
Appendix A

R Quick Start

Here we present a quick introduction to the R data/statistical programming language. Further
learning resources are listed at http://heather.cs.ucdavis.edu/~/matloff/r.html.

R syntax is similar to that of C. It is object-oriented (in the sense of encapsulation, polymorphism
and everything being an object) and is a functional language (i.e. almost no side effects, every
action is a function call, etc.).

A.1 Correspondences

aspect C/C++ R

assignment = <- (or =)

array terminology array vector, matrix, array

subscripts start at 0 start at 1

array notation m[2][3] m[2,3]

2-D array storage row-major order column-major order

mixed container struct, members accessed by . list, members acessed by $ or [[]]

return mechanism return return() or last value computed

primitive types int, float, double, char, bool integer, float, double, character, logical

logical values true, false TRUE, FALSE (abbreviated T, F)

mechanism for combining modules include, link library()

run method batch interactive, batch

513

514 APPENDIX A. R QUICK START

A.2 Starting R

To invoke R, just type “R” into a terminal window. On a Windows machine, you probably have
an R icon to click.

If you prefer to run from an IDE, you may wish to consider ESS for Emacs, StatET for Eclipse or
RStudio, all open source. ESS is the favorite among the “hard core coder” types, while the colorful,
easy-to-use, RStudio is a big general crowd pleaser. If you are already an Eclipse user, StatET will
be just what you need.

R is normally run in interactive mode, with > as the prompt. Among other things, that makes it
easy to try little experiments to learn from; remember my slogan, “When in doubt, try it out!”

A.3 First Sample Programming Session

Below is a commented R session, to introduce the concepts. I had a text editor open in another
window, constantly changing my code, then loading it via R’s source() command. The original
contents of the file odd.R were:

1 oddcount <− f unc t i on (x) {
2 k <− 0 # as s i gn 0 to k
3 f o r (n in x) {
4 i f (n %% 2 == 1) k <− k+1 # %% i s the modulo operator
5 }
6 re turn (k)
7 }

By the way, we could have written that last statement as simply

1 k

because the last computed value of an R function is returned automatically.

The R session is shown below. You may wish to type it yourself as you go along, trying little
experiments of your own along the way.1

1 > source (” odd .R”) # load code from the g iven f i l e
2 > l s () # what ob j e c t s do we have?
3 [1] ”oddcount”
4 > # what kind o f ob j e c t i s oddcount (wel l , we a l r eady know)?

1The source code for this file is at http://heather.cs.ucdavis.edu/~matloff/MiscPLN/R5MinIntro.tex. You
can download the file, and copy/paste the text from there.

A.3. FIRST SAMPLE PROGRAMMING SESSION 515

5 > c l a s s (oddcount)
6 [1] ” func t i on ”
7 > # whi le in i n t e r a c t i v e mode , and not i n s i d e a funct ion , can p r i n t
8 > # any ob j e c t by typing i t s name ; o therw i s e use p r i n t () , e . g . p r i n t (x+y)
9 > oddcount # a func t i on i s an object , so can pr i n t i t
10 func t i on (x) {
11 k <− 0 # as s i gn 0 to k
12 f o r (n in x) {
13 i f (n %% 2 == 1) k <− k+1 # %% i s the modulo operator
14 }
15 re turn (k)
16 }
17
18 > # le t ’ s t e s t oddcount () , but look at some p r op e r t i e s o f v e c t o r s f i r s t
19 > y <− c (5 , 12 , 13 , 8 , 88) # c () i s the concatenate func t i on
20 > y
21 [1] 5 12 13 8 88
22 > y [2] # R sub s c r i p t s begin at 1 , not 0
23 [1] 12
24 > y [2 : 4] # ex t r a c t e lements 2 , 3 and 4 o f y
25 [1] 12 13 8
26 > y [c (1 , 3 : 5)] # elements 1 , 3 , 4 and 5
27 [1] 5 13 8 88
28 > oddcount (y) # should r epor t 2 odd numbers
29 [1] 2
30
31 > # change code (in the other window) to v e c t o r i z e the count operat ion ,
32 > # fo r much f a s t e r execut ion
33 > source (” odd .R”)
34 > oddcount
35 func t i on (x) {
36 x1 <− (x %% 2 == 1) # x1 now a vec to r o f TRUEs and FALSEs
37 x2 <− x [x1] # x2 now has the e lements o f x that were TRUE in x1
38 re turn (l ength (x2))
39 }
40
41 > # try i t on subset o f y , e lements 2 through 3
42 > oddcount (y [2 : 3])
43 [1] 1
44 > # try i t on subset o f y , e lements 2 , 4 and 5

516 APPENDIX A. R QUICK START

45 > oddcount (y [c (2 , 4 , 5)])
46 [1] 0
47
48 > # fu r th e r compact i fy the code
49 > source (” odd .R”)
50 > oddcount
51 func t i on (x) {
52 l ength (x [x %% 2 == 1]) # l a s t va lue computed i s auto returned
53 }
54 > oddcount (y) # t e s t i t
55 [1] 2
56
57 # and even more compac t i f i c a t i on , making use o f the f a c t that TRUE and
58 # FALSE are t r ea t ed as 1 and 0
59 > oddcount <− f unc t i on (x) sum(x %% 2 == 1)
60 # make sure you understand the s t ep s that that i nvo l v e s : x i s a vector ,
61 # and thus x %% 2 i s a new vector , the r e s u l t o f apply ing the mod 2
62 # operat i on to every element o f x ; then x %% 2 == 1 app l i e s the == 1
63 # operat i on to each element o f that r e su l t , y i e l d i n g a new vec to r o f TRUE
64 # and FALSE va lues ; sum() then adds them (as 1 s and 0 s)
65
66 # we can a l s o determine which e lements are odd
67 > which (y %% 2 == 1)
68 [1] 1 3
69
70 > # now have f tn re turn odd count AND the odd numbers themselves , us ing
71 > # the R l i s t type
72 > source (” odd .R”)
73 > oddcount
74 func t i on (x) {
75 x1 <− x [x %% 2 == 1]
76 re turn (l i s t (odds=x1 , numodds=length (x1)))
77 }
78 > # R’ s l i s t type can conta in any type ; components d e l i n e a t ed by $
79 > oddcount (y)
80 $odds
81 [1] 5 13
82
83 $numodds
84 [1] 2

A.3. FIRST SAMPLE PROGRAMMING SESSION 517

85
86 > ocy <− oddcount (y) # save the output in ocy , which w i l l be a l i s t
87 > ocy
88 $odds
89 [1] 5 13
90
91 $numodds
92 [1] 2
93
94 > ocy$odds
95 [1] 5 13
96 > ocy [[1]] # can get l i s t e lements us ing [[]] i n s t ead o f $
97 [1] 5 13
98 > ocy [[2]]
99 [1] 2

Note that the function of the R function function() is to produce functions! Thus assignment is
used. For example, here is what odd.R looked like at the end of the above session:

1 oddcount <− f unc t i on (x) {
2 x1 <− x [x %% 2 == 1]
3 re turn (l i s t (odds=x1 , numodds=length (x1)))
4 }

We created some code, and then used function() to create a function object, which we assigned
to oddcount.

Note that we eventually vectorized our function oddcount(). This means taking advantage of
the vector-based, functional language nature of R, exploiting R’s built-in functions instead of loops.
This changes the venue from interpreted R to C level, with a potentially large increase in speed.
For example:

1 > x <− r un i f (1000000) # 1000000 random numbers from the i n t e r v a l (0 , 1)
2 > system . time (sum(x))
3 user system e lapsed
4 0 .008 0 .000 0 .006
5 > system . time ({ s <− 0 ; f o r (i in 1 :1000000) s <− s + x [i] })
6 user system e lapsed
7 2 .776 0 .004 2 .859

518 APPENDIX A. R QUICK START

A.4 Second Sample Programming Session

A matrix is a special case of a vector, with added class attributes, the numbers of rows and columns.

1 > # ”rowbind () func t i on combines rows o f matr i ce s ; there ’ s a cbind () too
2 > m1 <− rbind (1 : 2 , c (5 , 8))
3 > m1
4 [, 1] [, 2]
5 [1 ,] 1 2
6 [2 ,] 5 8
7 > rbind (m1, c (6 ,−1))
8 [, 1] [, 2]
9 [1 ,] 1 2

10 [2 ,] 5 8
11 [3 ,] 6 −1
12
13 > # form matrix from 1 ,2 , 3 , 4 , 5 , 6 , in 2 rows ; R uses column−major s t o rage
14 > m2 <− matrix (1 : 6 , nrow=2)
15 > m2
16 [, 1] [, 2] [, 3]
17 [1 ,] 1 3 5
18 [2 ,] 2 4 6
19 > nco l (m2)
20 [1] 3
21 > nrow (m2)
22 [1] 2
23 > m2[2 , 3] # ex t r a c t element in row 2 , c o l 3
24 [1] 6
25 # get submatrix o f m2, c o l s 2 and 3 , any row
26 > m3 <− m2[, 2 : 3]
27 > m3
28 [, 1] [, 2]
29 [1 ,] 3 5
30 [2 ,] 4 6
31
32 > m1 ∗ m3 # elementwise mu l t i p l i c a t i o n
33 [, 1] [, 2]
34 [1 ,] 3 10
35 [2 ,] 20 48
36 > 2 .5 ∗ m3 # s c a l a r mu l t i p l i c a t i o n (but see below)
37 [, 1] [, 2]

A.4. SECOND SAMPLE PROGRAMMING SESSION 519

38 [1 ,] 7 . 5 12 .5
39 [2 ,] 10 .0 15 .0
40 > m1 %∗% m3 # l i n e a r a lgebra matrix mu l t i p l i c a t i o n
41 [, 1] [, 2]
42 [1 ,] 11 17
43 [2 ,] 47 73
44
45 > # matr i ce s are s p e c i a l c a s e s o f vector s , so can t r e a t them as ve c t o r s
46 > sum(m1)
47 [1] 16
48 > i f e l s e (m2 %%3 == 1 ,0 ,m2) # (see below)
49 [, 1] [, 2] [, 3]
50 [1 ,] 0 3 5
51 [2 ,] 2 0 6

The “scalar multiplication” above is not quite what you may think, even though the result may
be. Here’s why:

In R, scalars don’t really exist; they are just one-element vectors. However, R usually uses recy-
cling, i.e. replication, to make vector sizes match. In the example above in which we evaluated
the express 2.5 * m3, the number 2.5 was recycled to the matrix

(

2.5 2.5
2.5 2.5

)

(A.1)

in order to conform with m3 for (elementwise) multiplication.

The ifelse() function is another example of vectorization. Its call has the form

i f e l s e (boolean vec to r expre s s i on1 , vec to r expre s s i on2 , v e c t o r exp r e s s i on3)

All three vector expressions must be the same length, though R will lengthen some via recycling.
The action will be to return a vector of the same length (and if matrices are involved, then the
result also has the same shape). Each element of the result will be set to its corresponding element
in vectorexpression2 or vectorexpression3, depending on whether the corresponding element
in vectorexpression1 is TRUE or FALSE.

In our example above,

> i f e l s e (m2 %%3 == 1 ,0 ,m2) # (see below)

520 APPENDIX A. R QUICK START

the expression m2 %%3 == 1 evaluated to the boolean matrix

(

T F F

F T F

)

(A.2)

(TRUE and FALSE may be abbreviated to T and F.)

The 0 was recycled to the matrix

(

0 0 0
0 0 0

)

(A.3)

while vectorexpression3, m2, evaluated to itself.

A.5 Third Sample Programming Session

This time, we focus on vectors and matrices.

> m <− rbind (1 : 3 , c (5 , 12 , 13)) # ”row bind , ” combine rows
> m

[, 1] [, 2] [, 3]
[1 ,] 1 2 3
[2 ,] 5 12 13
> t (m) # transpose

[, 1] [, 2]
[1 ,] 1 5
[2 ,] 2 12
[3 ,] 3 13
> ma <− m[, 1 : 2]
> ma

[, 1] [, 2]
[1 ,] 1 2
[2 ,] 5 12
> rep (1 , 2) # ” repeat , ” make mul t ip l e c op i e s
[1] 1 1
> ma %∗% rep (1 , 2) # matrix mul t ip ly

[, 1]
[1 ,] 3
[2 ,] 17
> s o l v e (ma, c (3 , 1 7)) # so l v e l i n e a r system

A.6. THE R LIST TYPE 521

[1] 1 1
> s o l v e (ma) # matrix i nv e r s e

[, 1] [, 2]
[1 ,] 6 . 0 −1.0
[2 ,] −2.5 0 . 5

A.6 The R List Type

The R list type is, after vectors, the most important R construct. A list is like a vector, except
that the components are generally of mixed types.

A.6.1 The Basics

Here is example usage:

> g <− l i s t (x = 4 : 6 , s = ”abc ”)
> g
$x
[1] 4 5 6

$s
[1] ”abc”

> g$x # can r e f e r e n c e by component name
[1] 4 5 6
> g$s
[1] ”abc”
> g [[1]] # can r e f e r e n c e by index , but note double bracke t s
[1] 4 5 6
> g [[2]]
[1] ”abc”
> f o r (i in 1 : l ength (g)) p r i n t (g [[i]])
[1] 4 5 6
[1] ”abc”

A.6.2 The Reduce() Function

One often needs to combine elements of a list in some way. One approach to this is to useReduce():

522 APPENDIX A. R QUICK START

> x <− l i s t (4 : 6 , c (1 , 6 , 8))
> x
[[1]]
[1] 4 5 6

[[2]]
[1] 1 6 8

> sum(x)
Error in sum(x) : i n v a l i d ’ type ’ (l i s t) o f argument
> Reduce (sum , x)
[1] 30

Here Reduce() cumulatively applied R’s sum() to x. Of course, you can use it with functions you
write yourself too.

Continuing the above example:

> Reduce (c , x)
[1] 4 5 6 1 6 8

A.6.3 S3 Classes

R is an object-oriented (and functional) language. It features two types of classes, S3 and S4. I’ll
introduce S3 here.

An S3 object is simply a list, with a class name added as an attribute:

> j <− l i s t (name=”Joe ” , s a l a r y =55000 , union=T)
> c l a s s (j) <− ”employee”
> m <− l i s t (name=”Joe ” , s a l a r y =55000 , union=F)
> c l a s s (m) <− ”employee”

So now we have two objects of a class we’ve chosen to name ”employee”. Note the quotation
marks.

We can write class generic functions:

> pr in t . employee <− f unc t i on (wrkr) {
+ cat (wrkr$name ,”\n”)
+ cat (” s a l a r y ” , wrkr$sa lary , ”\n”)
+ cat (” union member” , wrkr$union ,”\n”)
+ }

A.6. THE R LIST TYPE 523

> pr in t (j)
Joe
s a l a r y 55000
union member TRUE
> j
Joe
s a l a r y 55000
union member TRUE

What just happened? Well, print() in R is a generic function, meaning that it is just a placeholder
for a function specific to a given class. When we printed j above, the R interpreter searched for a
function print.employee(), which we had indeed created, and that is what was executed. Lacking
this, R would have used the print function for R lists, as before:

> rm(p r i n t . employee) # remove the funct ion , to s ee what happens with p r i n t
> j
$name
[1] ”Joe”

$ sa l a ry
[1] 55000

$union
[1] TRUE

at t r (, ” c l a s s ”)
[1] ” employee”

A.6.4 Handy Utilities

R functions written by others, e.g. in base R or in the CRAN repository for user-contributed code,
often return values which are class objects. It is common, for instance, to have lists within lists. In
many cases these objects are quite intricate, and not thoroughly documented. In order to explore
the contents of an object—even one you write yourself—here are some handy utilities:

• names(): Returns the names of a list.

• str(): Shows the first few elements of each component.

• summary(): General function. The author of a class x can write a version specific to x,
i.e. summary.x(), to print out the important parts; otherwise the default will print some

524 APPENDIX A. R QUICK START

bare-bones information.

For example:

> z <− l i s t (a = run i f (50) , b = l i s t (u=sample (1 : 1 00 , 2 5) , v=”blue sky ”))
> z
$a
[1] 0 .301676229 0.679918518 0.208713522 0.510032893 0.405027042

0.412388038
[7] 0 .900498062 0.119936222 0.154996457 0.251126218 0.928304164

0.979945937
[1 3] 0 .902377363 0.941813898 0.027964137 0.992137908 0.207571134
0.049504986
[1 9] 0 .092011899 0.564024424 0.247162004 0.730086786 0.530251779
0.562163986
[2 5] 0 .360718988 0.392522242 0.830468427 0.883086752 0.009853107
0.148819125
[3 1] 0 .381143870 0.027740959 0.173798926 0.338813042 0.371025885
0.417984331
[3 7] 0 .777219084 0.588650413 0.916212011 0.181104510 0.377617399
0.856198893
[4 3] 0 .629269146 0.921698394 0.878412398 0.771662408 0.595483477
0.940457376
[4 9] 0 .228829858 0.700500359

$b
bu
[1] 33 67 32 76 29 3 42 54 97 41 57 87 36 92 81 31 78 12 85 73 26 44

86 40 43

bv
[1] ” blue sky”
> names (z)
[1] ”a” ”b”
> s t r (z)
L i s t o f 2
$ a : num [1 : 5 0] 0 .302 0 .68 0 .209 0 .51 0 .405 . . .
$ b : L i s t o f 2
. . $ u : i n t [1 : 2 5] 33 67 32 76 29 3 42 54 97 41 . . .
. . $ v : chr ” blue sky”

> names (z$b)

A.7. DATA FRAMES 525

[1] ”u” ”v”
> summary(z)

Length Class Mode
a 50 −none− numeric
b 2 −none− l i s t

A.7 Data Frames

Another workhorse in R is the data frame. A data frame works in many ways like a matrix, but
differs from a matrix in that it can mix data of different modes. One column may consist of integers,
while another can consist of character strings and so on. Within a column, though, all elements
must be of the same mode, and all columns must have the same length.

We might have a 4-column data frame on people, for instance, with columns for height, weight, age
and name—3 numeric columns and 1 character string column.

Technically, a data frame is an R list, with one list element per column; each column is a vector.
Thus columns can be referred to by name, using the $ symbol as with all lists, or by column number,
as with matrices. The matrix a[i,j] notation for the element of a in row i, column j, applies to
data frames. So do the rbind() and cbind() functions, and various other matrix operations, such
as filtering.

Here is an example using the dataset airquality, built in to R for illustration purposes. You can
learn about the data through R’s online help, i.e.

> ? a i r q u a l i t y

Let’s try a few operations:

> names (a i r q u a l i t y)
[1] ”Ozone” ” So la r .R” ”Wind” ”Temp” ”Month” ”Day”
> head (a i r q u a l i t y) # look at the f i r s t few rows

Ozone So la r .R Wind Temp Month Day
1 41 190 7 .4 67 5 1
2 36 118 8 .0 72 5 2
3 12 149 12 .6 74 5 3
4 18 313 11 .5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14 .9 66 5 6
> a i r q u a l i t y [5 , 3] # temp on the 5 th day
[1] 14 .3

526 APPENDIX A. R QUICK START

> airqual i ty$Wind [3] # same
[1] 12 .6
> nrow (a i r q u a l i t y) # number o f days observed
[1] 153
> nco l (a i r q u a l i t y) # number o f v a r i a b l e s
[1] 6
> a i r q u a l i t y $C e l s i u s <− (5/9) ∗ (a i r q u a l i t y [, 4] − 32) # new va r i ab l e
> names (a i r q u a l i t y)
[1] ”Ozone” ” So la r .R” ”Wind” ”Temp” ”Month” ”Day” ” Ce l s i u s ”
> nco l (a i r q u a l i t y)
[1] 7
> a i r q u a l i t y [1 : 3 ,]

Ozone So la r .R Wind Temp Month Day Ce l s i u s
1 41 190 7 .4 67 5 1 19.44444
2 36 118 8 .0 72 5 2 22.22222
3 12 149 12 .6 74 5 3 23.33333
> aqjune <− a i r q u a l i t y [a i rqual i ty$Month == 6 ,] # f i l t e r op
> nrow (aqjune)
[1] 30
> mean(aqjune$Temp)
[1] 79 .1
> wr i t e . t ab l e (aqjune , ”AQJune”) # wr i t e data frame to f i l e
> aqj <− read . t ab l e (”AQJune” , header=T) # read i t in

A.8 Graphics

R excels at graphics, offering a rich set of capabilities, from beginning to advanced. In addition to
the functions in base R, extensive graphics packages are available, such as lattice and ggplot2.

One point of confusion for beginniners involves saving an R graph that is currently displayed on
the screen to a file. Here is a function for this, which I include in my R startup file, .Rprofile, in
my home directory:

p r 2 f i l e
f unc t i on (f i l ename)
{

or igdev <− dev . cur ()
par t s <− s t r s p l i t (f i l ename , ” . ” , f i x e d = TRUE)
nparts <− l ength (par t s [[1]])
s u f f <− par t s [[1]] [nparts]

A.9. OTHER SOURCES FOR LEARNING R 527

i f (s u f f == ”pdf ”) {
pdf (f i l ename)

}
e l s e i f (s u f f == ”png”) {

png (f i l ename)
}
e l s e jpeg (f i l ename)
devnum <− dev . cur ()
dev . s e t (or igdev)
dev . copy (which = devnum)
dev . s e t (devnum)
dev . o f f ()
dev . s e t (or igdev)

}

The code, which I won’t go into here, mostly involves manipulation of various R graphics devices.
I’ve set it up so that you can save to a file of type either PDF, PNG or JPEG, implied by the file
name you give.

A.9 Other Sources for Learning R

There are tons of resources for R on the Web. You may wish to start with the links at http:

//heather.cs.ucdavis.edu/~matloff/r.html.

A.10 Online Help

R’s help() function, which can be invoked also with a question mark, gives short descriptions of
the R functions. For example, typing

> ?rep

will give you a description of R’s rep() function.

An especially nice feature of R is its example() function, which gives nice examples of whatever
function you wish to query. For instance, typing

> example (wireframe ())

will show examples—R code and resulting pictures—of wireframe(), one of R’s 3-dimensional
graphics functions.

528 APPENDIX A. R QUICK START

A.11 Debugging in R

The internal debugging tool in R, debug(), is usable but rather primitive. Here are some alterna-
tives:

• The RStudio IDE has a built-in debugging tool.

• The StatET IDE for R on Eclipse has a nice debugging tool. Works on all major platforms,
but can be tricky to install.

• My own debugging tool, debugR, is extensive and easy to install, but for the time being is lim-
ited to Linux, Mac and other Unix-family systems. See http://heather.cs.ucdavis.edu/debugR.html.

A.12 Complex Numbers

If you have need for complex numbers, R does handle them. Here is a sample of use of the main
functions of interest:

> za <− complex (r e a l =2, imaginary =3.5)
> za
[1] 2+3.5 i
> zb <− complex (r e a l =1, imaginary=−5)
> zb
[1] 1−5 i
> za ∗ zb
[1] 19.5−6.5 i
> Re(za)
[1] 2
> Im(za)
[1] 3 . 5
> za ˆ2
[1] −8.25+14 i
> abs (za)
[1] 4 .031129
> exp (complex (r e a l =0, imaginary=pi /4))
[1] 0.7071068+0.7071068 i
> cos (p i /4)
[1] 0 .7071068
> s i n (p i /4)
[1] 0 .7071068

A.12. COMPLEX NUMBERS 529

Note that operations with complex-valued vectors and matrices work as usual; there are no special
complex functions.

