
22 CHAPTER 1. INTRODUCTION TO PARALLEL PROCESSING

• Hadoop/MapReduce Computing (Chapter ??) is basically a scatter/gather operation.

• The snow package (Section 1.4.8.1) for the R language is also a scatter/gather operation.

1.4.8.1 R snow Package

Base R does not include parallel processing facilities, but includes the parallel library for this
purpose, and a number of other parallel libraries are available as well. The parallel package
arose from the merger (and slight modifcation) of two former user-contributed libraries, snow and
multicore. The former (and essentially the latter) uses the scatter/gather paradigm, and so will
be introduced in this section.

NOTE: For convenience, I’ll refer to the portion of parallel that came from snow simply as snow.

Let’s use matrix-vector multiply as an example to learn from:

1 > l i b r a r y (p a r a l l e l)
2 > c2 <− makePSOCKcluster (rep (” l o c a l h o s t ” , 2))
3 > c2
4 socke t c l u s t e r with 2 nodes on host l o c a l h o s t
5 > mmul
6 func t i on (c l s , u , v) {
7 rowgrps <− s p l i t I n d i c e s (nrow (u) , l ength (c l s))
8 grpmul <− f unc t i on (grp) u [grp ,] %∗% v
9 mout <− c lus te rApp ly (c l s , rowgrps , grpmul)

10 Reduce (c , mout)
11 }
12 > a <− matrix (sample (1 : 5 0 , 1 6 , r ep l a c e=T) , nco l=2)
13 > a
14 [, 1] [, 2]
15 [1 ,] 34 41
16 [2 ,] 10 28
17 [3 ,] 44 23
18 [4 ,] 7 29
19 [5 ,] 6 24
20 [6 ,] 28 29
21 [7 ,] 21 1
22 [8 ,] 38 30
23 > b <− c (5 ,−2)
24 > b
25 [1] 5 −2
26 > a %∗% b # s e r i a l mul t ip ly
27 [, 1]
28 [1 ,] 88
29 [2 ,] −6
30 [3 ,] 174
31 [4 ,] −23
32 [5 ,] −18

1.4. PROGRAMMER WORLD VIEWS 23

33 [6 ,] 82
34 [7 ,] 103
35 [8 ,] 130
36 > c lu s t e rExpor t (c2 , c (’ a ’ , ’ b ’)) # send b to workers
37 > c lusterEva lQ (c2 , b) # check that they have i t
38 [[1]]
39 [1] 5 −2
40
41 [[2]]
42 [1] 5 −2
43
44 > mmul(c2 , a , b) # t e s t our p a r a l l e l code
45 [1] 88 −6 174 −23 −18 82 103 130

What just happened?

First we set up a snow cluster. The term should not be confused with hardware systems we referred
to as “clusters” earlier. We are simply setting up a group of R processes that will communicate
with each other via TCP/IP sockets; those R processes may be running on different machines (i.e.
a real cluster), or on a multicore machine, or a combination of the two.

In this case, my cluster consists of two R processes running on the machine from which I invoked
makePSOCKcluster(). (In TCP/IP terminology, localhost refers to the local machine.) If I
were to run the Unix ps command, with appropriate options, say ax, I’d see three R processes
)though two of them may be the batch form of R, called Rscript). An entry for a worker may look
like

/ usr / l o c a l / l i b /R/bin / exec /R −−s l a v e −−no−r e s t o r e
−e p a r a l l e l : : : . slaveRSOCK()
−−args MASTER=l o c a l h o s t PORT=11526 OUT=/dev/ nu l l
TIMEOUT=2592000 METHODS=TRUE XDR=TRUE

So, this R process is running the .slaveRSOCK() function in the parallel package, on a TCP/IP
socket at port 11526.

I saved the cluster in c2.

On the other hand, my snow cluster could indeed be set up on a real cluster, e.g.

c3 <− makePSOCKcluster (c (” pc28 ” ,” pc29 ” ,” pc29 ”))

where pc28 etc. are machine names.

In preparing to test my parallel code, I needed to ship my matrices a and b to the workers:

> c lu s t e rExpor t (c2 , c (” a ” ,”b ”)) # send a , b to workers

Note that this function assumes that a and b are global variables at the invoking node, i.e. the
manager, and it will place copies of them in the global workspace of the worker nodes.

24 CHAPTER 1. INTRODUCTION TO PARALLEL PROCESSING

Note that the copies are independent of the originals; if a worker changes, say, b[3], that change
won’t be made at the manager or at the other worker. This is a message-passing system, indeed.

So, how does the mmul code work? Here’s a handy copy:

1 mmul <− f unc t i on (c l s , u , v) {
2 rowgrps <− s p l i t I n d i c e s (nrow (u) , l ength (c l s))
3 grpmul <− f unc t i on (grp) u [grp ,] %∗% v
4 mout <− c lus te rApp ly (c l s , rowgrps , grpmul)
5 Reduce (c , mout)
6 }

As discussed in Section 1.4.1, our strategy will be to partition the rows of the matrix, and then
have different workers handle different groups of rows. Our call to splitIndices() sets this up for
us.

That function does what its name implies, e.g.

> s p l i t I n d i c e s (12 ,5)
[[1]]
[1] 1 2 3

[[2]]
[1] 4 5

[[3]]
[1] 6 7

[[4]]
[1] 8 9

[[5]]
[1] 10 11 12

Here we asked the function to partition the numbers 1,...,12 into 5 groups, as equal-sized as possible,
which you can see is what it did. Note that the type of the return value is an R list.

So, after executing that function in our mmul() code, rowgrps will be an R list consisting of a
partitioning of the row numbers of u, exactly what we need.

The call to clusterApply() is then where the actual work is assigned to the workers. The code

mout <− c lus te rApp ly (c l s , rowgrps , grpmul)

instructs snow to have the first worker process the rows in rowgrps[[1]], the second worker to
work on rowgrps[[2]], and so on. The clusterApply() function expects its second argument to
be an R list (or a vector, which is promotable to a lists), which is the case here.

Each worker will then multiply v by its row group, and return the product to the manager. However,

1.4. PROGRAMMER WORLD VIEWS 25

the product will again be a list, one component for each worker, so we need Reduce() to string
everything back together.

Note that R does allow functions defined within functions, which the locals and arguments of the
outer function becoming global to the inner function.

Note that a here could have been huge, in which case the export action could slow down our
program. If a were not needed at the workers other than for this one-time matrix multiply, we may
wish to change to code so that we send each worker only the rows of a that we need:

1 mmul1 <− f unc t i on (c l s , u , v) {
2 rowgrps <− s p l i t I n d i c e s (nrow (u) , l ength (c l s))
3 uchunks <− Map(func t i on (grp) u [grp ,] , rowgrps)
4 mulchunk <− f unc t i on (uc) uc %∗% v
5 mout <− c lus te rApp ly (c l s , uchunks , mulchunk)
6 Reduce (c , mout)
7 }

Let’s test it:

1 > a <− matrix (sample (1 : 5 0 , 1 6 , r ep l a c e=T) , nco l=2)
2 > b <− c (5 ,−2)
3 > c lu s t e rExpor t (c2 , ” b”) # don ’ t send a
4 a
5 [, 1] [, 2]
6 [1 ,] 10 26
7 [2 ,] 1 34
8 [3 ,] 49 30
9 [4 ,] 39 41

10 [5 ,] 12 14
11 [6 ,] 2 30
12 [7 ,] 33 23
13 [8 ,] 44 5
14 > a %∗% b
15 [, 1]
16 [1 ,] −2
17 [2 ,] −63
18 [3 ,] 185
19 [4 ,] 113
20 [5 ,] 32
21 [6 ,] −50
22 [7 ,] 119
23 [8 ,] 210
24 > mmul1(c2 , a , b)
25 [1] −2 −63 185 113 32 −50 119 210

Note that we did not need to use clusterExport() to send the chunks of a to the workers, as the
call to clusterApply() does this, since it sends the arguments,

By the way, the function clusterApply() has an optional third argument, used to form the actual

26 CHAPTER 1. INTRODUCTION TO PARALLEL PROCESSING

parameter if the function to be applied has two parameters, e.g.

> l i b r a r y (p a r a l l e l)
> c2 <− makeCluster (2)
> f <− f unc t i on (x , y) x + y
> c lus te rApp ly (c2 , l i s t (5 , 12) , f , 8)
[[1]]
[1] 13

[[2]]
[1] 20

A fourth argument can be added if the function has three arguments, and so on.

1.5 Threads Programming in R: Rdsm

As noted, R features the parallel package, composed of its old snow and multicore packages.
The former uses message-passing, while the latter involves a weak version of shared-memory access.
For those who prefer a general shared-memory interface, there is Rdsm.

R itself is not threaded. However, Rdsm achieves a quasi-thread interface, involving several invoca-
tions of R that act as “rtheads,” in that (a) the “threads” do operate independently of each other
and (b) they genuinely share memory.

This is achieved via operator overloading. All operators in R are actually functions, e.g.

> 1+1
[1] 2
> ”+”(1 ,1)
[1] 2

including the [operator for array access. What Rdsm does is redefine that operator to access a
location in shared memory.

Rdsm is built on top of the packages snow and bigmemory; the former atter is used for APIs,
and for the distribution of shared-memory keys that address memory locations managed by the
latter.

1.5.1 Example: Matrix Multiplication

matrix mu l t i p l i c a t i o n ; the product u %∗% v i s
computed on the snow c l u s t e r c l s , and wr i t t en
in−p lace in w; w i s a big . matrix ob j e c t

mmulthread <− f unc t i on (u , v ,w) {

1.5. THREADS PROGRAMMING IN R: RDSM 27

r e qu i r e (p a r a l l e l)
determine which rows t h i s thread w i l l handle
myidxs <−

s p l i t I n d i c e s (nrow (u) ,
myinfo$nwrkrs) [[myinfo$id]]

compute t h i s thread ’ s por t i on o f the product
w[myidxs ,] <− u [myidxs ,] %∗% v [,]
0 # don ’ t do expens ive re turn o f r e s u l t

}

te s t on snow c l u s t e r c l s
t e s t <− f unc t i on (c l s) {

i n i t Rdsm
mgr in i t (c l s)
s e t up shared v a r i a b l e s a , b , c ,
mgrmakevar (c l s , ” a ” ,6 , 2)
mgrmakevar (c l s , ” b ” ,2 , 6)
mgrmakevar (c l s , ” c ” ,6 , 6)
f i l l in some t e s t data
a [,] <− 1 :12
b [,] <− rep (1 , 12)
g ive the threads the func t i on to be run
c lu s t e rExpor t (c l s , ” mmulthread ”)
run i t
c lusterEva lQ (c l s , mmulthread (a , b , c))
p r i n t (c [,]) # not p r i n t (c) !

}

> l i b r a r y (p a r a l l e l)
> c2 <− makeCluster (2) # 2 threads
> t e s t (c2)

[, 1] [, 2] [, 3] [, 4] [, 5] [, 6]
[1 ,] 8 8 8 8 8 8
[2 ,] 10 10 10 10 10 10
[3 ,] 12 12 12 12 12 12
[4 ,] 14 14 14 14 14 14
[5 ,] 16 16 16 16 16 16
[6 ,] 18 18 18 18 18 18

1.5.2 Example: Maximal Burst in a Time Series

Consider a time series of length n. We may be interested in bursts, periods in which a high average
value is sustained. We might stipulate that we look only at periods of length k consecutive points,
for a user-specified k. So, we wish to find the period of length k that has the maximal mean value.

Once again, let’s leverage the power of R. The zoo time series package includes a function rollmean(w,m),
which returns all the means of blocks of length k, i.e., what are usually called moving averages—just
what we need.

28 CHAPTER 1. INTRODUCTION TO PARALLEL PROCESSING

Here is the code:

Rdsm code to f i nd max burst in a time s e r i e s ;

arguments :

x : data vec to r
k : b lock s i z e
mas : s c ra t ch space , shared , 1 x (l ength (x)−1)
r s l t s : 2−tup l e showing the maximum burst value ,
and where i t s t a r t s ; shared , 1 x 2

maxburst <− f unc t i on (x , k ,mas , r s l t s) {
r e qu i r e (Rdsm)
r equ i r e (zoo)
determine t h i s thread ’ s chunk o f x
n <− l ength (x)
myidxs <− ge t i dx s (n−k+1)
my f i r s t <− myidxs [1]
mylast <− myidxs [l ength (myidxs)]
mas [1 , my f i r s t : mylast] <−

ro l lmean (x [my f i r s t : (mylast+k−1)] , k)
make sure a l l threads have wr i t t en to mas
barr ()
one thread must do wrapup , say thread 1
i f (myinfo$id == 1) {

r s l t s [1 , 1] <− which .max(mas [,])
r s l t s [1 , 2] <− mas [1 , r s l t s [1 , 1]]

}
}

t e s t <− f unc t i on (c l s) {
r e qu i r e (Rdsm)
mgr in i t (c l s)
mgrmakevar (c l s , ”mas ” ,1 , 9)
mgrmakevar (c l s , ” r s l t s ” , 1 , 2)
x <<− c (5 , 7 , 6 , 20 , 4 , 14 , 11 , 12 , 15 , 17)
c lu s t e rExpor t (c l s , ” maxburst ”)
c lu s t e rExpor t (c l s , ” x”)
c lusterEva lQ (c l s , maxburst (x , 2 ,mas , r s l t s))
p r i n t (r s l t s [,]) # not p r i n t (r s l t s) !

}

Chapter 2

Recurring Performance Issues

Oh no! It’s actually slower in parallel!—almost everyone’s exclamation the first time they try to
parallelize code

The available parallel hardware systems sound wonderful at first. But everyone who uses such
systems has had the experience of enthusiastically writing his/her first parallel program, anticipat-
ing great speedups, only to find that the parallel code actually runs more slowly than the original
nonparallel program.

In this chapter, we highlight some major issues that will pop up throughout the book.

2.1 Communication Bottlenecks

Whether you are on a shared-memory, message-passing or other platform, communication is always
a potential bottleneck:

• On a shared-memory system, the threads must contend with each other in communicating
with memory. And the problem is exacerbated by cache coherency transactions (Section 3.5.1.

• On a cluster, even a very fast network is very slow compared to CPU speeds.

• GPUs are really fast, but their communication with their CPU hosts is slow. There are also
memory contention issues as in ordinary shared-memory systems.

Among other things, communication considerations largely drive the load balancing issue, discussed
next.

29

30 CHAPTER 2. RECURRING PERFORMANCE ISSUES

2.2 Load Balancing

Arguably the most central performance issue is load balancing, i.e. keeping all the processors
busy as much as possible. This issue arises constantly in any discussion of parallel processing.

A nice, easily understandable example is shown in Chapter 7 of the book, Multicore Application

Programming: for Windows, Linux and Oracle Solaris, Darryl Gove, 2011, Addison-Wesley. There
the author shows code to compute the Mandelbrot set, defined as follows.

Start with any number c in the complex plane, and initialize z to 0. Then keep applying the
transformation

z ← z2 + c (2.1)

If the resulting sequence remains bounded (say after a certain number of iterations), we say that c
belongs to the Mandelbrot set.

Gove has a rectangular grid of points in the plane, and wants to determine whether each point is
in the set or not; a simple but time-consuming computation is used for this determination.1

Gove sets up two threads, one handling all the points in the left half of the grid and the other
handling the right half. He finds that the latter thread is very often idle, while the former thread
is usually busy—extremely poor load balance. We’ll return to this issue in Section 2.4.

2.3 “Embarrassingly Parallel” Applications

The term embarrassingly parallel is heard often in talk about parallel programming.

2.3.1 What People Mean by “Embarrassingly Parallel”

Consider a matrix multiplication application, for instance, in which we compute AX for a matrix
A and a vector X. One way to parallelize this problem would be to have each processor handle a
group of rows of A, multiplying each by X in parallel with the other processors, which are handling
other groups of rows. We call the problem embarrassingly parallel, with the word “embarrassing”
meaning that the problem is too easy, i.e. there is no intellectual challenge involved. It is pretty
obvious that the computation Y = AX can be parallelized very easily by splitting the rows of A
into groups.

1You can download Gove’s code from http://blogs.sun.com/d/resource/map_src.tar.bz2. Most relevant is
listing7.64.c.

2.3. “EMBARRASSINGLY PARALLEL” APPLICATIONS 31

By contrast, most parallel sorting algorithms require a great deal of interaction. For instance,
consider Mergesort. It breaks the vector to be sorted into two (or more) independent parts, say
the left half and right half, which are then sorted in parallel by two processes. So far, this is
embarrassingly parallel, at least after the vector is broken in half. But then the two sorted halves
must be merged to produce the sorted version of the original vector, and that process is not

embarrassingly parallel; it can be parallelized, but in a more complex, less obvious manner.

Of course, it’s no shame to have an embarrassingly parallel problem! On the contrary, except for
showoff academics, having an embarrassingly parallel application is a cause for celebration, as it is
easy to program.

In recent years, the term embarrassingly parallel has drifted to a somewhat different meaning.
Algorithms that are embarrassingly parallel in the above sense of simplicity tend to have very low
communication between processes, key to good performance. That latter trait is the center of
attention nowadays, so the term embarrassingly parallel generally refers to an algorithm with
low communication needs.

For that reason, many people would NOT considered even our prime finder example in Section
1.4.3 to be embarrassingly parallel. Yes, it was embarrassingly easy to write, but it has high
communication costs, as both its locks and its global array are accessed quite often.

On the other hand, the Mandelbrot computation described in Section 2.2 is truly embarrassingly
parallel, in both the old and new sense of the term. There the author Gove just assigned the
points on the left to one thread and the rest to the other thread—very simple—and there was no
communication between them.

2.3.2 Iterative Algorithms

Many parallel algorithms involve iteration, with a rendezvous of the tasks after each iteration.
Within each iteration, the nodes act entirely independently of each other, which makes the problem
seem embarrassingly parallel.

But unless the granularity of the problem is coarse, i.e. there is a large amount of work to do
in each iteration, the communication overhead will be significant, and the algorithm may not be
considered embarrassingly parallel.

32 CHAPTER 2. RECURRING PERFORMANCE ISSUES

2.4 Static (But Possibly Random) Task Assignment Typically Bet-
ter Than Dynamic

Say an algorithm generates t independent2 tasks and we have p processors to handle them. In our
matrix-times-vector example of Section 1.4.1, say, each row of the matrix might be considered one
task. A processor’s work would then be to multiply the vector by this processor’s assigned rows of
the matrix.

How do we decide which tasks should be done by which processors? In static assignment, our code
would decide at the outset which processors will handle which tasks. The alternative, dynamic
assignment, would have processors determine their tasks as the computation proceeds.

In the matrix-times-vector example, say we have 10000 rows and 10 processors. In static task
assignment, we could pre-assign processor 0 rows 0-999, processor 1 rows 1000-1999 and so on. On
the other hand, we could set up a task farm, a queue consisting here of the numbers 0-9999. Each
time a processor finished handling one row, it would remove the number at the head of the queue,
and then process the row with that index.

It would at first seem that dynamic assignment is more efficient, as it is more flexible. However,
accessing the task farm, for instance, entails communication costs, which might be very heavy. In
this section, we will show that it’s typically better to use the static approach, though possibly
randomized.3

2.4.1 Example: Matrix-Vector Multiply

Consider again the problem of multiplying a vector X by a large matrix A, yielding a vector Y. Say
A has 10000 rows and we have 10 threads. Let’s look at little closer at the static/dynamic tradeoff
outlined above. For concreteness, assume the shared-memory setting.

There are several possibilities here:

• Method A: We could simply divide the 10000 rows into chunks of 10000/10 = 1000, and
parcel them out to the threads. We would pre-assign thread 0 to work on rows 0-999 of A,
thread 1 to work on rows 1000-1999 and so on.

This is essentially OpenMP’s static scheduling policy, with default chunk size.4

There would be no communication between the threads this way, but there could be a problem
of load imbalance. Say for instance that by chance thread 3 finishes well before the others.

2Note the qualifying term.
3This is still static, as the randomization is done at the outset, before starting computation.
4See Section 4.3.3.

2.4. STATIC (BUT POSSIBLY RANDOM) TASK ASSIGNMENT TYPICALLY BETTER THANDYNAMIC33

Then it will be idle, as all the work had been pre-allocated.

• Method B:

OpenMP’s dynamic policy does what the name implies, which can be described as follows
(in non-OpenMP terms):

We would have a shared variable named,say, nextchunk similar to nextbase in our prime-
finding program in Section 1.4.3. Each time a thread would finish a chunk, it would obtain a
new chunk to work on, by recording the value of nextchunk and incrementing that variable
by 1 (all atomically, of course).

This approach would have better load balance, because the first thread to find there is no
work left to do would be idle for at most 100 rows’ amount of computation time, rather than
1000 as above. Meanwhile, though, communication would increase, as access to the locks
around nextchunk would often make one thread wait for another.5

• Method C: So, Method A above minimizes communication at the possible expense of load
balance, while the Method B does the opposite.

OpenMP also offers the guided policy, which is like dynamic except the chunk size decreases over
time.

I will now show that in typical settings, the Method A above (or a slight modification) works well.
To this end, consider a chunk consisting of m tasks, such as m rows in our matrix example above,
with times T1, T2, ..., Tm. The total time needed to process the chunk is then T1 + ..., Tm.

The Ti can be considered random variables; some tasks take a long time to perform, some take
a short time, and so on. As an idealized model, let’s treat them as independent and identically
distributed random variables. Under that assumption (if you don’t have the probability background,
follow as best you can), we have that the mean (expected value) and variance of total task time
are

E(T1 + ..., Tm) = mE(T1)

and

V ar(T1 + ..., Tm) = mV ar(T1)

5Why are we calling it “communication” here? Recall that in shared-memory programming, the threads commu-
nicate through shared variables. When one thread increments nextchunk, it “communicates” that new value to the
other threads by placing it in shared memory where they will see it, and as noted earlier contention among threads
to shared memory is a major source of potential slowdown.

34 CHAPTER 2. RECURRING PERFORMANCE ISSUES

Thus

standard deviation of chunk time

mean of chunk time
∼ O

(

1
√
m

)

In other words:

• run time for a chunk is essentially constant if m is large, and

• there is essentially no load imbalance in Method A

Since load imbalance was the only drawback to Method A and we now see it’s not a problem after
all, then Method A is best.

For more details and timing examples, see N. Matloff, “Efficient Parallel R Loops on Long-Latency
Platforms,” Proceedings of the 42nd Interface between Statistics and Computer Science, Rice Uni-
versity, June 2012.6

2.4.2 Load Balance, Revisited

But what about the assumptions behind that reasoning? Consider for example the Mandelbrot
problem in Section 2.2. There were two threads, thus two chunks, with the tasks for a given chunk
being computations for all the points in the chunk’s assigned region of the picture.

Gove noted there was fairly strong load imbalance here, and that the reason was that most of the
Mandelbrot points turned out to be in the left half of the picture! The computation for a given
point is iterative, and if a point is not in the set, it tends to take only a few iterations to discover
this. That’s why the thread handling the right half of the picture was idle so often.

So Method A would not work well here, and upon reflection one can see that the problem was that
the tasks within a chunk were not independent, but were instead highly correlated, thus violating
our mathematical assumptions above. Of course, before doing the computation, Gove didn’t know
that it would turn out that most of the set would be in the left half of the picture. But, one could
certainly anticipate the correlated nature of the points; if one point is not in the Mandelbrot set,
its near neighbors are probably not in it either.

But Method A can still be made to work well, via a simple modification: Simply form the chunks
randomly. In the matrix-multiply example above, with 10000 rows and chunk size 1000, do NOT

6As noted in the Preface to this book, I occasionally refer here to my research, to illustrate for students the
beneficial interaction between teaching and research.

2.4. STATIC (BUT POSSIBLY RANDOM) TASK ASSIGNMENT TYPICALLY BETTER THANDYNAMIC35

assign the chunks contiguously. Instead, generate a random permutation of the numbers 0,1,...,9999,
naming them i0, i1, ..., i9999. Then assign thread 0 rows i0 − i999, thread 1 rows i1000 − i1999, etc.

In the Mandelbrot example, we could randomly assign rows of the picture, in the same way, and
avoid load imbalance.

So, actually, Method A, or let’s call it Method A’, will still typically work well.

2.4.3 Example: Mutual Web Outlinks

Here’s an example that we’ll use at various points in this book:

Mutual outlinks in a graph:

Consider a network graph of some kind, such as Web links. For any two vertices, say
any two Web sites, we might be interested in mutual outlinks, i.e. outbound links that
are common to two Web sites. Say we want to find the number of mutual outlinks,
averaged over all pairs of Web sites.

Let A be the adjacency matrix of the graph. Then the mean of interest would be
found as follows:

1 sum = 0
2 f o r i = 0 . . . n−2
3 f o r j = i +1 . . . n−1
4 count = 0
5 f o r k = 0 . . . n−1 count += a [i] [k] ∗ a [j] [k]
6 mean = sum / (n∗(n−1)/2)

Say again n = 10000 and we have 10 threads. We should not simply assign work to the
threads by dividing up the i loop, with thread 0 taking the cases i = 0,...,999, thread
1 the cases 1000,...,1999 and so on. This would give us a real load balance problem.
Thread 8 would have much less work to do than thread 3, say.

We could randomize as discussed earlier, but there is a much better solution: Just pair
the rows of A. Thread 0 would handle rows 0,...,499 and 9500,...,9999, thread 1 would
handle rows 500,999 and 9000,...,9499 etc. This approach is taken in our OpenMP
implementation, Section 4.12.

In other words, Method A still works well.

In the mutual outlinks problem, we have a good idea beforehand as to how much time each task
needs, but this may not be true in general. An alternative would be to do random pre-assignment
of tasks to processors.

36 CHAPTER 2. RECURRING PERFORMANCE ISSUES

On the other hand, if we know beforehand that all of the tasks should take about the same time,
we should use static scheduling, as it might yield better cache and virtual memory performance.

2.4.4 Work Stealing

There is another variation to Method A that is of interest today, called work stealing. Here a
thread that finishes its assigned work and has thus no work left to do will “raid” the work queue
of some other thread. This is the approach taken, for example, by the elegant Cilk language.
Needless to say, accessing the other work queue is going to be expensive in terms of time and
memory contention overhead.

2.4.5 Timing Example

I ran the Mandelbrot example on a shared memory machine with four cores, two threads per core,
with the following results for eight threads, on an 8000x8000 grid:

policy time

static 47.8

dynamic 21.4

guided 29.6

random 15.7

Default values were used for chunk size in the first three cases. I did try other chunk sizes for the
dynamic policy, but it didn’t make much difference. See Section 4.4 for the code.

Needless to say, one shouldn’t overly extrapolate from the above timings, but it does illustrate the
issues.

2.5 Latency and Bandwidth

We’ve been speaking of communications delays so far as being monolithic, but they are actually
(at least) two-dimensional. The key measures are latency and bandwidth:

• Latency is the time it takes for one bit to travel for source to destination, e.g. from a CPU
to memory in a shared memory system, or from one computer to another in a cluster.

• Bandwidth is the number of bits per unit time that can be input into the communications
channel. This can be affected by factors such as bus width in a shared memory system and

2.6. RELATIVEMERITS: PERFORMANCEOF SHARED-MEMORYVS. MESSAGE-PASSING37

number of parallel network paths in a message passing system, and also by the speed of the
links.

It’s helpful to think of a bridge, with toll booths at its entrance. Latency is the time needed for one
car to get from one end of the bridge to the other. Bandwidth is the number of cars that can enter
the bridge per unit time. We can reduce latency by increasing the speed limit, and can increase
bandwidth by improving the speed by which toll takers can collect tolls, and increasing the number
of toll booths.

Latency hiding:

One way of dealing with long latencies is known as latency hiding. The idea is to do a long-latency
operation in parallel with something else.

For example, GPUs tend to have very long memory access times, but this is solved by having many
pending memory accesses at the same time. During the latency of some accesses, earlier ones that
have now completed can now be acted upon (Section 5.3.3.2).

2.6 Relative Merits: Performance of Shared-Memory Vs. Message-
Passing

My own preference is shared-memory, but there are pros and cons to each paradigm.

It is generally believed in the parallel processing community that the shared-memory paradigm
produces code that is easier to write, debug and maintain than message-passing. See for instance
R. Chandra, Parallel Programming in OpenMP, MKP, 2001, pp.10ff (especially Table 1.1), and
M. Hess et al, Experiences Using OpenMP Based on Compiler Directive Software DSM on a PC
Cluster, in OpenMP Shared Memory Parallel Programming: International Workshop on OpenMP

Applications and Tools, Michael Voss (ed.), Springer, 2003, p.216.

On the other hand, in some cases message-passing can produce faster code. Consider the Odd/Even
Transposition Sort algorithm, for instance. Here pairs of processes repeatedly swap sorted arrays
with each other. In a shared-memory setting, this might produce a bottleneck at the shared memory,
slowing down the code. Of course, the obvious solution is that if you are using a shared-memory
machine, you should just choose some other sorting algorithm, one tailored to the shared-memory
setting.

There used to be a belief that message-passing was more scalable, i.e. amenable to very large
systems. However, GPU has demonstrated that one can achieve extremely good scalability with
shared-memory.

As will be seen, though, GPU is hardly a panacea. Where, then, are people to get access to large-

38 CHAPTER 2. RECURRING PERFORMANCE ISSUES

scale parallel systems? Most people do not (currently) have access to large-scale multicore machines,
while most do have access to large-scale message-passing machines, say in cloud computing venues.
Thus message-passing plays a role even for those of us who preferred the shared-memory paradigm.

Also, hybrid systems are common, in which a number of shared-memory systems are tied together
by, say, MPI.

2.7 Memory Allocation Issues

Many algorithms require large amounts of memory for intermediate storage of data. It may be
prohibitive to allocate this memory statically, i.e. at compile time. Yet dynamic allocation, say via
malloc() or C++’s new (which probably produces a call to malloc() anyway, is very expensive
in time.

Using large amounts of memory also can be a major source of overhead due to cache misses and
page faults.

One way to avoid malloc(), of course, is to set up static arrays whenever possible.

There are no magic solutions here. One must simply be aware of the problem, and tweak one’s code
accordingly, say by adjusting calls to malloc() so that one achieves a balance between allocating
too much memory and making too many calls.

2.8 Issues Particular to Shared-Memory Systems

This topic is covered in detail in Chapter 3, but is so important that the main points should be
mentioned here.

• Memory is typically divided into banks. If more than one thread attempts to access the
same bank at the same time, that effectively serializes the program.

• There is typically a cache at each processor. Keeping the contents of these caches consistent
with each other, and with the memory itself, adds a lot of overhead, causing slowdown.

In both cases, awareness of these issues should impact how you write your code.

See Sections 3.2 and 3.5.

Chapter 3

Shared Memory Parallelism

Shared-memory programming is considered by many in the parallel processing community as being
the clearest of the various parallel paradigms available.

Note: To get the most of this section—which is used frequently in the rest of this book—you may
wish to read the material on array storage in the appendix of this book, Section A.3.1.

3.1 What Is Shared?

The term shared memory means that the processors all share a common address space. Say this
is occurring at the hardware level, and we are using Intel Pentium CPUs. Suppose processor P3
issues the instruction

movl 200, %ebx

which reads memory location 200 and places the result in the EAX register in the CPU. If processor
P4 does the same, they both will be referring to the same physical memory cell. (Note, however,
that each CPU has a separate register set, so each will have its own independent EAX.) In non-
shared-memory machines, each processor has its own private memory, and each one will then have
its own location 200, completely independent of the locations 200 at the other processors’ memories.

Say a program contains a global variable X and a local variable Y on share-memory hardware
(and we use shared-memory software). If for example the compiler assigns location 200 to the
variable X, i.e. &X = 200, then the point is that all of the processors will have that variable in
common, because any processor which issues a memory operation on location 200 will access the
same physical memory cell.

39

40 CHAPTER 3. SHARED MEMORY PARALLELISM

On the other hand, each processor will have its own separate run-time stack. All of the stacks are
in shared memory, but they will be accessed separately, since each CPU has a different value in its
SP (Stack Pointer) register. Thus each processor will have its own independent copy of the local
variable Y.

To make the meaning of “shared memory” more concrete, suppose we have a bus-based system,
with all the processors and memory attached to the bus. Let us compare the above variables X and
Y here. Suppose again that the compiler assigns X to memory location 200. Then in the machine
language code for the program, every reference to X will be there as 200. Every time an instruction
that writes to X is executed by a CPU, that CPU will put 200 into its Memory Address Register
(MAR), from which the 200 flows out on the address lines in the bus, and goes to memory. This
will happen in the same way no matter which CPU it is. Thus the same physical memory location
will end up being accessed, no matter which CPU generated the reference.

By contrast, say the compiler assigns a local variable Y to something like ESP+8, the third item
on the stack (on a 32-bit machine), 8 bytes past the word pointed to by the stack pointer, ESP.
The OS will assign a different ESP value to each thread, so the stacks of the various threads will
be separate. Each CPU has its own ESP register, containing the location of the stack for whatever
thread that CPU is currently running. So, the value of Y will be different for each thread.

3.2 Memory Modules

Parallel execution of a program requires, to a large extent, parallel accessing of memory. To
some degree this is handled by having a cache at each CPU, but it is also facilitated by dividing
the memory into separate modules or banks. This way several memory accesses can be done
simultaneously.

In this section, assume for simplicity that our machine has 32-bit words. This is still true for many
GPUs, in spite of the widespread use of 64-bit general-purpose machines today, and in any case,
the numbers here can easily be converted to the 64-bit case.

Note that this means that consecutive words differ in address by 4. Let’s thus define the word-
address of a word to be its ordinary address divided by 4. Note that this is also its address with
the lowest two bits deleted.

3.2.1 Interleaving

There is a question of how to divide up the memory into banks. There are two main ways to do
this:

3.2. MEMORY MODULES 41

(a) High-order interleaving: Here consecutive words are in the same bank (except at bound-
aries). For example, suppose for simplicity that our memory consists of word-addresses 0
through 1023, and that there are four banks, M0 through M3. Then M0 would contain
word-addresses 0-255, M1 would have 256-511, M2 would have 512-767, and M3 would have
768-1023.

(b) Low-order interleaving: Here consecutive addresses are in consecutive banks (except when
we get to the right end). In the example above, if we used low-order interleaving, then word-
address 0 would be in M0, 1 would be in M1, 2 would be in M2, 3 would be in M3, 4 would
be back in M0, 5 in M1, and so on.

Say we have eight banks. Then under high-order interleaving, the first three bits of a word-address
would be taken to be the bank number, with the remaining bits being address within bank. Under
low-order interleaving, the three least significant bits would be used to determine bank number.

Low-order interleaving has often been used for vector processors. On such a machine, we might
have both a regular add instruction, ADD, and a vector version, VADD. The latter would add two
vectors together, so it would need to read two vectors from memory. If low-order interleaving is
used, the elements of these vectors are spread across the various banks, so fast access is possible.

A more modern use of low-order interleaving, but with the same motivation as with the vector
processors, is in GPUs (Chapter 5).

High-order interleaving might work well in matrix applications, for instance, where we can partition
the matrix into blocks, and have different processors work on different blocks. In image processing
applications, we can have different processors work on different parts of the image. Such partitioning
almost never works perfectly—e.g. computation for one part of an image may need information
from another part—but if we are careful we can get good results.

3.2.2 Bank Conflicts and Solutions

Consider an array x of 16 million elements, whose sum we wish to compute, say using 16 threads.
Suppose we have four memory banks, with low-order interleaving.

A naive implementation of the summing code might be

1 parallel for thr = 0 to 15

2 localsum = 0

3 for j = 0 to 999999

4 localsum += x[thr*1000000+j]

5 grandsum += localsum // critical section

In other words, thread 0 would sum the first million elements, thread 1 would sum the second
million, and so on. After summing its portion of the array, a thread would then add its sum to a

42 CHAPTER 3. SHARED MEMORY PARALLELISM

grand total. (The threads could of course add to grandsum directly in each iteration of the loop,
but this would cause too much traffic to memory, thus causing slowdowns.)

Suppose for simplicity that there is one address per word (it is usually one address per byte).

Suppose also for simplicity that the threads run in lockstep, so that they all attempt to access
memory at once. On a multicore/multiprocessor machine, this may not occur, but it in fact
typically will occur in a GPU setting.

A problem then arises. To make matters simple, suppose that x starts at an address that is a
multiple of 4, thus in bank 0. (The reader should think about how to adjust this to the other
three cases.) On the very first memory access, thread 0 accesses x[0] in bank 0, thread 1 accesses
x[1000000], also in bank 0, and so on—and these will all be in memory bank 0! Thus there will
be major conflicts, hence major slowdown.

A better approach might be to have any given thread work on every sixteenth element of x, instead
of on contiguous elements. Thread 0 would work on x[1000000], x[1000016], x[10000032,...;
thread 1 would handle x[1000001], x[1000017], x[10000033,...; and so on:

1 parallel for thr = 0 to 15

2 localsum = 0

3 for j = 0 to 999999

4 localsum += x[16*j+thr]

5 grandsum += localsum

Here, consecutive threads work on consecutive elements in x.1 That puts them in separate banks,
thus no conflicts, hence speedy performance.

In general, avoiding bank conflicts is an art, but there are a couple of approaches we can try.

• We can rewrite our algorithm, e.g. use the second version of the above code instead of the
first.

• We can add padding to the array. For instance in the first version of our code above, we
could lengthen the array from 16 million to 16000016, placing padding in words 1000000,
2000001 and so on. We’d tweak our array indices in our code accordingly, and eliminate bank
conflicts that way.

In the first approach above, the concept of stride often arises. It is defined to be the distance
betwwen array elements in consecutive accesses by a thread. In our original code to compute
grandsum, the stride was 1, since each array element accessed by a thread is 1 past the last access
by that thread. In our second version, the stride was 16.

1Here thread 0 is considered “consecutive” to thread 15, in a wraparound manner.

3.2. MEMORY MODULES 43

Strides of greater than 1 often arise in code that deals with multidimensional arrays. Say for
example we have two-dimensional array with 16 columns. In C/C++, which uses row-major order,
access of an entire column will have a stride of 16. Access down the main diagonal will have a
stride of 17.

Suppose we have b banks, again with low-order interleaving. You should experiment a bit to see
that an array access with a stride of s will access s different banks if and only if s and b are relatively
prime, i.e. the greatest common divisor of s and b is 1. This can be proven with group theory.

Another strategy, useful for collections of complex objects, is to set up structs of arrays rather
than arrays of structs. Say for instance we are working with data on workers, storing for each
worker his name, salary and number of years with the firm. We might naturally write code like
this:

1 s t r u c t {
2 char name [2 5] ;
3 f l o a t s a l a r y ;
4 f l o a t yrs ;
5 } x [1 0 0] ;

That gives a 100 structs for 100 workers. Again, this is very natural, but it may make for poor
memory access patterns. Salary values for the various workers will no longer be contiguous, for
instance, even though the structs are contiguous. This could cause excessive cache misses.

One solution would be to add padding to each struct, so that the salary values are a word apart
in memory. But another approach would be to replace the above arrays of structs by a struct of
arrays:

1 s t r u c t {
2 char name [1 0 0] ;
3 f l o a t s a l a r y [1 0 0] ;
4 f l o a t yrs [1 0 0] ;
5 }

3.2.3 Example: Code to Implement Padding

As discussed above, array padding is used to try to get better parallel access to memory banks. The
code below is aimed to provide utilities to assist in this. Details are explained in the comments.

1
2 // r ou t i n e s to i n i t i a l i z e , read and wr i t e
3 // padded v e r s i o n s o f a matrix o f f l o a t s ;
4 // the matrix i s nominal ly mxn, but i t s
5 // rows w i l l be padded on the r i g h t ends ,
6 // so as to enable a s t r i d e o f s down each
7 // column ; i t i s assumed that s >= n

44 CHAPTER 3. SHARED MEMORY PARALLELISM

8
9 // a l l o c a t e space f o r the padded matrix ,

10 // i n i t i a l l y empty
11 f l o a t ∗padmalloc (i n t m, i n t n , i n t s) {
12 re turn (mal loc (m∗ s ∗ s i z e o f (f l o a t))) ;
13 }
14
15 // s t o r e the va lue t o s t o r e in the matrix q ,
16 // at row i , column j ; m, n and
17 // s are as in padmalloc () above
18 void s e t t e r (f l o a t ∗q , i n t m, i n t n , i n t s ,
19 i n t i , i n t j , f l o a t t o s t o r e) {
20 ∗(q + i ∗ s+j) = t o s t o r e ;
21 }
22
23 // f e t ch the va lue in the matrix q ,
24 // at row i , column j ; m, n and s are
25 // as in padmalloc () above
26 f l o a t g e t t e r (f l o a t ∗q , i n t m, i n t n , i n t s ,
27 i n t i , i n t j) {
28 re turn ∗(q + i ∗ s+j) ;
29 }

3.3 Interconnection Topologies

3.3.1 SMP Systems

A Symmetric Multiprocessor (SMP) system has the following structure:

Here and below:

• The Ps are processors, e.g. off-the-shelf chips such as Pentiums.

• The Ms are memory modules. These are physically separate objects, e.g. separate boards
of memory chips. It is typical that there will be the same number of Ms as Ps.

• To make sure only one P uses the bus at a time, standard bus arbitration signals and/or
arbitration devices are used.

