
Chapter 4

Introduction to GPU Programming with

CUDA

Even if you don’t play video games, you can be grateful to the game players, as their numbers have given

rise to a class of highly powerful parallel processing devices—graphics processing units (GPUs). Yes, you

program right on the video card in your computer, even though your program may have nothing to do with

graphics.

4.1 Overview

The video game market is so lucrative that the industry has developed ever-faster GPUs, in order to handle

ever-faster and ever-more visually detailed video games. These actually are parallel processing hardware

devices, so around 2003 some people began to wonder if one might use them for parallel processing of

nongraphics applications.

Originally this was cumbersome. One needed to figure out clever ways of mapping one’s application to

some kind of graphics problem. Though some high-level interfaces were developed to automate this trans-

formation, effective coding required some understanding of graphics principles.

But the current generation of GPUs have separated out the graphics operations, and now consist of multi-

processor elements that run under the familar threads model. Thus they are easily programmable. Granted,

effective coding still requires an intimate knowledge of the hardwre, but at least it’s (more or less) familar

hardware, not requiring knowledge of graphics.

Moreover, unlike a multicore machine, with the ability to run just a few threads at one time, e.g. four

threads on a quad core machine, GPUs can run hundreds or thousands of threads at once. There are various
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restrictions that come with this, but you can see that there is fantastic potential for speed here.

NVIDIA has developed the CUDA language as a vehicle for programming on their GPUs. It’s basically

just a slight extension of C, and has become very popular. More recently, the OpenCL language has been

developed by Apple, AMD and others (including NVIDIA). It too is a slight extension of C, and it aims to

provide a uniform interface that works with multicore machines in addition to GPUs.

Our discussion here focuses on CUDA and NVIDIA GPUs.

A CUDA program consists of code to be run on the host, i.e. the computer as a whole, and code to run on

the device, i.e. the GPU. A function that is called by the host to execute on the device is called a kernel.

4.2 Hardware Structure

Scorecards, get your scorecards here! You can’t tell the players without a scorecard—classic cry of vendors

at baseball games

Know thy enemy—Sun Tzu, The Art of War

The enormous computational potential of GPUs cannot be unlocked without an intimate understanding of

the hardware. This of course is a fundamental truism in the parallel processing world, but it is acutely

important for GPU programming. This section presents an overview of the hardware, but true mastery of

the GPU software genre requires delving into further details.

4.2.1 Processing Units

A GPU consists of a large set of streaming multiprocessors (SMs); you might say it’s a multi-multiprocessor.

Each SM consists of a number of streaming processors (SPs). It is important to understand the motivation

for this hierarchy: Two threads located in different SMs cannot synchronize with each other. Though this

sounds like a negative at first, it is actually a great advantage, as the independence of threads in separate

SMs means that the hardware can run faster. So, if the CUDA application programmer can write his/her

algorithm so as to have certain independent chunks, those chunks can be assigned to different SMs (we’ll

see how, shortly), then that’s a “win.”

The threads running within an SM can synchronize with each other, but there is further hierarchy: The

threads within an SM are subdivided by the hardware into groups called warps. The key point is that all the

threads in a warp run the code in lockstep. During the machine instruction fetch cycle, the same instruc-

tion will be fetched for all of the threads. Then in the execution cycle, each thread will either execute that

particular instruction or execute nothing. This is the classical single instruction, multiple data (SIMD) pat-

tern used in some early special-purpose computers such as the ILLIAC; here it is called single instruction,

multiple thread (SIMT).
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This trait of thread execution has major implications for performance. Consider what happens with if/then/else

code. If some threads in a warp take the “then” branch and others go in the “else” direction, they cannot

operate in lockstep. That means that some threads must wait while others execute. This renders the code

at that point serial rather than parallel, a situation called thread divergence. As one CUDA Web tutorial

points out, this is a “performance killer.”

4.2.2 Memory Structure

Yet another key hierarchy—memory structure. Here’s how it works:

• Registers: Each thread is allocated it’s own set of registers. They are much more numerous than in a

CPU, say in the hundreds, and access to them is very fast.

• Shared memory: All the threads in an SM share this memory, and use it to communicate, just as is the

case with threads in CPUs. Access is said to be as fast as to registers!

• Global memory: This is shared by all the threads in an entire application, and is persistent across calls.

It is very slow.

• Local memory: This is actually part of global memory, but is an area within that memory that is

allocated by the compiler for a given thread. As such, it is slow, and accessible only by that thread.

4.2.3 Thread Management

Each SM runs the threads on a timesharing basis, just like an operating system (OS). This timesharing is

implemented in the hardware, though, not in software as in the OS case.

With an OS, if a thread reaches an input/output operation, the OS suspends the thread while I/O is pending,

and runs some other thread instead, so as to avoid wasting CPU cycles during the long period of time needed

for the I/O. With an SM, the analogous situation is a long memory operation, so global memory; if a a warp

of threads needs to access global memory (including local memory), the SM will schedule some other warp

while the memory access is pending.

The hardware support for threads is extremely good. A context switch takes very little time.

4.3 Software Structure

We’ll start with a running example, then go into the details and generalizations.
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4.3.1 Sample Program

Here’s a sample program. And I’ve kept the sample simple: It just finds the sums of all the rows of a matrix.

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <cuda.h>

4

5 // CUDA example: finds row sums of the integer matrix m, placing them

6 // in the array rs

7

8 // finds one element of rs, determined by x, of the n x n matrix m

9 // coordinate of this thread; assume grid consists of 1 block, with

10 // threads in n x 1 x 1 arrangement; matrices stored as 1-dimenstional,

11 // row-major order

12 __global__ void find1elt(int *dm, int *drs, int n)

13 {

14 int rownum = threadIdx.x; // this thread will handle row # rownum

15 int sum=0;

16 for (int k = 0; k < n; k++)

17 sum += dm[rownum*n+k];

18 drs[rownum] = sum;

19 }

20

21 int main(int argc, char **argv)

22 {

23 // the size of the matrix is specified on the command line

24 int n = atoi(argv[1]);

25 int *hm, // host matrix

26 *dm, // device matrix

27 *hrs, // host rowsums

28 *drs; // device rowsums

29 int msize = n * n * sizeof(int);

30 hm = (int *) malloc(msize);

31 // as a test, fill matrix with consecutive integers

32 int t = 0,i,j;

33 for (i = 0; i < n; i++) {

34 for (j = 0; j < n; j++) {

35 hm[i*n+j] = t++;

36 }

37 }

38 cudaMalloc((void **)&dm,msize);

39 cudaMemcpy(dm,hm,msize,cudaMemcpyHostToDevice);

40 int rssize = n * sizeof(int);

41 hrs = (int *) malloc(rssize);

42 cudaMalloc((void **)&drs,rssize);

43 cudaMemcpy(drs,hrs,rssize,cudaMemcpyHostToDevice);

44 dim3 dimGrid(1,1);

45 dim3 dimBlock(n,1,1);

46 find1elt<<<dimGrid,dimBlock>>>(dm,drs,n);

47 cudaThreadSynchronize();

48 cudaMemcpy(hrs,drs,rssize,cudaMemcpyDeviceToHost);

49 for(int i=0; i<n; i++) {

50 printf("%d\n",hrs[i]);

51 }

52 free(hm);
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53 cudaFree(dm);

54 free(hrs);

55 cudaFree(drs);

56 }

Well, this is mostly C, with a bit of CUDA added here and there. Here’s how the program works:

• Our main() runs on the host.

• Kernel functions are identified by global void, are called by the host, and serve as entries to the

device. We have one such function here.

• When a kernel is called, each thread runs it. Each thread receives the same arguments, though different

threads may act differently based on programmer use of threadIdx.

• One calls cudaMalloc() to allocate space on the device’s memory.

• Data is transferred to and from the host and device via cudaMemcpy().

• Kernels return values via their arguments. However, the call to the kernel returns immediately. For

that reason, the code above has a barrier call, to avoid copying the results back to the host from the

device before they’re ready:

cudaThreadSynchronize();

There is also a barrier available for the threads themselves, needed in many applications. The call is

__syncthreads();

I’ve written the program so that each thread will handle one row of the matrix; thread i will find the sum in

row i. Since I’ve chosen to store the matrix in one-dimensional form, and since the matrix is of size n x n,

the loop

for (int k = 0; k < n; k++)

sum += dm[rownum*n+k];

will indeed traverse the n elements of row number rownum, and compute their sum. That sum is then placed

in the proper element of the output array:

drs[rownum] = sum;
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4.3.2 Threads Hierarchy

Like the hardware, threads in CUDA software follow a hierarchy:

• The entirety of threads for an application is called a grid.

• A grid consists of one or more blocks of threads.

• Each block has its own ID within the grid, consisting of an “x coordinate” and a “y coordinate.”

• Likewise each thread has x, y and z coordinates within whichever block it belongs to.

• Just as an ordinary CPU thread needs to be able to sense its ID, e.g. by calling omp get thread num()

in OpenMP, CUDA threads need to do the same. A CUDA thread can access its block ID via the built-

in variables blockIdx.x and blockIdx.y, and can access its thread ID within its block via threadIdx.x

and threadIdx.y.

• The programmer specifies the grid size (the numbers of rows and columns of blocks within a grid)

and the block size (numbers of rows, columns and layers of threads within a block). In the example

above, this was done by the code

dim3 dimGrid(1,1);

dim3 dimBlock(n,1,1);

find1elt<<<dimGrid,dimBlock>>>(dm,drs,n);

Here the grid is specified to consist of just one (1×1) block, and each block consists of just n (n×1×1)
threads.

That last line is of course the call to the kernel. As you can see, CUDA extends C syntax to allow

specifying the grid and block sizes. CUDA will store this information in blockDim and threadDim.

• All threads in a block must run in the same SM, though more than one block might be on the same

SM.

• The “coordinates” of a block within the grid, and of a thread within a block, are merely abstractions.

They do not correspond to any physical arrangment.

The motivation for the two-dimensional block arrangment is to make coding conceptually simpler for the

programmer if he/she is working an application that is two-dimensional in nature.

For example, in a matrix application one’s parallel algorithm might be based on partitioning the matrix into

rectangular submatrices, as we’ll do in Section 7.3. In a small example there, the matrix

A =





1 5 12
0 3 6
4 8 2



 (4.1)
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is partitioned as

A =

(

A00 A01

A10 A11

)

, (4.2)

where

A00 =

(

1 5
0 3

)

, (4.3)

A01 =

(

12
6

)

, (4.4)

A10 =
(

4 8
)

(4.5)

and

A11 =
(

2
)

. (4.6)

We might then have one block of threads handle A00, another block handle A01 and so on. CUDA’s two-

dimensional ID system for blocks makes life easier for programmers in such situations. Indeed, the subma-

trices in such partitioning are often called blocks in the parallel algorithms literature.

4.3.3 Memory Placement

When you copy data from the host to the device, it goes into the latter’s global memory. As noted, this mem-

ory is slow. If it is to be repeatedly read, copy it to shared memory, stored in a variable whose declaration is

marked shared.

One also uses such variables for communication between threads in the same block.

4.3.4 What’s NOT There

We’re not in Kansas anymore, Toto–character Dorothy Gale in The Wizard of Oz

It looks like C, it feels like C, and for the most part, it is C. But in many ways, it’s quite different from what

you’re used to:
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• You don’t have access to the C library, e.g. printf() (the library consists of host machine language,

after all). There are special versions of math functions, however, e.g. sin().

• No recursion.

• No stack. Functions are essentially inlined.

4.4 Synchronization

As noted earlier, a barrier for the threads in a block is available by calling syncthreads(). Note carefully

that if one thread writes a variable to shared memory and another then reads that variable, one must call this

function in order to get the latest value.

CUDA and GPU hardware allow for certain atomic operations, such as atomic fetch-and-add, in functions

such as atomicExch() and atomicAdd(). However, classic locks are NOT advised; they can easily lead to

deadlock, due to thread divergence problems.

Remember, threads across blocks cannot sync with each other.

4.5 Performance Issues

Our brief introduction here barely scratches the surface. There are many considerations and tricks, especially

in terms of memory access. The interested reader is referred to the many resources on the Web.

4.6 CUBLAS

CUDA includes some parallel linear algebra routines callable from straight C code. In other words, you can

get the benefit of GPU in linear algebra contexts without using CUDA!

See http://www.gsic.titech.ac.jp/˜ccwww/tebiki/tesla_e/tesla5_e.html for an

example and compilation instructions.

4.7 Hardware Requirements, Installation, Compilation, Debugging

You do need what is currently (March 2010) a high-end NVIDIA video card. There is a list at http://

www.nvidia.com/object/cuda_gpus.html. If you have a Linux system, run lspci to determine

what kind you have.



4.7. HARDWARE REQUIREMENTS, INSTALLATION, COMPILATION, DEBUGGING 67

Download the CUDA toolkit from NVIDIA. Just plug “CUDA download” into a Web search engine to find

the site. Install as directed.

You’ll need to set your search and library paths to include the CUDA bin and library directories.

To compile x.cu, type

$ nvcc -g -G x.cu -I/your_CUDA_include_path

The -g -G options are for setting up debugging.

Run the code as you normally would.

To determine the limits, e.g. maximum number of threads, for your device, use code like this:

cudaDeviceProp Props;

cudaGetDeviceProperties(Props,0);

The 0 is for device 0, assuming you only have one device. The return value of cudaGetDeviceProperties().

I recommend printing it from within GDB to see the values. One of the fields gives clock speed, which is

typically slower than that of the host.

For debugging, CUDA includes a special version of GDB, cuda-gdb.
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