
Chapter 6

Neighborhood-Based Methods

One of the simplest and yet often most effective recommender system methods is based on this
natural principle:

Say we have a user U, for whom we want to predict the rating of an item I. We find the
users in our existing data D who are most similar to U and who have seen rating I, and
take our predicted value to be the average of those users’ ratings of I.

Note that here the user U might be in D or might be new. As long as I is in D, we are in business.

Of course, we must define “similar.” There are two common ways to do this. Recall our notation p
denoting our number of predctors/features. This would include our user and item IDs, and possible
covariates. Then consider these approaches:

• Define some distance function, and then find the k closest people in D to U.

• Develop a system of rectangles — hyperrectangles in p-dimensional space — and determine
which one U falls in.

The first is basically k-Nearest Neighbor regression (kNN), a classic statistics/machine learning
technique, though note that a major difference here is that we only consider users in D who have
rated the same products as N.

The second can be viewed as something called kernel regression, but we will add a tree-based
structure, with the result termed Classification and Regression Analysis (CART) for a single tree
and random forests for a collection of trees. In the latter, we create a collection of systems of
rectangles and average over them.1

1The terms “CART” and “random forests” have many variations, but we take the terms as generic.

77

78 CHAPTER 6. NEIGHBORHOOD-BASED METHODS

6.1 kNN

Let’s see how kNN works.

6.1.1 Notation

As before, let A denote the ratings matrix. The element aij in row i, column j, is the rating that
user i has given/would give to item j. In the latter case, aij is unknown, and its predicted value
will be denoted by �aij . Following R notation, we will refer to the unknown values as NAs.

Note that for large applications, the matrix A is far too large to store in memory. One could resort to
storage schemes for sparse matrices, e.g. Compresed Row Storage, but here we will simply use A to
help explain concepts. In the rectools package,2 the input data is run through formUserData()
and algorithms use that instead of A. This function organizes the data into an R list, one element
per user. Each such element records the ratings made by that user.

Let’s refer to a new case to be predicted as NC, i.e. from above, predicting how a user U would
rate an item I.

6.1.2 User-Based Filtering

In predicting how a given user would rate a given item, we first find all users that have rated the
given item, then determine which of those users are most similar to the given user. Our prediction
is then the average of the ratings of the given item among such “similar” users. A corresponding
approach based on similar items, item-based filtering, is used as well. We focus on such methods in
this chapter.

6.1.3 (One) Implementation

Below is code from rectools (somewhat simplified).3 The arguments are:

• origData: The original dataset, after having been run through formUserData().

• newData: The element of origData for NC.4

• newItem: ID number of the item to be predicted for NC.

2https://github.com/matloff/rectools
3This function was written largely by Vishal Chakraborti.
4If NC is new, not in the database (called cold start), we synthesize a list element for it, assuming NC has rated

at least one item.

6.1. KNN 79

• k: The number(s) of nearest neighbors. Can be a vector.

Here is an example of using formUserData() on the MovieLens data:5

> head(ml)

V1 V2 V3

1 196 242 3

2 186 302 3

3 22 377 1

4 244 51 2

5 166 346 1

6 298 474 4

> mlud <- formUserData(ml)

> mlud [[3]]

$userID

[1] "3"

$itms

[1] 335 245 337 343 323 331 294 332 328 334 350 341 318 300

[15] 345 299 324 348 351 330 327 307 272 354 264 349 321 260

[29] 268 288 355 320 258 339 342 303 329 317 181 338 302 322

[43] 352 271 333 344 326 319 325 347 336 353 340 346

$ratings

335 245 337 343 323 331 294 332 328 334 350 341 318 300 345

1 1 1 3 2 4 2 1 5 3 3 1 4 2 3

299 324 348 351 330 327 307 272 354 264 349 321 260 268 288

3 2 4 3 2 4 3 2 3 2 3 5 4 3 2

355 320 258 339 342 303 329 317 181 338 302 322 352 271 333

3 5 2 3 4 3 4 2 4 2 2 3 2 3 2

344 326 319 325 347 336 353 340 346

4 2 2 1 5 1 1 5 5

attr(,"class")

[1] "usrDatum"

So, for any given user, mlud will show the items rating by this user and the ratings the user has
given to those items. Here we see that user 3 has rated items 335, 245,, 337, 343,..., with ratings
1,1,1,3,...

5The data have been read from disk without converting to R factors.

80 CHAPTER 6. NEIGHBORHOOD-BASED METHODS

1 predict.usrData <- function(origData ,newData ,newItem ,k)

2 {

3 # we first need to narrow origData down to the users who

4 # have rated newItem

5
6 # here oneUsr is one user record in origData; the function will look for a

7 # j such that element j in the items list for this user matches the item

8 # of interest , newItem; (j,rating) will be returned

9
10 checkNewItem <- function(oneUsr) {

11 whichOne <- which(oneUsr$itms == newItem)

12 if (length(whichOne) == 0) {

13 return(c(NA ,NA))

14 } else return(c(whichOne ,oneUsr$ratings[whichOne]))

15 }

16
17 found <- as.matrix(sapply(origData ,checkNewItem))

18 # description of ’found ’:

19 # found is of dimensions 2 by number of users in training set

20 # found[1,i] = j means origData [[i]]$itms[j] = newItem;

21 # found[1,i] = NA means newItem wasn ’t rated by user i

22 # found[2,i] = rating in the non -NA case

23
24 # we need to get rid of the users who didn ’t rate newItem

25 whoHasIt <- which(!is.na(found [1 ,]))

26 origDataRatedNI <- origData[whoHasIt]

27 # now origDataRatedNI only has the relevant users , the ones who

28 # have rated newItem , so select only those columns of the found matrix

29 found <- found[,whoHasIt ,drop=FALSE]

30
31 # find the distance from newData to one user y of origData; defined for

32 # use in sapply () below

33 onecos <- function(y) cosDist(newData ,y,wtcovs ,wtcats)

34 cosines <- sapply(origDataRatedNI ,onecos)

35 # the vector cosines contains the distances from newData to all the

36 # original data points who rated newItem

37
38 # action of findKnghbourRtng (): find the mean rating of newItem in

39 # origDataRatedNI , for ki (= k[i]) neighbors

40 #

6.1. KNN 81

41 # if ki > neighbours present in the dataset , then the

42 # number of neighbours is used

43 findKnghbourRtng <- function(ki){

44 ki <- min(ki , length(cosines))

45 # nearby is a vector containing the indices of the ki closest neighbours

46 nearby <- order(cosines ,decreasing=FALSE)[1:ki]

47 mean(as.numeric(found[2, nearby]))

48 }

49 sapply(k, findKnghbourRtng)

50 }

6.1.4 Not Really a Distance

Note that the distances were computed by the function cosDist(), which computes a “cosine”
similarity:

find cosine distance between x and y, objects

of ’usrData ’ class

#

only items rated in both x and y are used; if none

exist , then return NaN

#

wtcovs: weight to put on covariates; NULL if no covs

wtcats: weight to put on item categories; NULL if no cats

cosDist <- function(x,y,wtcovs=NULL ,wtcats=NULL)

{

rated items in common

commItms <- intersect(x$itms ,y$itms)

if (length(commItms)==0) return(NaN)

where are those common items in x and y?

xwhere <- which(!is.na(match(x$itms ,commItms)))

ywhere <- which(!is.na(match(y$itms ,commItms)))

xvec <- x$ratings[xwhere]

yvec <- y$ratings[ywhere]

if (!is.null(wtcovs)) {

xvec <- c(xvec ,wtcovs*x$cvrs)

yvec <- c(yvec ,wtcovs*y$cvrs)

}

if (!is.null(wtcats)) {

82 CHAPTER 6. NEIGHBORHOOD-BASED METHODS

xvec <- c(xvec ,wtcats*x$cats)

yvec <- c(yvec ,wtcats*y$cats)

}

xvec %*% yvec / (l2a(xvec) * l2a(yvec))

}

l2a <- function(x) sqrt(x %*% x)

Basically, the “distance” between two rows u and v of A is defined by

u�v
||u||2 ||v||2

(6.1)

This not really a distance,6 but it is a common measure of similarity between two vectors in machine
learning. In two or three dimensions, it really is the cosine of the angle between u and v.

Note that larger cosines mean the vectors are more similar. We find the k most similar rows in D
to U, and average their ratings of the given item.

6.1.5 Regression Analog

Recall the method of k-nearest neighbor (kNN) regression estimation from Chapter 3, involving
prediction of weight from height and age:

To estimate E(W |H = 70, A = 28), we could find, say, the 25 people in our sample for
whom (H,A) is closest to (70,28), and average their weights to produce our estimate of
E(W |H = 70, A = 28).

So kNN RS is really the same as kNN regression

6.1.6 Choosing k

As we have already seen with RS, regression and machine learning methods, the typical way to
choose a model is to use cross-validation. This is true for kNN RS as well; we can choose the value
of k via cross-validation.

6IN math terms, it’s not a metric.

6.2. CART AND RANDOM FORESTS 83

6.1.7 Item-Based Filtering

Consider again our setting in which we wish to predict the rating user U would give to item I.
We could switch the above procedure, trading rows for columns. We would find the columns
corresponding to items U has rated, then find the closest k of those columns to column I. The
ratings given by U in those closest column would then be averaged to yield our prediction.

6.1.8 Covariates

To accommodate covariates, we simply add covariate columns to the input matrix, say now with
columns ’userId’, ’itemId’, ’rating’ and age’. Note that they figure into the distance measure, just
like the user and item I dummies.

6.2 CART and Random Forests

CART is based on forming a recursive partitioning of the data space. First the space is split in
two, then each of the two parts is split in two, and so on, forming a binary tree. Splitting along a
branch stops when some criterion is no longer met.

6.2.1 Motivating Example

Let’s illustrate CART with the R package partykit.7 We’ll predict weight from height and age in
the baseball player data.

> library(regtools)

> data(mlb)

> mlb <- mlb[,c(4:6)]

> head(mlb)

Height Weight Age

1 74 180 22.99

2 74 215 34.69

3 72 210 30.78

4 72 210 35.43

5 73 188 35.71

6 69 176 29.39

> ctout <- ctree(Weight ∼ .,data=mlb)

7The name is an allusion to the recursive partioning nature of CART.

84 CHAPTER 6. NEIGHBORHOOD-BASED METHODS

Here is the tree that is produced:

> node_party(ctout)

[1] root

| [2] V2 <= 73

| | [3] V2 <= 70

| | | [4] V3 <= 29.56 *

| | | [5] V3 > 29.56 *

| | [6] V2 > 70

| | | [7] V3 <= 32.51

| | | | [8] V2 <= 72 *

| | | | [9] V2 > 72 *

| | | [10] V3 > 32.51 *

| [11] V2 > 73

| | [12] V2 <= 75

| | | [13] V3 <= 27.55

| | | | [14] V2 <= 74 *

| | | | [15] V2 > 74 *

| | | [16] V3 > 27.55 *

| | [17] V2 > 75

| | | [18] V2 <= 79

| | | | [19] V3 <= 26.03 *

| | | | [20] V3 > 26.03 *

| | | [21] V2 > 79 *

We’ll look more at the tree shortly, but first suppose we wish to predict the weight of a player who
is 72 inches tall, age 31.

> predict(ctout ,data.frame(Height =72,Age =31))

1

189.9091

Where did that come from? Look at the tree. Height ≤ 73? Yes, so go to node 3. Height ≤ 70?
No, go to node 6, etc., winding up at node 8. The asterisk indicates a leaf node, so we’re done
traversing the tree.‘ No, what is the mean weight in that node?

> ht <- mlb$Height

> age <- mlb$Age

> mean(mlb [70 < ht & ht <= 72 & age <= 32.51 ,]$Weight)

[1] 189.9091

6.2. CART AND RANDOM FORESTS 85

6.2.2 Use in Recommender Systems

Clearly, it would be difficult to use CART directly on, say, the MovieLens data. Since the user
and item IDs are not ordinal, i.e. do not have an inherent underlying ordering, we’d need to form
dummy variables, and thus test for one of them at a time. The tree would be greatly unbalanced,
to the right, and we’d have a computational problem, at the least.

But actually, it’s a lot worse than that. Think of a node “User ID = 168?” In cases where we
take the left branch, i.e. the data point is indeed for user 168, the next question might be, say,
Item ID = 12?” The key point is that there will be at most 1 data point satisfying both
conditions. That’s not enough to make a good tree. And indeed, CART software typically sets a
minimum node size as a hyperparameter; for ctree(), it’s minsplit.

An alternative is to do an embedding of the user and item ID data, a form of dimension reduction.
What we could do here is replace each user ID by the mean rating given by that user, and do the
same for the movies:

> userMeans <- tapply(ml$V3 ,ml$V1 ,mean)

> itemMeans <- tapply(ml$V3 ,ml$V2 ,mean)

> mlemb <- mlb

> mlemb$V1 <- userMeans[ml$V2]

> mlemb$V2 <- itemMeans[ml$V2]

> mlemb$V1 <- as.vector(mlemb$V1)

> mlemb$V2 <- itemMeans[ml$V2]

> mlemb$V2 <- as.vector(mlemb$V2)

> ctout <- ctree(V3 ∼ .,data=mlemb)

We could then use predict() as before.

6.2.3 Tuning Parameters

The ctree() function has various tuning parameters. We saw one of them above, minsplit. An-
other is maxdepth, the maximum number of levels we wish to allow in the tree. The default value,
0, means no limit. You can see in the output above the ctree() built us a 5-level tree. The tuning
parameters must be set via the function ctree control().

The return value of ctree() has class, of course, ’party’. It has various generic functions. We saw
predict() above; print() gives output similar to, but a little more detailed than, node party().

Another is plot(), which due to screen space issues, is only usable for a few levels. Here we set
maxdepth to 3,

86 CHAPTER 6. NEIGHBORHOOD-BASED METHODS

> ctout <- ctree(V3 ∼ .,data=mlemb ,control = ctree_control(maxdepth =3))

> plot(ctout)

l

Actually, the plotting comes from the fact that ctout is also of class ’BinaryTree’

6.2.4 Covariates

Covariates are easily handled, e.g.

ctout <- ctree(V3 ∼ V1+V2+age+gender ,data=mlemb)

6.2. CART AND RANDOM FORESTS 87

6.2.5 Random Forests

Some years after usage of CART became widespread, there was concern that the procedure was too
sensitive to small changes in the data. Consider the root node, for instance. If the data is changed
slightly, that first split may change somewhat, with the change cascading down the entire tree. In
other words, the tree is quite subject to sampling variation, meaning in turn that the predicted
value of any particular future case will have a higher variance.

The solution was to generate many trees, and combine the results. New trees are generated by
resampling from our original data: For a dataset of n data points, we randomly sample n times,
with replacement, and run CART on that new sample. We then predict a new case by obtaining
a prediction from each tree, then aggregating the predictions: In a regression setting, we average
all the predicted values, while in a classification setting, our final prediction is whichever class was
predicted most often aomong the various trees. The resampling is an example of the bootstrap, so
the entire process is called bootstrap aggregating, or bagging.

The original idea for all this came from Tin Kam Ho. Leo Breiman, one of the developers of CART,
refined it and coined the term random forests.

The partykit package includes the function cforest() for this technique.

