
Introduction to MPI

Norman Matloff
Department of Computer Science
University of California at Davis

c©2006, N. Matloff

May 10, 2006

Contents

1 Overview 2

1.1 History . 2

1.2 Structure and Execution . 2

1.3 Implementations . 2

1.4 Performance Issues . 3

2 Running Example 3

2.1 The Algorithm . 3

2.2 The Code . 4

2.3 Introduction to MPI APIs . 7

2.3.1 MPI Init() and MPI Finalize() . 7

2.3.2 MPICommsize() and MPICommrank() . 7

2.3.3 MPISend . 8

2.3.4 MPIRecv() . 9

3 Collective Communications 10

3.1 The MPIBcast Operation . 10

3.2 Example . 11

1

CONTENTS CONTENTS

3.3 Introduction to MPI APIs for Collective Operations . 13

3.3.1 MPIReduce . 13

3.3.2 The MPIGather Operation . 14

3.3.3 The MPIScatter Operation . 14

3.3.4 The MPIBarrier Operation . 14

3.4 Creating Communicators . 15

4 Buffering, Synchrony and Related Issues 15

4.1 Buffering . 15

4.2 Nonbuffered Communication . 16

4.3 Safety . 16

4.4 Living Dangerously . 17

4.5 Safe Exchange Operations . 17

Introduction to MPI: 2

1 OVERVIEW

1 Overview

1.1 History

Though (small) shared-memory machines have come down radically in price, to the point at which a dual-
core PC is affordable in the home, historically shared-memory machines were available only to the “very
rich”—large banks, national research labs and so on.

The first “affordable” message-machine type was the Hypercube, developed by a physics professor at Cal
Tech. It consisted of a number ofprocessing elements(PEs) connected by fast serial I/O cards. This was
in the range of university departmental research labs. It was later commercialized by Intel and NCube.

Later, the notion ofnetworks of workstations (NOWs) became popular. Here the PEs were entirely inde-
pendent PCs, connected via a standard network. This was refined a bit, by the use of more suitable network
hardware and protocols, with the new term beingclusters.

All of this necessitated the development of standardized software tools based on a message-passing paradigm.
The first popular such tool was Parallel Virtual Machine (PVM). It still has its adherents today, but has
largely been supplanted by the Message Passing Interface (MPI).

MPI itself later became MPI 2. Our document here is intended mainly for the original.

1.2 Structure and Execution

MPI is merely a set of Application Programmer Interfaces (APIs). It has many implementations.

Suppose we have written an MPI programx, and will run it on four machines in an Ethernet-based NOW.
Each machine will be running its own copy ofx. Official MPI terminology refers to this as fourprocesses,
but we will use the termnodes, i.e. x is running on four nodes.

Though the nodes are all running the same program, they will likely be working on different parts of the
program’s data. This is called the Single Program Multiple Data (SPMD) model. It is typical, but there could
be different programs running on different nodes. Most of the APIs involve a node sending information to,
or receiving information from, other nodes.

1.3 Implementations

In principle, an MPI implementation could be made quite generic, applicable to virtually any platform,
simply by using network (or OS) sockets for internode communication. But for performance reasons, most
implementations are tailored to a particular platform.

Two of the most popular implementations of MPI are MPICH and LAM. MPICH runs both on networks
and on several other platforms, including selected shared-memory machines. LAM runs on networks. In-
troductions to MPICH and LAM can be found, for example, athttp://heather.cs.ucdavis.edu/
˜matloff/MPI/NotesMPICH.NM.html andhttp://heather.cs.ucdavis.edu/˜matloff/

Introduction to MPI: 3

http://heather.cs.ucdavis.edu/~matloff/MPI/NotesMPICH.NM.html
http://heather.cs.ucdavis.edu/~matloff/MPI/NotesMPICH.NM.html
http://heather.cs.ucdavis.edu/~matloff/MPI/NotesLAM.NM.html
http://heather.cs.ucdavis.edu/~matloff/MPI/NotesLAM.NM.html

2 RUNNING EXAMPLE 1.4 Performance Issues

MPI/NotesLAM.NM.html , respectively.

There is considerable evolution in these tools. MPICH became MPICH 2, while LAM became OpenMPI.

1.4 Performance Issues

Mere usage of a parallel language on a parallel platform does not guarantee a performance improvement
over a serial version of your program. The central issue here is the overhead involved in internode commu-
nication.

As of 2006, thelatency of Myrinet, one of the fastest cluster networks commercially available, is about 2
microseconds. In other words, if one node sends a message to another, it will take about 2 microseconds
before the first bit reaches the destination. Comparing that to the nanosecond time scale of CPU speeds, one
can see that the communications overhead can destroy a program’s performance. And Ethernet, is quite a
bit slower than Myrinet.

Note carefully that latency is a major problem even if thebandwidth—the number of bits per second which
are sent—is high. For this reason, it is quite possible that your parallel program may actually run more
slowly than its serial version.

Of course, if your platform is a shared-memory multiprocessor (especially a multicore one, where commu-
nication between cores is particularly fast), you must make sure that your application is sufficientlycoarse-
grained that latency is not an issue. What this means is that your application can be broken down into large
subproblems that rarely require communication with other nodes, relative to the amount of computation
done between communications.

2 Running Example

2.1 The Algorithm

The code implements the Dijkstra algorithm for finding the shortest paths in an undirected graph. Pseu-
docode for the algorithm is

1 Done = {0}
2 NonDone = {1,2,...,N-1}
3 for J = 1 to N-1 Dist[J] = infinity‘
4 Dist[0] = 0
5 for Step = 1 to N-1
6 find J such that Dist[J] is min among all J in NonDone
7 transfer J from NonDone to Done
8 NewDone = J
9 for K = 1 to N-1

10 if K is in NonDone
11 Dist[K] = min(Dist[K],Dist[NewDone]+G[NewDone,K])

Introduction to MPI: 4

http://heather.cs.ucdavis.edu/~matloff/MPI/NotesLAM.NM.html
http://heather.cs.ucdavis.edu/~matloff/MPI/NotesLAM.NM.html

2 RUNNING EXAMPLE 2.2 The Code

At each iteration, the algorithm finds the closest vertex J to 0 among all those not yet processed, and then
updates the list of minimum distances to each vertex from 0 by considering paths that go through J. Two
obvious potential candidate part of the algorithm for parallelization are the “find J” and “for K” lines, and
the above OpenMP code takes this approach.

2.2 The Code

1 // Dijkstra.c
2

3 // MPI example program: Dijkstra shortest-path finder in a
4 // bidirectional graph; finds the shortest path from vertex 0 to all
5 // others
6

7 // command line arguments: nv print dbg
8

9 // where: nv is the size of the graph; print is 1 if graph and min
10 // distances are to be printed out, 0 otherwise; and dbg is 1 or 0, 1
11 // for debug
12

13 // node 0 will both participate in the computation and serve as a
14 // "manager"
15

16 #include <stdio.h>
17 #include <mpi.h>
18

19 #define MYMIN_MSG 0
20 #define OVRLMIN_MSG 1
21 #define COLLECT_MSG 2
22

23 // global variables (but of course not shared across nodes)
24

25 int nv, // number of vertices
26 *notdone, // vertices not checked yet
27 nnodes, // number of MPI nodes in the computation
28 chunk, // number of vertices handled by each node
29 startv,endv, // start, end vertices for this node
30 me, // my node number
31 dbg;
32 unsigned largeint, // max possible unsigned int
33 mymin[2], // mymin[0] is min for my chunk,
34 // mymin[1] is vertex which achieves that min
35 othermin[2], // othermin[0] is min over the other chunks
36 // (used by node 0 only)
37 // othermin[1] is vertex which achieves that min
38 overallmin[2], // overallmin[0] is current min over all nodes,
39 // overallmin[1] is vertex which achieves that min
40 *ohd, // 1-hop distances between vertices; "ohd[i][j]" is
41 // ohd[i*nv+j]
42 *mind; // min distances found so far
43

44 double T1,T2; // start and finish times
45

46 void init(int ac, char **av)

Introduction to MPI: 5

2 RUNNING EXAMPLE 2.2 The Code

47 { int i,j,tmp; unsigned u;
48 nv = atoi(av[1]);
49 dbg = atoi(av[3]);
50 MPI_Init(&ac,&av);
51 MPI_Comm_size(MPI_COMM_WORLD,&nnodes);
52 MPI_Comm_rank(MPI_COMM_WORLD,&me);
53 chunk = nv/nnodes;
54 startv = me * chunk;
55 endv = startv + chunk - 1;
56 u = -1;
57 largeint = u >> 1;
58 ohd = malloc(nv*nv*sizeof(int));
59 mind = malloc(nv*sizeof(int));
60 notdone = malloc(nv*sizeof(int));
61 // random graph
62 // note that this will be generated at all nodes; could generate just
63 // at node 0 and then send to others, but faster this way
64 for (i = 0; i < nv; i++)
65 for (j = i; j < nv; j++) {
66 if (j == i) ohd[i*nv+i] = 0;
67 else {
68 ohd[nv*i+j] = rand() % 20;
69 ohd[nv*j+i] = ohd[nv*i+j];
70 }
71 }
72 for (i = 0; i < nv; i++) {
73 notdone[i] = 1;
74 mind[i] = largeint;
75 }
76 mind[0] = 0;
77 while (dbg) ; // stalling so can attach debugger
78 }
79

80 // finds closest to 0 among notdone, among startv through endv
81 void findmymin()
82 { int i;
83 mymin[0] = largeint;
84 for (i = startv; i <= endv; i++)
85 if (notdone[i] && mind[i] < mymin[0]) {
86 mymin[0] = mind[i];
87 mymin[1] = i;
88 }
89 }
90

91 void findoverallmin()
92 { int i;
93 MPI_Status status; // describes result of MPI_Recv() call
94 // nodes other than 0 report their mins to node 0, which receives
95 // them and updates its value for the global min
96 if (me > 0)
97 MPI_Send(mymin,2,MPI_INT,0,MYMIN_MSG,MPI_COMM_WORLD);
98 else {
99 // check my own first

100 overallmin[0] = mymin[0];
101 overallmin[1] = mymin[1];

Introduction to MPI: 6

2 RUNNING EXAMPLE 2.2 The Code

102 // check the others
103 for (i = 1; i < nnodes; i++) {
104 MPI_Recv(othermin,2,MPI_INT,i,MYMIN_MSG,MPI_COMM_WORLD,&status);
105 if (othermin[0] < overallmin[0]) {
106 overallmin[0] = othermin[0];
107 overallmin[1] = othermin[1];
108 }
109 }
110 }
111 }
112

113 void updatemymind() // update my mind segment
114 { // for each i in [startv,endv], ask whether a shorter path to i
115 // exists, through mv
116 int i, mv = overallmin[1];
117 unsigned md = overallmin[0];
118 for (i = startv; i <= endv; i++)
119 if (md + ohd[mv*nv+i] < mind[i])
120 mind[i] = md + ohd[mv*nv+i];
121 }
122

123 void disseminateoverallmin()
124 { int i;
125 MPI_Status status;
126 if (me == 0)
127 for (i = 1; i < nnodes; i++)
128 MPI_Send(overallmin,2,MPI_INT,i,OVRLMIN_MSG,MPI_COMM_WORLD);
129 else
130 MPI_Recv(overallmin,2,MPI_INT,0,OVRLMIN_MSG,MPI_COMM_WORLD,&status);
131 }
132

133 void updateallmind() // collects all the mind segments at node 0
134 { int i;
135 MPI_Status status;
136 if (me > 0)
137 MPI_Send(mind+startv,chunk,MPI_INT,0,COLLECT_MSG,MPI_COMM_WORLD);
138 else
139 for (i = 1; i < nnodes; i++)
140 MPI_Recv(mind+i*chunk,chunk,MPI_INT,i,COLLECT_MSG,MPI_COMM_WORLD,
141 &status);
142 }
143

144 void printmind() // partly for debugging (call from GDB)
145 { int i;
146 printf("minimum distances:\n");
147 for (i = 1; i < nv; i++)
148 printf("%u\n",mind[i]);
149 }
150

151 void dowork()
152 { int step, // index for loop of nv steps
153 i;
154 if (me == 0) T1 = MPI_Wtime();
155 for (step = 0; step < nv; step++) {
156 findmymin();

Introduction to MPI: 7

2 RUNNING EXAMPLE 2.3 Introduction to MPI APIs

157 findoverallmin();
158 disseminateoverallmin();
159 // mark new vertex as done
160 notdone[overallmin[1]] = 0;
161 updatemymind(startv,endv);
162 }
163 updateallmind();
164 T2 = MPI_Wtime();
165 }
166

167 int main(int ac, char **av)
168 { int i,j,print;
169 init(ac,av);
170 dowork();
171 print = atoi(av[2]);
172 if (print && me == 0) {
173 printf("graph weights:\n");
174 for (i = 0; i < nv; i++) {
175 for (j = 0; j < nv; j++)
176 printf("%u ",ohd[nv*i+j]);
177 printf("\n");
178 }
179 printmind();
180 }
181 if (me == 0) printf("time at node 0: %f\n",(float)(T2-T1));
182 MPI_Finalize();
183 }
184

The various MPI functions will be explained in the next section.

2.3 Introduction to MPI APIs

2.3.1 MPI Init() and MPI Finalize()

These are required for starting and ending execution of an MPI program. Their actions may be implementation-
dependent. For instance, if our platform is a NOW,MPI Init() may set up the TCP/IP sockets via which the
various nodes communicate with each other.

2.3.2 MPI Comm size() and MPI Comm rank()

In our functioninit() above, note the calls

MPI_Comm_size(MPI_COMM_WORLD,&nnodes);
MPI_Comm_rank(MPI_COMM_WORLD,&me);

The first call determines how many nodes are participating in our computation, placing the result in our
variablennodes. HereMPI COMM WORLD is our node group, termed acommunicator in MPI par-

Introduction to MPI: 8

2 RUNNING EXAMPLE 2.3 Introduction to MPI APIs

lance. MPI allows the programmer to subdivide the nodes into groups, to facilitate performance and clarity
of code. Note that for some operations, such as barriers, the only way to apply the operation to a proper
subset of all nodes is to form a group. The totality of all groups is denoted byMPI COMM WORLD . In
our program here, we are not subdividing into groups.

The second call determines this node’s ID number, called itsrank , within its group. As mentioned earlier,
even though the nodes are all running the same program, they are typically working on different parts of the
program’s data. So, the program needs to be able to sense which node it is running on, so as to access the
appropriate data. Here we record that information in our variableme.

2.3.3 MPI Send

To see how MPI’s basic send function works, consider our line above,

MPI_Send(mymin,2,MPI_INT,0,MYMIN_MSG,MPI_COMM_WORLD);

Let’s look at the arguments:

mymin :

We are sending a set of bytes. This argument states the address at which these bytes begin.

2, MPI INT :

This says that our set of bytes to be sent consists of 2 objects of typeMPI INT . That means 8 bytes
on today’s standard 32-bit machines, so why not just collapse these two arguments to one, namely the
number 8? Why did the designers of MPI bother to define data types? The answer is that we want
to be able to run MPI on a heterogeneous set of machines, with MPI serving as the “broker” between
them in case different architectures among those machines handle data differently.

First of all, there is the issue ofendianness. Intel machines, for instance, arelittle-endian, which
means that the least significant byte of a memory word has the smallest address among bytes of the
word. Sun SPARC chips, on the other hand, arebig-endian, with the opposite storage scheme. If
our set of nodes included machines of both types, straight transmission of sequences of 8 bytes might
mean that some of the machines literally receive the data backwards!

Secondly, these days 64-bit machines are becoming more and more common. Again, if our set of
nodes were to include both 32-bit and 64-bit words, some major problems would occur if no conver-
sion were done.

0 :

We are sending to node 0.

MYMIN MSG :

This is the message type, programmer-defined in our line

#define MYMIN_MSG 0

Introduction to MPI: 9

2 RUNNING EXAMPLE 2.3 Introduction to MPI APIs

Receive calls, described in the next section, can ask to receive only messages of a certain type.

MPI COMM WORLD :

This is the node group to which the message is to be sent. Above, where we said we are sending to
node 0, we technically should say we are sending to node 0 within the groupMPI COMM WORLD .

2.3.4 MPI Recv()

Let’s now look at the arguments for a basic receive:

MPI_Recv(othermin,2,MPI_INT,i,MYMIN_MSG,MPI_COMM_WORLD,&status);

othermin :

The received message is to be placed at our locationothermin.

2,MPI INT :

Two objects ofMPI INT type are to be received.

i :

Receive only messages of from nodei. If we did not care what node we received a message from, we
could specify the valueMPI ANY SOURCE.

MYMIN MSG :

Receive only messages of typeMYMIN MSG. If we did not care what type of message we received,
we would specify the valueMPI ANY TAG .

MPI COMM WORLD :

Group name.

status :

Recall our line

MPI_Status status; // describes result of MPI_Recv() call

The type is an MPIstruct containing information about the received message. Its primary fields of
interest areMPI SOURCE, which contains the identity of the sending node, andMPI TAG , which
contains the message type. These would be useful if the receive had been done withMPI ANY SOURCE
or MPI ANY TAG ; the status argument would then tell us which node sent the message and what
type the message was.

Introduction to MPI: 10

3 COLLECTIVE COMMUNICATIONS

3 Collective Communications

3.1 The MPI Bcast Operation

In our example program above, we had a number of loops like

for (i = 1; i < nnodes; i++)
MPI_Send(overallmin,2,MPI_INT,i,OVRLMIN_MSG,MPI_COMM_WORLD);

We can reply this by

MPI_Bcast(overallmin,2,MPI_INT,0,MPI_COMM_WORLD);

In English, this call would say,

At this point all nodes participate in a broadcast operation, in which node 0 sends 2 objects of
typeMPI INT . The source of the data will be located at addressoverallmin at node 0, and the
other nodes will receive the data at a location of that name.

Note my word “participate” above. The name of the function is “broadcast,” which makes it sound like only
node 0 executes this line of code, which is not the case; all the nodes in the group (in this case that means all
nodes in our entire computation) execute this line. The only difference is the action; most nodes participate
by receiving, while node 0 participates by sending.

Why might this be preferable than using an explicit loop?

First, it would obviously be much clearer. That makes the program easier to write, easier to debug, and
easier for others (and ourselves, later) to read.

But even more importantly, using the broadcast may improve performance. We may, for instance, be using
an implementation of MPI which is tailored to the platform on which we are running MPI. If for instance
we are running on a network designed for parallel computing, such as Myrinet or Infiniband, an optimized
broadcast may achieve a much higher performance level than would simply a loop with individual send
calls. On a shared-memory multiprocessor system, special machine instructions specific to that platform’s
architecture can be exploited, as for instance IBM has done for its shared-memory machines. Even on
an ordinary Ethernet, one could exploit Ethernet’s own broadcast mechanism, as had been done for PVM,
a system like MPI (G. Davies and N. Matloff, Network-Specific Performance Enhancements for PVM,
Proceedings of the Fourth IEEE International Symposium on High-Performance Distributed Computing,
1995, 205-210).

The functionMPI Bcast() is an example of MPI’scollective communicationcapabilities, a number of
which are used in the following refinement of the Dijkstra program above:

Introduction to MPI: 11

3 COLLECTIVE COMMUNICATIONS 3.2 Example

3.2 Example

1 // Dijkstra.coll1.c
2

3 // MPI example program: Dijkstra shortest-path finder in a
4 // bidirectional graph; finds the shortest path from vertex 0 to all
5 // others; this version uses collective communication
6

7 // command line arguments: nv print dbg
8

9 // where: nv is the size of the graph; print is 1 if graph and min
10 // distances are to be printed out, 0 otherwise; and dbg is 1 or 0, 1
11 // for debug
12

13 // node 0 will both participate in the computation and serve as a
14 // "manager"
15

16 #include <stdio.h>
17 #include <mpi.h>
18

19 // global variables (but of course not shared across nodes)
20

21 int nv, // number of vertices
22 *notdone, // vertices not checked yet
23 nnodes, // number of MPI nodes in the computation
24 chunk, // number of vertices handled by each node
25 startv,endv, // start, end vertices for this node
26 me, // my node number
27 dbg;
28 unsigned largeint, // max possible unsigned int
29 mymin[2], // mymin[0] is min for my chunk,
30 // mymin[1] is vertex which achieves that min
31 overallmin[2], // overallmin[0] is current min over all nodes,
32 // overallmin[1] is vertex which achieves that min
33 *ohd, // 1-hop distances between vertices; "ohd[i][j]" is
34 // ohd[i*nv+j]
35 *mind; // min distances found so far
36

37 double T1,T2; // start and finish times
38

39 void init(int ac, char **av)
40 { int i,j,tmp; unsigned u;
41 nv = atoi(av[1]);
42 dbg = atoi(av[3]);
43 MPI_Init(&ac,&av);
44 MPI_Comm_size(MPI_COMM_WORLD,&nnodes);
45 MPI_Comm_rank(MPI_COMM_WORLD,&me);
46 chunk = nv/nnodes;
47 startv = me * chunk;
48 endv = startv + chunk - 1;
49 u = -1;
50 largeint = u >> 1;
51 ohd = malloc(nv*nv*sizeof(int));
52 mind = malloc(nv*sizeof(int));
53 notdone = malloc(nv*sizeof(int));

Introduction to MPI: 12

3 COLLECTIVE COMMUNICATIONS 3.2 Example

54 // random graph
55 // note that this will be generated at all nodes; could generate just
56 // at node 0 and then send to others, but faster this way
57 for (i = 0; i < nv; i++)
58 for (j = i; j < nv; j++) {
59 if (j == i) ohd[i*nv+i] = 0;
60 else {
61 ohd[nv*i+j] = rand() % 20;
62 ohd[nv*j+i] = ohd[nv*i+j];
63 }
64 }
65 for (i = 0; i < nv; i++) {
66 notdone[i] = 1;
67 mind[i] = largeint;
68 }
69 mind[0] = 0;
70 while (dbg) ; // stalling so can attach debugger
71 }
72

73 // finds closest to 0 among notdone, among startv through endv
74 void findmymin()
75 { int i;
76 mymin[0] = largeint;
77 for (i = startv; i <= endv; i++)
78 if (notdone[i] && mind[i] < mymin[0]) {
79 mymin[0] = mind[i];
80 mymin[1] = i;
81 }
82 }
83

84 void updatemymind() // update my mind segment
85 { // for each i in [startv,endv], ask whether a shorter path to i
86 // exists, through mv
87 int i, mv = overallmin[1];
88 unsigned md = overallmin[0];
89 for (i = startv; i <= endv; i++)
90 if (md + ohd[mv*nv+i] < mind[i])
91 mind[i] = md + ohd[mv*nv+i];
92 }
93

94 void printmind() // partly for debugging (call from GDB)
95 { int i;
96 printf("minimum distances:\n");
97 for (i = 1; i < nv; i++)
98 printf("%u\n",mind[i]);
99 }

100

101 void dowork()
102 { int step, // index for loop of nv steps
103 i;
104 if (me == 0) T1 = MPI_Wtime();
105 for (step = 0; step < nv; step++) {
106 findmymin();
107 MPI_Reduce(mymin,overallmin,1,MPI_2INT,MPI_MINLOC,0,MPI_COMM_WORLD);
108 MPI_Bcast(overallmin,1,MPI_2INT,0,MPI_COMM_WORLD);

Introduction to MPI: 13

3 COLLECTIVE COMMUNICATIONS 3.3 Introduction to MPI APIs for Collective Operations

109 // mark new vertex as done
110 notdone[overallmin[1]] = 0;
111 updatemymind(startv,endv);
112 }
113 // now need to collect all the mind values from other nodes to node 0
114 MPI_Gather(mind+startv,chunk,MPI_INT,mind,chunk,MPI_INT,0,MPI_COMM_WORLD);
115 T2 = MPI_Wtime();
116 }
117

118 int main(int ac, char **av)
119 { int i,j,print;
120 init(ac,av);
121 dowork();
122 print = atoi(av[2]);
123 if (print && me == 0) {
124 printf("graph weights:\n");
125 for (i = 0; i < nv; i++) {
126 for (j = 0; j < nv; j++)
127 printf("%u ",ohd[nv*i+j]);
128 printf("\n");
129 }
130 printmind();
131 }
132 if (me == 0) printf("time at node 0: %f\n",(float)(T2-T1));
133 MPI_Finalize();
134 }

The new calls will be explained in the next section.

3.3 Introduction to MPI APIs for Collective Operations

3.3.1 MPI Reduce

Look at our call

MPI_Reduce(mymin,overallmin,1,MPI_2INT,MPI_MINLOC,0,MPI_COMM_WORLD);

above. In English, this would say,

At this point all nodes in this group participate in a “reduce” operation. The type of reduce
operation isMPI MINLOC , which means that the minimum value among the nodes will be
computed, and the index attaining that minimum will be recorded as well. Each node contributes
a value to be checked, and an associated index, from a locationmymin in their programs; the
type of the pair isMPI 2INT . The min value/index will be computed at node 0, where they will
be placed at a locationoverallmin.

There is also the functionMPI Allreduce(), which does the same operation, except that instead of just
depositing the result at one node, it does so at all nodes. So for instance our code above,

Introduction to MPI: 14

3 COLLECTIVE COMMUNICATIONS 3.3 Introduction to MPI APIs for Collective Operations

MPI_Reduce(mymin,overallmin,1,MPI_2INT,MPI_MINLOC,0,MPI_COMM_WORLD);
MPI_Bcast(overallmin,1,MPI_2INT,0,MPI_COMM_WORLD);

could be replaced by

MPI_Allreduce(mymin,overallmin,1,MPI_2INT,MPI_MINLOC,MPI_COMM_WORLD);

Again, these can be optimized for particular platforms.

3.3.2 The MPI Gather Operation

A classical approach to parallel computation is to first break the data for the application into chunks, then
have each node work on its chunk, and then gather all the processed chunks together at some node. The MPI
functionMPI Gather() does this.

In our program above, look at the line

MPI_Gather(mind+startv,chunk,MPI_INT,mind,chunk,MPI_INT,0,MPI_COMM_WORLD);

In English, this says,

At this point all nodes participate in a gather operation, in which each node contributes data,
consisting ofchunk number of MPI integers, from a locationmind+startv in its program. All
that data is strung together and deposited at the locationmind in the program running at node
0.

There is alsoMPI Allgather() , which places the result at all nodes, not just one.

3.3.3 The MPI Scatter Operation

This is the opposite ofMPI Gather(), i.e. it breaks long data into chunks which it parcels out to individual
nodes.

3.3.4 The MPI Barrier Operation

This implements a barrier for a given communicator. The name of the communicator is the sole argument
for the function.

Introduction to MPI: 15

4 BUFFERING, SYNCHRONY AND RELATED ISSUES 3.4 Creating Communicators

3.4 Creating Communicators

Again, a communicator is a subset (either proper or improper) of all of our nodes. MPI includes a number
of functions for use in creating communicators. Some set up a virtual “topology” among the nodes.

For instance, many physics problems consist of solving differential equations in two- or three-dimensional
space, via approximation on a grid of points. In two dimensions, groups may consists of rows in the grid.

We will not pursue this further here.

4 Buffering, Synchrony and Related Issues

As noted several times so far, interprocess communication in parallel systems can be quite expensive in
terms of time delay. In this section we will consider some issues which can be extremely important in this
regard.

4.1 Buffering

To understand this point, first consider situations in which MPI is running on some network, under the
TCP/IP protocol. Say node A is sending to node B.

The program at node A will have set up a socket to B during the call toMPI Init() . The other end of the
socket will be a corresponding one at B. We describe the setting up of this socket pair as establishing a
connectionbetween A and B. When node A callsMPI Send(), the latter function will write to the socket.
When node B callsMPI Recv(), it will read from its socket.

Now, it is important to recall that the totality of bytes sent by A to B during lifetime of the connection is
considered one long message. So for instance if A writes to the socket five times, it will not be perceived
at B as five messages, but rather just one long message (in fact, only part of one long message, since more
may be yet to come).

On the other hand, even though that data is considered one long message, it may physically be sent out in
pieces. This doesn’t correspond to the pieces written to the socket. Rather, the breaking into pieces is done
for the purpose offlow control, meaning that for example A will not send data to B if the operating system
(OS) at B has no room for it. Thebuffer space the OS at B has set up for receiving data is limited. As A is
sending to B, the TCP layer at B is telling its counterpart at A when A is allowed to send more data.

Let’s say that our MPI implementation at the internal level is threaded, with one thread for the application
and one from doing network I/O. Again, this is internal, unseen by the application programmer. Let’s assume
that the application itself is not threaded. The I/O thread is using something like aselect()call to determine
when new data has arrived from the network.

Think of what happens B callsMPI Recv(), requesting to receive from A, with a certain tag. Say the first
argument is namedx, i.e. the data to be received is to be deposited atx. TheMPI Recv()function will look

Introduction to MPI: 16

4 BUFFERING, SYNCHRONY AND RELATED ISSUES 4.2 Nonbuffered Communication

at the byte stream accumulated by the I/O thread, and search within that stream for a message from A of the
given type. If found, the function will remove that message from the stream, and place the data inx.

4.2 Nonbuffered Communication

You can see for all this that MPI applications which run on top of TCP/IP have a natural buffering system.
In fact, there is likely additional buffering as well. By contrast, some other platforms may not have any
buffering at all. This is not the usual situation, but it could be the case, for instance, when the underlying
platform is a shared-memory multiprocessor.

Furthermore, buffering slows everything down. In our TCP scenario above,MPI Recv() at B must copy
the message in the incoming byte stream tox. This is definitely a blow to performance. That in fact is why
networks developed specially for parallel processing typically include mechanisms to avoid the copying.
Infiniband, for example, has a Remote Direct Memory Access capability, meaning that A can write directly
to x at B.

So, we may either have a no-buffering situation forced upon us, or may opt for no buffering for perfor-
mance reasons. But that has a big implication: Node A cannot callMPI Send()until node B has called
MPI Recv(); otherwise B may be using the space atx, in which case A’s prematureMPI Send()would
ruin things at that location. That would mean that B would have to inform A when it callsMPI Recv().
This is calledsynchronouscommunication. Clearly, this can be a major cause of slowdown if not handled
carefully.

4.3 Safety

Moreover, synchronous communication has a risk of setting up deadlocks. Say A wants to send two mes-
sages to B, of types U and V, but that B wants to receive V first. Then A won’t even get to send V, because in
preparing to send U it must wait for a notice from B that B wants to read U—a notice which will never come,
because B sends such a notice for V first. This would not occur if the communication were asynchronous.

But beyond formal deadlock, programs can fail in other ways, even with buffering, as buffer space is always
by nature finite. A program can fail if it runs out of buffer space, either at the sender or the receiver. See
www.llnl.gov/computing/tutorials/mpi_performance/samples/unsafe.c for an ex-
ample of a test program which demonstrates this on a certain platform, by deliberating overwhelming the
buffers at the receiver.

In MPI terminology, asynchronous communication is consideredunsafe. The program may run fine on
most systems, as most systems are buffered, but fail on some systems. Of course, as long as you know your
program won’t be run in nonbuffered settings, it’s fine, and since there is potentially such a performance
penalty for doing things synchronously, most people are willing to go ahead with their “unsafe” code.

Introduction to MPI: 17

www.llnl.gov/computing/tutorials/mpi_performance/samples/unsafe.c

4 BUFFERING, SYNCHRONY AND RELATED ISSUES 4.4 Living Dangerously

4.4 Living Dangerously

If one is sure that there will be no problems of buffer overflow and so on, one can use variant send and
receive calls provided by MPI, such asMPI Isend() andMPI Irecv(). The key difference between them
andMPI Send()andMPI Recv() is that they return immediately, and thus are termednonblocking. Your
code can go on and do other things, not having to wait.

4.5 Safe Exchange Operations

In many applications A and B are swapping data, so both are sending and both are receiving. This too can
lead to deadlock. An obvious solution would be, for instance, to have the lower-rank node send first and the
higher-rank node receive first. But a more convenient, safer and possibly faster alternative would be to use
MPI’s MPI Sendrecv()function.

This does mean that at A you cannot touch the data you are sending until you determine that it has either been
buffered somewhere or has reachedx at B. Similarly, at B you can’t use the data atx until you determine that
it has arrived. Such determinations can be made viaMPI Wait() . In other words, you can do your send or
receive, then perform some other computations for a while, and then callMPI Wait() to determine whether
you can go on.

Introduction to MPI: 18

	Overview
	History
	Structure and Execution
	Implementations
	Performance Issues

	Running Example
	The Algorithm
	The Code
	Introduction to MPI APIs
	MPI_Init() and MPI_Finalize()
	MPI_Comm_size() and MPI_Comm_rank()
	MPI_Send
	MPI_Recv()

	Collective Communications
	The MPI_Bcast Operation
	Example
	Introduction to MPI APIs for Collective Operations
	MPI_Reduce
	The MPI_Gather Operation
	The MPI_Scatter Operation
	The MPI_Barrier Operation

	Creating Communicators

	Buffering, Synchrony and Related Issues
	Buffering
	Nonbuffered Communication
	Safety
	Living Dangerously
	Safe Exchange Operations

