
86 CHAPTER 4. INTRODUCTION TO OPENMP

operator initial value

+ 0

- 0

* 1

& bit string of 1s

| bit string of 0s

ˆ 0

&& 1

|| 0

The lack of other operations typically found in other parallel programming languages, such as min and max,

is due to the lack of these operators in C/C++. The FORTRAN version of OpenMP does have min and max.3

4.4 The Task Directive

This is new to OpenMP 3.0. The basic idea is this: When a thread encounters a task directive, it arranges

for some thread to execute the associated block. The first thread can continue.

Here’s a Quicksort example:

1 // OpenMP example program: quicksort; not necessarily efficient

2

3 void swap(int *yi, int *yj)

4 { int tmp = *yi;

5 *yi = *yj;

6 *yj = tmp;

7 }

8

9 int *separate(int *x, int low, int high)

10 { int i,pivot,last;

11 pivot = x[low]; // would be better to take, e.g., median of 1st 3 elts

12 swap(x+low,x+high);

13 last = low;

14 for (i = low; i < high; i++) {

15 if (x[i] <= pivot) {

16 swap(x+last,x+i);

17 last += 1;

18 }

19 }

20 swap(x+last,x+high);

21 return last;

22 }

23

24 // quicksort of the array z, elements zstart through zend; set the

25 // latter to 0 and m-1 in first call, where m is the length of z;

26 // firstcall is 1 or 0, according to whether this is the first of the

27 // recursive calls

3Note, though, that plain min and max would not help in our Dijkstra example above, as we not only need to find the minimum

value, but also need the vertex which attains that value.

4.4. THE TASK DIRECTIVE 87

28 void qs(int *z, int zstart, int zend, int firstcall)

29 {

30 #pragma omp parallel

31 { int part;

32 if (firstcall == 1) {

33 #pragma omp single nowait

34 qs(z,0,zend,0);

35 } else {

36 if (zstart < zend) {

37 part = separate(z,zstart,zend);

38 #pragma omp task

39 qs(z,zstart,part-1,0);

40 #pragma omp task

41 qs(z,part+1,zend,0);

42 }

43

44 }

45 }

46 }

47

48 main(int argc, char**argv)

49 { int i,n,*w;

50 n = atoi(argv[1]);

51 w = malloc(n*sizeof(int));

52 for (i = 0; i < n; i++) w[i] = rand();

53 qs(w,0,n-1,1);

54 if (n < 25)

55 for (i = 0; i < n; i++) printf("%d\n",w[i]);

56 }

The code

if (firstcall == 1) {

#pragma omp single nowait

qs(z,0,zend,0);

gets things going. We want only one thread to execute the root of the recursion tree, hence the need for the

single clause. After that, the code

part = separate(z,zstart,zend);

#pragma omp task

qs(z,zstart,part-1,0);

sets up a call to a subtree, with the task directive stating, “OMP system, please make sure that this subtree

is handled by some thread.”

This really simplifies the programming. Compare this to the Python multiprocessing version in Section 3.5,

where the programmer needed to write code to handle the work queue.

There are various refinements, such as the barrier-like taskwait clause.

