
12.1. ITEMSET ANALYSIS 211

12.1.3 Serial Algorithms

Various algorithms have been developed to find frequent itemsets and association rules. The most famous

one for the former task is the Apriori algorithm. Even it has many forms. We will discuss one of the

simplest forms here.

The algorithm is basically a breadth-first tree search. At the root we find the frequent 1-item itemsets. In the

online bookstore, for instance, this would mean finding all individual books that appear in at least r of our

sales transaction records, where r is our threshold.

At the second level, we find the frequent 2-item itemsets, e.g. all pairs of books that appear in at least r sales

records, and so on. After we finish with level i, we then generate new candidate itemsets of size i+1 from

the frequent itemsets we found of size i.

The key point in the latter operation is that if an itemset is not frequent, i.e. has support less than the

threshold, then adding further items to it will make it even less frequent. That itemset is then pruned from

the tree, and the branch ends.

Here is the pseudocode:

set F1 to the set of 1-item itemsets whose support exceeds the threshold

for i = 2 to b

Fi = φ

for each I in Fi−1

for each K in F1

Q = I ∪ K

if support(Q) exceeds support threshold

add Q to Fi

if Fi is empty break

return ∪iFi

Again, there are many refinements of this, which shave off work to be done and thus increase speed. For

example, we should avoid checking the same itemsets twice, e.g. first {1,2} then {2,1}. This can be

accomplished by keeping itemsets in lexicographical order. We will not pursue any refinements here.

12.1.4 Parallelizing the Apriori Algorithm

Clearly there is lots of opportunity for parallelizing the serial algorithm above. Both of the inner for loops

can be parallelized in straightforward ways; they are “embarrassingly parallel.” There are of course critical

sections to worry about in the shared-memory setting, and in the message-passing setting one must designate

a manager node in which to store the Fi.

212 CHAPTER 12. APPLICATIONS TO STATISTICS/DATA MINING

However, as more and more refinements are made in the serial algorithm, then the parallelism in this algo-

rithm become less and less “embarrassing.” And things become more challenging if the storage needs of

the Fi, and of their associated “accounting materials” such as a directory showing the current tree structure

(done via hash trees), become greater than what can be stored in the memory of one node.

In other words, parallelizing the market basket problem can be very challenging. The interested reader is

referred to the considerable literature which has developed on this topic.

12.2 Probability Density Estimation

Let X denote some quantity of interest in a given population, say people’s heights. Technically, the prob-

ability density function of X, typically denoted by f, is a function on the real line with the following

properties:

• f(t) ≥ 0 for all t

• for any r < s,

P (r < X < s) =

∫ s

r

f(t) dt (12.1)

(Note that this implies that f integrates to 1.)

This seems abstract, but it’s really very simple: Say we have data on X, n sample values X1, ...,Xn, and we

plot a histogram from this data. Then f is what the histogram is estimating. If we have more and more data,

the histogram gets closer and closer to the true f.2

So, how do we estimate f, and how do we use parallel computing to reduce the time needed?

12.2.1 Kernel-Based Density Estimation

Histogram computation breaks the real down into intervals, and then counts how many Xi fall into each

interval. This is fine as a crude method, but one can do better.

No matter what the interval width is, the histogram will consist of a bunch of rectanges, rather than a smooth

curve. This problem basically stems from a lack of weighting on the data.

For example, suppose we are estimating f(25.8), and suppose our histogram interval is [24.0,26.0], with 54

points falling into that interval. Intuitively, we can do better if we give the points closer to 25.8 more weight.

2The histogram must be scaled to have total area 1. Most statistical programs have options for this.

12.2. PROBABILITY DENSITY ESTIMATION 213

One way to do this is called kernel-based density estimation, which for instance in R is handled by the

function density().

We need a set of weights, more precisely a weight function k, called the kernel. Any nonnegative function

which integrates to 1—i.e. a density function in its own right—will work. Typically k is taken to be the

Gaussian or normal density function,

k(u) =
1√
2π

e−0.5u2

(12.2)

Our estimator is then

f̂(t) =
1

nh

n∑

i=1

k

(
t − Xi

h

)
(12.3)

In statistics, it is customary to use the ̂symbol (pronounced “hat”) to mean “estimate of.” Here f̂ means

the estimate of f.

Note carefully that we are estimating an entire function! There are infinitely many possible values of t,

thus infinitely many values of f(t) to be estimated. This is reflected in (12.3), as f̂(t) does indeed give a

(potentially) different value for each t.

Here h, called the bandwidth, is playing a role analogous to the interval width in the case of histograms.

Again, this looks very abstract, but all it is doing is assigning weights to the data. Consider our example

above in which we wish to estimate f(25.8), i.e. t = 25.8 and h = 6.0. If say, X88 is 1209.1, very far as awa

from 25.8, we don’t want this data point to have much weight in our estimation of f(25.8). Well, it won’t

have much weight at all, because the quantity

u =
25.8 − 88

6
(12.4)

will be very large, and (12.2) will be tiny, as u will be way, way out in the left tail.

Now, keep all this in perspective. In the end, we will be plotting a curve, just like we do with a histogram.

We simply have a more sophiticated way to do this than plotting a histogram. Following are the graphs

generated first by the histogram method, then by the kernel method, on the same data:

214 CHAPTER 12. APPLICATIONS TO STATISTICS/DATA MINING

Histogram of x

x

F
re

qu
en

cy

0 5 10 15 20

0
10

0
20

0
30

0

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

density.default(x = x)

N = 1000 Bandwidth = 0.7161

D
en

si
ty

There are many ways to parallelize this computation, such as:

• Remember, we are going to compute (12.3) for many values of t. So, we can just have each process

compute a block of those values.

• We may wish to try several different values of h, just as we might try several different interval widths

for a histogram. We could have each process compute using its own values of h.

• It can be shown that (12.3) has the form of something called a convolution. The theory of convolution

12.2. PROBABILITY DENSITY ESTIMATION 215

would take us too far afield,3 but this fact is useful here, as the Fourier transform of a convolution can

be shown to be the product of the Fourier transforms of the two convolved components.4 In other

words, this reduces the problem to that of parallelizing Fourier transforms—something we know how

to do, from Chapter 11.

12.2.2 Histogram Computation for Images

In image processing, histograms are use to find tallies of how many pixels there are of each intensity. (Note

that there is thus no interval width issue, as there is a separate “interval” value for each possible intensity

level.) The serial pseudocode is:

for i = 1,...,numintenslevels:

count = 0

for row = 1,...,numrows:

for col = 1,...,numcols:

if image[i][j] == i: count++

hist[i] = count

On the surface, this is certainly an “embarrassingly parallel” problem. In OpenMP, for instance, we might

have each thread handle a block of rows of the image, i.e. parallelize the for row loop. In CUDA, we might

have each thread handle an individual pixel, thus parallelizing the nested for row/col loops.

However, to make this go fast is a challenge, say in CUDA, due to issues of what to store in shared memory,

when to swap it out, etc. A very nice account of fine-tuning this computation in CUDA is given in Histogram

Calculation in CUDA, by Victor Podlozhnyuk of NVIDIA, 2007 http://developer.download.

nvidia.com/compute/cuda/1_1/Website/projects/histogram256/doc/histogram.

pdf.

3

If you’ve seen the term before and are curious as to how this is a convolution, read on:

Write (12.3) as

bf(t) =

nX

i=1

1

h
k

„
t − Xi

h

«
·

1

n
(12.5)

Now consider two artificial random variables U and V, created just for the purpose of facilitating computation, defined as follows.

The random variable U takes on the values ih with probability g · 1

h
k(i), i = -c,-c+1,...,0,1,...,c for some value of c that we choose

to cover most of the area under k, with g chose so that the probabilities sum to 1. The random variable V takes on the values

X1, ..., Xn (considered fixed here), with probability 1/n each. U and V are set to be independent.

Then (g times) (12.5) becomes P(U+V=t), exactly what convolution is about, the probability mass function (or density, in the

continuous case) of a random variable arising as the sum of two independent nonnegative random variables.
4Again, if you have some background in probability and have see characteristic functions, this fact comes from the fact that the

characteristic function of the sum of two independent random variables is equal to the product of the characteristic functions of the

two variables.

216 CHAPTER 12. APPLICATIONS TO STATISTICS/DATA MINING

12.3 Clustering

Suppose you have data consisting of (X,Y) pairs, which when plotted look like this:

0 5 10 15 20

0
5

10

xy[,1]

xy
[,2

]

It looks like there may be two or three groups here. What clustering algorithms do is to form groups, both

their number and their membership, i.e. which data points belong to which groups. (Note carefully that

there is no “correct” answer here. This is merely an exploratory data analysis tool.

Clustering is used is many diverse fields. For instance, it is used in image processing for segmentation and

edge detection.

Here we have to two variables, say people’s heights and weights. In general we have many variables, say p

of them, so whatever clustering we find will be in p-dimensional space. No, we can’t picture it very easily

of p is larger than (or even equal to) 3, but we can at least identify membership, i.e. John and Mary are in

group 1, Jenny is in group 2, etc. We may derive some insight from this.

There are many, many types of clustering algorithms. Here we will discuss the famous k-means algorithm,

developed by Prof. Jim MacQueen of the UCLA business school.

The method couldn’t be simpler. Choose k, the number of groups you want to form, and then run this:

12.4. PRINCIPAL COMPONENT ANALYSIS (PCA) 217

1 # form initial groups from the first k data points (or choose randomly)

2 for i = 1,...,k:

3 group[i] = (x[i],y[i])

4 center[i] = (x[i],y[i])

5 do:

6 for j = 1,...,n:

7 find the closest center[i] to (x[j],y[j])

8 cl[j] = the i you got in the previous line

9 for i = 1,...,k:

10 group[i] = all (x[j],y[j]) such that cl[j] = i

11 center[i] = average of all (x,y) in group[i]

12 until group memberships do not change from one iteration to the next

Definitions of terms:

• Closest means in p-dimensional space, with the usual Euclidean distance: The distance from (a1, ..., ap

to (b1, ..., bp is

√
(b1 − a1)2 + ... + (bp − ap)2 (12.6)

• The center of a group is its centroid, which is a fancy name for taking the average value in each

component of the data points in the group. If p = 2, for example, the center consists of the point

whose X coordinate is the average X value among members of the group, and whose Y coordinate is

the average Y value in the group.

12.4 Principal Component Analysis (PCA)

Consider data consisting of (X,Y) pairs as we saw in Section 12.3. Suppose X and Y are highly correlated

with each other. Then for some constants c and d,

Y ≈ c + dX (12.7)

Then in a sense there is really just one random variable here, as the second is nearly equal to some linear

combination of the first. The second provides us with almost no new information, once we have the first.

In other words, even though the vector (X,Y) roams in two-dimensional space, it usually sticks close to a

one-dimensional object, namely the line (12.7).

Now think again of p variables. It may be the case that there exist r < p variables, consisting of linear

combinations of the p variables, that carry most of the information of the full set of p variables. If r is

much less than p, we would prefer to work with those r variables. In data mining, this is called dimension

reduction.

218 CHAPTER 12. APPLICATIONS TO STATISTICS/DATA MINING

It can be shown that we can find these r variables by finding the r eigenvectors corresponding to the r largest

eigenvalues of a certain matrix. We will not pursue that here, but the point is that again we have a matrix

formulation, and thus parallelizing the problem can be done easily by using methods for parallel matrix

operations.

Appendix A

Review of Matrix Algebra

This book assumes the reader has had a course in, or has self-studied, linear algebra. This appendix is

intended as a review of matrix algebra, rather than a detailed treatment of it.

A.1 Terminology and Notation

A matrix is a rectangular array of numbers. A vector is a matrix with only one row (a row vector or only

one column (a column vector).

The expression, “the (i,j) element of a matrix,” will mean its element in row i, column j.

Please note the following conventions:

• Capital letters, e.g. A and X, will be used to denote matrices and vectors.

• Lower-case letters with subscripts, e.g. a2,15 and x8, will be used to denote their elements.

• Capital letters with subscripts, e.g. A13, will be used to denote submatrices and subvectors.

If A is a square matrix, i.e. one with equal numbers n of rows and columns, then its diagonal elements are

aii, i = 1,...,n.

The norm (or length) of an n-element vector X is

‖ X =

√√√√
n∑

i=1

x2
i (A.1)

219

220 APPENDIX A. REVIEW OF MATRIX ALGEBRA

A.1.1 Matrix Addition and Multiplication

• For two matrices have the same numbers of rows and same numbers of columns, addition is defined

elementwise, e.g.




1 5
0 3
4 8



 +




6 2
0 1
4 0



 =




7 7
0 4
8 8



 (A.2)

• Multiplication of a matrix by a scalar, i.e. a number, is also defined elementwise, e.g.

0.4




7 7
0 4
8 8



 =




2.8 2.8
0 1.6

3.2 3.2



 (A.3)

• The inner product or dot product of equal-length vectors X and Y is defined to be

n∑

k=1

xkyk (A.4)

• The product of matrices A and B is defined if the number of rows of B equals the number of columns

of A (A and B are said to be conformable). In that case, the (i,j) element of the product C is defined

to be

cij =

n∑

k=1

aikbkj (A.5)

For instance,




7 6
0 4
8 8




(

1 6
2 4

)
=




19 66
8 16
24 80



 (A.6)

It is helpful to visualize cij as the inner product of row i of A and column j of B, e.g. as shown in bold

face here:




7 6

0 4
8 8




(

1 6
2 4

)
=




7 70
8 16
8 80



 (A.7)

A.2. MATRIX TRANSPOSE 221

• Matrix multiplicatin is associative and distributive, but in general not commutative:

A(BC) = (AB)C (A.8)

A(B + C) = AB + AC (A.9)

AB 6= BA (A.10)

A.2 Matrix Transpose

• The transpose of a matrix A, denoted A′ or AT , is obtained by exchanging the rows and columns of

A, e.g.




7 70
8 16
8 80




′

=

(
7 8 8
70 16 80

)
(A.11)

• If A + B is defined, then

(A + B)′ = A′ + B′ (A.12)

• If A and B are conformable, then

(AB)′ = B′A′ (A.13)

A.3 Linear Independence

Equal-length vectors X1,...,Xk are said to be linearly independent if it is impossible for

a1X1 + ... + akXk = 0 (A.14)

unless all the ai are 0.

222 APPENDIX A. REVIEW OF MATRIX ALGEBRA

A.4 Determinants

Let A be an nxn matrix. The definition of the determinant of A, det(A), involves an abstract formula featuring

permutations. It will be omitted here, in favor of the following computational method.

Let A−(i,j) denote the submatrix of A obtained by deleting its ith row and jth column. Then the determinant

can be computed recursively across the kth row of A as

det(A) =

n∑

m=1

(−1)k+mdet(A−(k,m)) (A.15)

where

det

(
s t

u v

)
= sv − tu (A.16)

A.5 Matrix Inverse

• The identity matrix I of size n has 1s in all of its diagonal elements but 0s in all off-diagonal elements.

It has the property that AI = A and IA = A whenever those products are defined.

• The A is a square matrix and AB = I, then B is said to be the inverse of A, denoted A−1. Then BA =

I will hold as well.

• A−1 exists if and only if its rows (or columns) are linearly independent.

• A−1 exists if and only if det(A) 6= 0.

• If A and B are square, conformable and invertible, then AB is also invertible, and

(AB)−1 = B−1A−1 (A.17)

A.6 Eigenvalues and Eigenvectors

Let A be a square matrix.1

1For nonsquare matrices, the discussion here would generalize to the topic of singular value decomposition.

A.6. EIGENVALUES AND EIGENVECTORS 223

• A scalar λ and a nonzero vector X that satisfy

AX = λX (A.18)

are called an eigenvalue and eigenvector of A, respectively.

• A matrix U is said to be orthogonal if its rows have norm 1 and are orthogonal to each other, i.e. their

inner product is 0. U thus has the property that UU ′ = I i.e. U−1 = U .

• If A is symmetric and real, then it is diagonalizable, i.e there exists an orthogonal matrix U such that

U ′AU = D (A.19)

for a diagonal matrix D. The elements of D are the eigenvalues of A, and the columns of U are the

eigenvectors of A.

