one hop away fromjeep; it merely knows
that the first step should bejeep. So, IP will pass the packet, plusjeep’s Ethernet address, 0x4123456789ab,
to the Data Link Layer athonda.

The Data Link Layer will then create an Ethernet frame. It will put 0x4123456789ab for the Destination
Ethernet ID, and 0x5123456789ab for the Source Ethernet ID. It will fill in 0x0800 for the Type field. And
it will put in the entire IP packet it received from the Network Layer in for the current Data field. Finally,
the Data Link Layer will pass this Ethernet frame to the Ethernet device driver onhonda.

The Ethernet device driver onhonda will then put the frame on network B. All NICs on that network will
see it, including the NIC 0x4123456789ab onjeep.

That NIC will say, “Oh, this frame is for me!” Note that the NIC will not notice that the ultimate destination
of the frame isvenus; all the NIC cares about is the Destination Ethernet address, which it has seen is its
own. All the NIC will do is pass this frame up to the next layer atjeep,25 which will be the Data Link Layer.

The Data Link Layer atjeep will strip off the Ethernet IDs and other Ethernet-related information. The
stripped-down frame is now the IP frame which IP athondahad produced. The Data Link Layer will know
this, since the Type field in the Ethernet frame stated that the protocol was IP. The Data Link Layer atjeep
will now pass the IP packet to IP in the Network Layer atjeep.

IP will now look at the Destination IP Address in the packet, 192.0.0.2. Since that does not matchjeep’s

25Note that it is the same protocol stack as that ofmars. They are the same machine, but have two different NICs and thus
different names.

26

own address, 193.0.0.0,jeep knows that it needs to route this packet. IP also notices that the Destination
IP Address is on network number 192.0.0, i.e. network A, whichjeep’s machine is attached to via another
NIC. So,jeepwill be able to relay the packet directly tovenus:

At this point the packet will go down the protocol stack atjeep, just like we saw earlier athonda. The
Ethernet Source ID will bejeep’s, i.e. 0x4123456789ab, and the Ethernet Destination ID will bevenus’,
0x2123456789ab. The frame will be placed onto network A, and picked up byvenus.

The frame will then go up the protocol stack atvenus like it did at jeep, but in this case IP atvenuswill
discover that the Destination IP Address is that ofvenus. Thus the packet will not be routed fromvenus,
but instead will continue to go up the protocol stack. IP atvenuswill see in the Transport Layer Protocol
field that this is a TCP packet (and thus not, for example, UDP). IP will now strip off the IP-only fields from
the packet, leaving the original TCP packet. IP will pass the packet to TCP, along with information on the
Source IP address.

TCP will note the Destination Port, strip off the TCP-only information, and send the remainder to the Session
Layer, along with the Destination Port number. The Session Layer will send the remainder toread(), and
svr will be able to read the “ps”.

Whensvr writes back towps, a similar sequence of events will occur. Note also that whenwps first called
connect(), a similar sequence of events occurred then too, ashonda’s TCP andvenus’ TCP exchanged
messages in order to set up a connection.

8 Application-Layer Protocols

Some applications, such as FTP, e-mail, etc. are so common that they have their own protocols.

For example, e-mail uses the Simple Mail Transfer Protocol (SMTP). Suppose you arelm@abc.comand
are sending e-mail touvw@xyz.org, and your message is going to be a simple one-line greeting:

Hi, how have you been?

The client, which will be either the e-mail utility that you use, or an OS function called by that utility, will
first establish a TCP connection to the SMTP server at the remote machine, at port 25 of the server. The
following messages would then be sent by the client:26

1 HELO abc.com
2 MAIL FROM: lm@abc.com
3 RCPT TO: uvw@xyz.org
4 DATA
5 Hi, how have you been?
6 .
7 QUIT

(The end of the e-mail message itself is indicated by a period on a separate line, as shown above.)

26There will be responses from the server for each one, but we will ignore them here.

27

Similarly, HTTP, the protocol used for Web access, consists of a set of commands similar to the HELO,
MAIL FROM:, RCPT TO:, DATA and QUIT commands we saw for SMTP above. The HTTP server is at
port 80.

As our example, consider the Web page

http://heather.cs.ucdavis.edu/˜matloff/gnuplot.html

If a user instructs his/her Web browser to access that Web URL, the browser would open the usual TCP
connection withheather.cs.ucdavis.edu, at the standard HTTP port, 80. The browser would then write the
bytes

GET /˜matloff/gnuplot.html HTTP/1.0 \n\n

to port 80. That is the HTTP command to get the given file on that machine. (Note the two blank lines,
which actually are part of the command.) The machine would respond by sending back the raw HTML file,
which happens to consist of the HTML code

<body bgcolor=white>
<P>
<P>
The gnuplot mathematical graphing package is available on most Unix
systems. It is free, public domain software.
<P>
Here is some documentation:
<P>

Gnuplot’s official documentation (note
also that online help is available by typing "help" within gnuplot).
<P>

My own brief introduction.

<P>

The browser would then interpret that HTML code and display the Web page.

9 Routing Issues

Again, many thick books exist on routing issues (some of them dealing only with a particular commercial
product, such as Cisco routing). But here is a brief overview:

Suppose I tell my Web browser to go tohttp://www.yahoo.com One of the things which will have to be
done is to get the IP address forwww.yahoo.com. Recall that the functiongethostbyname()does this—but
how?

The function first may check the local file/etc/hosts, where some frequently accessed destination informa-
tion might be stored. If not, then it probably will use the Domain Name System (DNS). (Some Microsoft

28

Windows networks use Microsoft’s own name lookup system, WINS.) Briefly, your OS will have one or
more DNS machines which it can query to convert the “English” name, saywww.yahoo.comto an IP num-
ber, say 204.71.200.74.27 The addresses of these machines are typically stored in a file,/etc/resolv.conf, in
lines labeled “nameserver,” or might be specified in other ways.

If, for example, you have just subscribed to a new ISP but can’t access all (or some, say UCD) machines
on the Internet, try doing so using their numerical IP address. If the latter works, then you likely have some
kind of DNS problem.

Once we determine the IP address of the destination, the next question is how to get there. The IP software
will first check to see if we are lucky enough that the destination machine is on the same network (e.g. the
same Ethernet) as we are on. The way that it does this is to break the destination IP address down into a
network number and a host-within-network number. (You’ll see how to do this later.) If it discovers that the
destination is on the same network as the source, it simply puts the Ethernet address of the destination into
our packet and sends it out onto the Ethernet. If not, our IP software will have to send the packet to some
machine on our network that serves as agatewayto the rest of the Internet. This process will be repeated
each time we reach a new network, until we finally reach the network to which our destination machine
belongs.

In TCP, each packet within a message may take a different route to the destination. Other protocols may
handle things differently. The Asynchronous Transfer Mode (ATM) protocol, for example, sets up a fixed
route at the time the connection is made, for all packets to use.

27They in turn may have to check other DNS hosts to get the information you want.

29

	Significance of Networks
	History
	What Are Networks Used For?
	Which Aspects of Networks Are Important to Know?

	An Introductory Example
	The Famous, Overrated But Useful 7-Layer Model
	Overview of the Layers
	Physical Layer
	Data Link Layer
	Network Layer
	Transport Layer
	Session Layer
	Presentation Layer
	Application Layer

	How the Layers Interact

	More on TCP/IP
	TCP/IP Overview
	TCP
	UDP
	Stream Vs. Datagram Communication
	IP Addresses
	Peer Communication
	Viewing Current Socket Status
	What Makes a Connection Unique

	Sample TCP/IP Application: NFS

	Network Programming
	TCP Socket Example
	Source Code
	Who Shall I Say Is Calling?

	UDP Socket Examples
	Basic Example
	Advanced Use of Sockets

	Nonblocking I/O
	Debugging Client/Server Programs

	Packet/Frame Formats
	TCP
	IP
	Ethernet

	Putting It All Together
	Application-Layer Protocols
	Routing Issues

