
Name:

Directions: MAKE SURE TO COPY YOUR AN-
SWERS TO A SEPARATE SHEET FOR SENDING
ME AN ELECTRONIC COPY LATER.

1. (20) Fill in the blank (your answer should have the
word and in it): According to class discussion, in devel-
oping a parallel program, the hardest sections to write
are .

2. (20) Suppose we have a symmetric matrix A, written
in partitioned form (

A1 A2

A′
2 A3

)
(1)

where ’ indicates transpose, and m, the number of rows
of A1 is half the number of rows of A. We have a column
vector

u =

(
u1

u2

)
(2)

with the number of elements in u1 being m. We wish
to compute the quadratic form

q = u′Au (3)

by exploiting the partitioning (probably in parallel, but
not relevant here). Show the algebraically simplified
form of q. Note: In your electronic file, write A1 as A1,
and so on.

3. (50) Here we will store many long arrays in one big
array. We will store array i in row i of the big array.
Anticipating having a great many large arrays, we will
use OpenMP to build our big array. For convenience
here, assume the number of arrays will be a multiple of
the number of threads. Our function is

#inc lude <omp . h>

void f i l l i m a g e ( f l o a t ∗∗ arrs , i n t r , i n t narr ,
f l o a t ∗a ) {

blank ( a )
{

i n t a r r ; f l o a t ∗ a r r s t a r t ;
i n t me = omp get thread num ( ) ;
i n t nth = omp get num threads ( ) ;
i n t b lock = narr / nth ;
f o r ( a r r = blank (b) ) {

a r r s t a r t = blank ( c )
memcpy( blank (d ) ) ;

}
}

}

Here arrs is the input arrays, each of length r, with
there being narr arrays in all. The big array to be
filled is a.

Here is a test example:

i n t main ( ) {
f l o a t x [ 4 ] = {1 ,2 ,3 ,4} , y [ 4 ] = {5 , 6 , 7 , 8} ;

f l o a t ∗xy [ 2 ] = {x , y } ;
f l o a t z [ 8 ] ;
i n t i ;
f i l l i m a g e (xy , 4 , 2 , z ) ;
// r e s u l t s should be 1 , 2 , . . . , 8
f o r ( i = 0 ; i < 8 ; i++)

p r i n t f (”% f ” , z [ i ] ) ;
p r i n t f (”\n ” ) ;

}

Fill in the blanks.

4. (10) In our NMF tutorial, the approximating matrix
can actually turn out to be of rank larger than the tar-
geted value k. Explain why. Remember, you are limited
to a single line, though it can be rather long.
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Solutions:

1. The start and finish.

2.

u′Au = (4)

= (u′
1, u

′
2)

(
A1 A2

A′
2 A3

)(
u1

u2

)
(5)

= (u′
1A1 + u′

2A
′
2, u′

1A2 + u′
2A3)

(
u1

u2

)
(6)

= (u′
1A1u1 + u′

2A
′
2u1) + (u′

1A2u2 + u′
2A3u2) (7)

= u′
1A1u1 + 2u′

1A2u2 + u′
2A3u2 (8)

Note the fact from linear algebra (and our book’s review) that (VW )′ = W ′V ′.

3.

#inc lude <omp . h>

void f i l l i m a g e ( f l o a t ∗∗ arrs , i n t r , i n t narr ,
f l o a t ∗a ) {

#pragma omp p a r a l l e l
{

i n t arr ; f l o a t ∗ a r r s t a r t ;
i n t me = omp get thread num ( ) ;
i n t nth = omp get num threads ( ) ;
i n t b lock = narr / nth ;
f o r ( arr = me∗block ; arr < (me+1)∗block ;

arr++) {
a r r s t a r t = ar r s [ arr ] ;
memcpy( a+r∗ arr , a r r s t a r t ,

r∗ s i z e o f ( f l o a t ) ) ;
}

}
}

4. Since pixel brightness is in [0,1], we truncate values greater than 1. This perturbs some of the
data. So, even though we have set things up so that no linear combination of more than k colums of
the matrix can be nonzero, that property will be ruined. It doesn’t change the effectiveness of the
operation, though.

Note by the way that rank(AB) ≤ min(rank(a),rank(B), and that W and H have ranks at most k at
any iteration, due to number of columns/rows.
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