
Introduction to GPU
Programming with CUDA

Shengren Li
shrli@ucdavis.edu

● Jan 13 and 20
● Chapter 5
● CUDA-enabled GPU

Device (GPU)

Host (CPU)

GPU Memory (Global Memory)

Main Memory

Streaming
Multiprocessors
(SM)

Streaming
Multiprocessors
(SM)

CPU

Streaming
Multiprocessors
(SM)

● Core = Streaming Processor
(SP)

● One SP runs one thread at a
time slice

● 32 SPs runs a warp of 32
threads

● Threads in a warp share
instruction unit

● Single Instruction Multiple
Thread (SIMT)

● Single Instruction Multiple
Data (SIMD)

● All the threads execute the
same program, kernel
function

CUDA Threads

● All threads run the same code
● Each thread has an ID that it uses to

compute memory addresses and make
control decisions

Typical CUDA Program - Host

1. Allocate host memory (input & output)
2. Put input data into host memory
3. Allocate device memory (input & output)
4. Copy input data from host memory to device

memory
5. Set launch configuration
6. Launch kernel function
7. Copy output data from device memory to

host memory
8. Release memory (host & device)

Typical CUDA Program - Device

Kernel = function that runs on the device
1. Figure out the piece of input data assigned

to the current thread
2. Read input data from device memory
3. Computation (input -> output)
4. Write output data to device memory

Example

Set all 256 elements in an array to 7

Example on page 112

0 1 2 3

4 5 6 7

8 9 10 11

13 14 1512

4 x 4

6

22

38

54

Calculate row sums

Example on page 112

0 1 2 3

4 5 6 7

8 9 10 11

13 14 1512

4 x 4

6

22

38

54

Calculate row sums

thread 0

thread 1

thread 3

thread 2

+ + + =

Example on page 112

● line 23:26 Pointers to host/device input/output
● line 29, 43 Allocate host memory
● line 31:36 Generate input data
● line 38, 44 Allocate device memory
● line 40 Copy input from host to device
● line 46:47 Set launch configuration
● line 49 Launch kernel function
● line 53 Copy output from device to host
● line 57:60 Release memory

Example on page 112

● line 13 Figure out the piece of data
assigned to this thread
○ m[rownum * n + k] k = 0:n-1

● line 14:16 Read input from device memory
and compute output

● line 17 Write output to device memory

Example

Create a matrix that looks like this:

0 1

4 5

2 3

6 7

8 9

12 13

10 11

14 15

4x4 Grid

4x4 Block

gridDim.x = 4 gridDim.y = 4
blockIdx.x = 0:3 blockIdx.y = 0:3
blockDim.x = 4 blockDim.y = 4
threadIdx.x = 0:3 threadIdx.y = 0:3
grid_width number of columns of the matrix (16)
index_x, index_y row/column index in the matrix (0:15, 0:15)
index matrix element index in 1D array (0:255)
result submatrix index (0:15)

Compilation

MyProgram.cu

nvcc MyProgram.cu -o MyProgram

-V // CUDA toolkit version

-arch=sm_20 // Enable printf

-Xptxas -v // Kernel memory usage

16 SMs
1 SM 32 SPs

1 SP

Example on page 132

Finding the mean number of mutual outlinks

0 1 1 0 1 0 0 1

1 0 1 1 1 1 0 0

vertex i

vertex j

● Adjacency matrix
● m[i][j] = 1 if

there is an edge
(outlink) from
vertex i to j

● e.g., Vertex i and j
(pair(i, j)) have 2
mutual outlinks

Example on page 132

● The thread with global thread index i will count
mutual outlinks for all the pairs (i, j) where i < j.
i.e., between vertex i and all the vertices with a
larger index

● e.g.,
thread 0 processes (0, 1), (0, 2), …, (0, n-1)
thread 5 processes (5, 6), (5, 7), …, (5, n-1)

Example on page 132

● line 24:30 Declarations
● line 28, 32 Allocate host memory
● line 34:40 Generate input
● line 42, 47 Allocate device memory
● line 44, 48 Copy input from host to device
● line 50:51 Set launch configurations
● line 53 Launch kernel
● line 57 Copy output from device to host
● line 66 htot / (n * (n - 1) / 2.0)
● line 68:70 Release memory

Example on page 132

● line 11:12 Identify the thread itself
● line 14 Set vertex i
● line 15 Set vertex j (j > i)
● line 16:17 Enumerate common vertex k,

increment 'sum' if there are i->k and j->k
● line 20 tot += sum using atomic operation

Example on page 132

● number of threads < number of vertices
● (line 14) When totth < n, thread i works for

vertex i, i + totth, i + totth * 2, …
● e.g., totth=4, n=10,

thread 1 works for vertex 1, 5 and 9
thread 2 works for vertex 2 and 6

Example on page 132

mean = total number of mutual outlinks / number of pairs

● (line 20) All the threads add their counts to the
total count, an integer variable in global memory

● atomicAdd (page 127)
● Atomic operation is guaranteed to be performed

without interference from other threads
● Avoid race conditions
● Serialization can be quite expensive

Example of __device__ function

Registers

Comparisons on page 118 and 123
speed and lifetime

Example on page 119-120

Double the values in an array

One value per thread

● Declare, allocate and use shared memory
● Shared memory is allocated per thread

block, so all threads in the block have
access to the same shared memory

Example on page 119-120

● line 21:24 Declarations vsize
● line 26 Allocate host memory
● line 28:30 Generate input
● line 32 Allocate device memory
● line 34 Copy input from host to device
● line 36:37 1 block with n threads
● line 39 Launch kernel <<<dimGrid, dimBlock, vsize>>>

● line 43 Copy output from device to host
● line 45 Print output
● line 47:48 Release memory

Example on page 119-120

● line 11 Declare the shared memory array
(sv) using an unsized extern array syntax.
The size is determined from the third launch
configuration parameter (vsize).

● line 12 Identify the thread itself
● line 15 Read the value assigned to this

thread from global memory (dv), double it,
and write the result to shared memory (sv)

● line 16 Read the result from shared memory
and write it to global memory

Two ways to declare/allocate arrays
in shared memory

● Dynamic shared memory
○ Previous example
○ Use the optional third kernel launch configuration

parameter to specify the size
● Static shared memory

○ Size is known at compile time
○ (page 119) __shared__ int abcsharedmem[100];

Example on page 137

Finding Cumulative Sums (inclusive prefix sum)

output[k] = input[0] + input[1] + … + input[k]

e.g.,
input: 3 1 2 0 3 0 1 2

output: 3 4 6 6 9 9 10 12

Launch a single block and csize=4

Example on page 137

……

thread 0 thread 1 thread 2 thread nt-1

2 1 0 5 3 3 0 7 1 0 2 9

2 3 3 8 3 6 6 13 1 1 3 12

input

scan within chunk

calculate basebase=8 base=8+13

2 3 3 8 11 14 14 21 22 22 24 33 add base

Example on page 137

● line 15 identify the thread itself
● line 16 'csize' chunk size
● line 17 starting position of the chunk

assigned to this thread
● line 19:22 Calculate prefix sum within chunk
● line 24:28 Calculate 'base', which is the sum

of the chunks in front of this chunk
● line 30:33 Add 'base' to this chunk
● line 23, 29 Sync among threads to eliminate

Read After Write hazards

Example on page 134

Finding Prime Numbers

Build a table where
isprime[k] = 1 if k is a prime number
isprime[k] = 0 otherwise

Example on page 134
Initialization (1 for odds, 0 for evens)

Cross out multiples for each prime

Copy the table from shared memory to global memory

2 3 4 5 6 7 8 9 10 11 ... n-4 n-3 n-2 n-1 n

2 3 4 5 6 7 8 9 10 11 ... n-4 n-3 n-2 n-1 n

For prime 'm'

2m 3m 4m 5m 6m 7m ... (k-2)m (k-1)m km

Example on page 134

● line 83 Find primes among 1, …, 'n'
● line 84 'nth' Number of threads
● line 85:86 'hprimes' and 'dprimes' are isprime

tables on host and device
● line 87 Shared memory size 'psize'
● line 92:95 Launch the kernel with a single block

having 'nth' threads and 'psize' bytes shared
memory

● line 97:100 cudaThreadSynchronize should be
called before cudaGetLastError

● sprimes -> dprimes -> hprimes

Example on page 134

● line 54 Declare 'sprimes'
● line 58 Call 'initsp' (jump to line 17)
● line 22 'chunk' chunk size
● line 23 'startsetsp' starting position of this

chunk
● line 24:25 'endsetsp' ending position of this

chunk
● line 27:31 Initialize within chunk, 1 for odds

and 0 for evens
● line 33 Sync (then jump to line 59)

Example on page 134

● line 63:64 Get the next prime number 'm'
● line 66 'maxmult' number of multiples of 'm'
● line 68 'chunk' chunk size
● line 69 'startmult' starting position
● line 70:71 'endmult' ending position
● line 74 Cross out multiples assigned to this

thread
● line 72 ?
● line 76 ?
● line 78 Call 'cpytoglb' (jump to line 38)

Example on page 134

● line 41 'chunk' chunk size
● line 42 'startcpy' starting position
● line 43:44 'endcpy' ending position
● line 45 Copy from shared memory to global

memory
● line 46 ?

Example on page 138

Transforming an Adjacency Matrix

input: n by n adjacency matrix where
adjm[n*i+j] = 1 if edge i->j exists
adjm[n*i+j] = 0 otherwise

output: nout by 2 matrix where 'nout' is the
number of edges and the edge x is from vertex
outm[2*x] to outm[2*x+1]

Example on page 138
Count the number of edges started from each vertex
One thread per vertex(row)

0 1 2 3 4 5

0 1 1 0 1 0

1 2 4 0 1 0 count=3
row i

Compute starting positions in output array for each vertex
Done by CPU

0 1 2 3

2 1 0 5

0 2 3 3starts

counts

0 2 3edges

Example on page 138
Write the starting vertex and ending vertex for each edge
One thread per vertex(row)

0 1 2 3 4 5

1 2 4 0 1 0 count=3row i

i 1 i 2 i 4 … …

Example on page 138

● line 127 Call 'transgraph' (jump to line 68)
● line 84:85 gsize * bsize = n
● line 87 Launch tgkernel1 (jump to line 31)
● line 33 row 'me', vertex 'me'
● line 34:38 Count the number of edges and

write target vertex indices (overwrite 'dadjm')
● line 39 Write 'dcounts[me]', the number of

edges started from vertex 'me' (jump to line
89)

● line 90 Call 'cumulcounts' (jump to line 60)

Example on page 138

● line 61:65 Compute the exclusive prefix
sums of 'hcounts' and save them as 'hstarts'

● line 91 '*nout' the total number of edges
● line 93 Launch tgkernel2 (jump to line 43)
● line 49 'outrow' starting position in 'doutm'

for edges started from vertex 'me'
● line 50 'num1si' number of edges started

from vertex 'me'
● line 51:56 Write the edges

(me, dadjm[n*me+j])

GPU Spec
./deviceQuery Starting...

...

Detected 1 CUDA Capable device(s)

...

Device 0: "GeForce GTX 460"

 CUDA Driver Version / Runtime Version 6.5 / 6.5

 CUDA Capability Major/Minor version number: 2.1

 Total amount of global memory: 1023 MBytes (1072889856 bytes)

 (7) Multiprocessors, (48) CUDA Cores/MP: 336 CUDA Cores

...

 Total amount of shared memory per block: 49152 bytes

 Total number of registers available per block: 32768

...

 Maximum number of threads per block: 1024

 Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

 Max dimension size of a grid size (x,y,z): (65535, 65535, 65535)

...

Reference

● http://docs.nvidia.com/cuda/
● http://www.sdsc.

edu/us/training/assets/docs/NVIDIA-02-
BasicsOfCUDA.pdf

● https://code.google.com/p/stanford-cs193g-
sp2010/wiki/ClassSchedule

● http://www.nvidia.
com/content/pdf/fermi_white_papers/nvidia_f
ermi_compute_architecture_whitepaper.pdf

http://docs.nvidia.com/cuda/
http://docs.nvidia.com/cuda/
http://www.sdsc.edu/us/training/assets/docs/NVIDIA-02-BasicsOfCUDA.pdf
http://www.sdsc.edu/us/training/assets/docs/NVIDIA-02-BasicsOfCUDA.pdf
http://www.sdsc.edu/us/training/assets/docs/NVIDIA-02-BasicsOfCUDA.pdf
http://www.sdsc.edu/us/training/assets/docs/NVIDIA-02-BasicsOfCUDA.pdf
https://code.google.com/p/stanford-cs193g-sp2010/wiki/ClassSchedule
https://code.google.com/p/stanford-cs193g-sp2010/wiki/ClassSchedule
https://code.google.com/p/stanford-cs193g-sp2010/wiki/ClassSchedule
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf

