ECS 256 - Project Bias, Variance and Parsimony in Regression Analysis

Xinbo Wang, Divya Chitimalla, Abhishek Roy, Aveek Das

Bias Calculation for Linear Model

 Objective of Linear Regression is to minimize the mean square error

$$E = \text{Mean Squared Error (MSE)} = \frac{1}{N} \sum_{i=1}^{N} (m_{Y;X}(t_i) - \hat{m}_{Y;X}(t_i))^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} (m_{Y;X}(t_i) - \beta t_i)^2$$

For the optimal estimate of slope we take the derivate of the error with respect to slope and equate to zero

$$\frac{\partial E}{\partial \beta} = 0$$

Bias Calculation for Linear Model

Doing the calculus we obtain the slope as

$$\Rightarrow \beta = \frac{\frac{1}{N} \sum_{i=1}^{N} t_i \cdot m_{Y;X}(t_i)}{\frac{1}{N} \sum_{i=1}^{N} t_i^2}$$

For a very large value of N we have

$$N \to \infty$$

$$\beta \to \frac{E(tm_{Y;X}(t))}{E(t^2)} = \frac{E(t^{1.75})}{E(t^2)}$$

2a – *dimension reduction* Parsimony

- Problem with Significance Testing –
 Everything is significant in Big Data Sets
- Prediction accuracy criterion (PAC) 1-k fits your definition of "almost."
- Adjusted R² Another metric to decide the accuracy of the reduced model

Functions and Structure

Main function that takes in the full model, PAC value, Model type to output the parsimonious model

prsm(y,x,k=0.01,predacc=ar2,crit=NULL,printdel=F)
Function to return summary of generalized linear model

aiclogit (y,x)

Function to return summary of linear model

▶ ar2 (y,x)

Function to return the reduced data set

findRes (index, nmax)

Results for 2a using Diabetics Data

When using linear model

full outcome = 0.2959093 deleted Thick new outcome = 0.2968178 deleted Insul new outcome = 0.2962828 The variables used in this model are: NPreg Gluc BP BMI Genet Age

When using generalized linear model full outcome = 741.4454

deleted Thick new outcome = 739.4534 deleted Insul new outcome = 739.4617 deleted BP new outcome = 744.5088 deleted Age new outcome = 744.3059 The variables used in this model are: NPreg Gluc BMI Genet

2b – Simulation using known distribution

Let $X_1,...,X_{10}$ be i.i.d. U(0,1), with

 $m_X(t) = t_1 + t_2 + t_3 + 0.1 t_4 + 0.01 t_5$ and with the distribution of Y given X being

U(m-1,m+1), where m means m_X

2b - Simulation Results

When n = 100, k = 0.01

First run : The variables used in this model are: x1 x2 x3 x4 x10 Second run:The variables used in this model are: x1 x2 x3 x5 x6 x8 Third run: The variables used in this model are: x1 x2 x3 x5 x6

When n = 100, k = 0.05First run : The variables used in this model are: x1 x2 x3Second run:The variables used in this model are: x1 x2 x3Third run : The variables used in this model are: x1 x2 x3

when n = 1000, k = 0.01First run : The variables used in this model are: x1 x2 x3 x6 x8 x10 Second run: The variables used in this model are: x1 x2 x3 x5

Third run : The variables used in this model are: x1 x2 x3 x4

2b - Functions and Structure

- Function to test the model using simulation test(n,k)
- Function to calculate the known distribution calY(x)

2b - Simulation Results

when n = 1000, k = 0.05first run : The variables used in this model are: x1 x2 x3 Second run: The variables used in this model are: x1 x2 x3 Third run :The variables used in this model are: x1 x2 x3

when n = 10000, k = 0.01first run : The variables used in this model are: x1 x2 x3 x10 Second run: The variables used in this model are: x1 x2 x3 x8 x9 Third run : The variables used in this model are: x1 x2 x3 x4 x6

when n = 10000, k = 0.05

first run : The variables used in this model are: x1 x2 x3 Second run The variables used in this model are: x1 x2 x3 Third run The variables used in this model are: x1 x2 x3

2b - Simulation Results

when n = 100000, k = 0.01

first run : The variables used in this model are: x1 x2 x3 x10

Second run: The variables used in this model are: x1 x2 x3 x5 x9

Third run: The variables used in this model are: x1 x2 x3 x5

when n = 100000, k = 0.05

first run : The variables used in this model are: x1 x2 x3 Second run: The variables used in this model are: x1 x2 x3 Third run: The variables used in this model are: x1 x2 x3

Results Using Significance Testing

Select predictors that is "significant" at the 5% level of less by running full model. (**bolded**) : x1, x2,x3,x9

Estimate Std. Error t value Pr(> t)			
(Intercept) 0.46262		0.33979 1.362 0.176789	
x 1	0.92421	0.22679	4.075 9.97e-05 ***
x2	0.87121	0.21182	4.113 8.69e-05 ***
x3	0.90259	0.22743	3.969 0.000146 ***
x4	0.04334	0.21403	0.202 0.839992
x5	0.03630	0.22842	0.159 0.874078
x6	-0.09983	0.21858	-0.457 0.649004
x7	-0.27588	0.22308	-1.237 0.219456
x8	0.18937	0.22830	0.829 0.409062
x9	-0.45749	0.21950	-2.084 0.040007 *
x10	0.11414	0.22266	0.513 0.609478

2c - Discrete Case n<1000 p<10 0-1Y breast cancer Wisconsin

use 2~10 attributes to predict the 11th attribute: class

-https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/ Attribute Information: (class attribute has been moved to last column) # Attribute Name in dataset Domain 1. Sample code number id number 2. Clump Thickness Id Thick 1 – 10 3. Uniformity of Cell Size 1 – 10 4. Uniformity of Cell Shape Shape Size 1 – 10 6. Single Epithelial Cell Size 1 – 10 8. Bland Chromatin 1 – 10 5. Marginal Adhesion 1 – 10 7. Bare Nuclei Adh SECS BN BC 1 - 10 9. Normal Nucleoli 1 – 10 10. Mitoses NN Mit 1 – 10 11. Class: (0 for benign, 1 for malignant) Class k = 0.01full outcome = 122.8882deleted Size new outcome = 120.8891deleted SECS new outcome = 119.2668The variables used in this model are: Thick Shape Adh BN BC NN Mit k = 0.05full outcome = 122.8882deleted Size new outcome = 120.8891deleted SECS new outcome = 119.2668deleted NN new outcome = 121.7218The variables used in this model are: Thick Shape Adh BN BC Mit significance test approach k = 0.01 or k = 0.05 (same)Thick Adh BN BC

2c – Discrete Case n>5000 p<10 0–1Y Blocks Classification

use 1~10 attributes to predict the 11th attribute: class

https://archive.ics.uci.edu/ml/machine-learning-databases/page-blocks/ Number of Attributes height: integer. | Height of the block. lenght: integer. | Length of the block. area: integer. | Area of the block (height * lenght); eccen: continuous. | Eccentricity of the block (lenght / height); p_black: continuous. | Percentage of black pixels within the block (blackpix / area); p_and: continuous. | Percentage of black pixels after the application of the Run Length Smoothing Algorithm (RLSA) (blackand / area); mean_tr: continuous. | Mean number of white-black transitions (blackpix / wb_trans); blackpix: integer. | Total number of black pixels in the original bitmap of the block. blackand: integer. | Total number of black pixels in the bitmap of the block after the RLSA. wb_trans: integer. | Number of white-black transitions in the original bitmap of the block. k = 0.01 full outcome = 1636.061

deleted area new outcome = 1651.106 deleted mean_tr new outcome = 1653.132 The variables used in this model are: height lenght eccen p_black p_and blackpix blackand wb_trans

k = 0.05deleted area new outcome = 1651.106 deleted mean_tr new outcome = 1653.132 deleted blackand new outcome = 1707.096 deleted blackpix new outcome = 1705.208 deleted wb_trans new outcome = 1708.491

The variables used in this model are: height lenght eccen p_black p_and **significance test approach** k = 0.01 or k = 0.05 (same) all variables except for mean_tr

2c - Discrete Case n<1000 p>10 0-1 Y Wine Recognition Data

Use 2~14 attributes to predict 1st attribute: class https://archive.ics.uci.edu/ml/datasets/Wine k = 0.01full outcome = 28 deleted Proline new outcome = 26 deleted Magnesium new outcome = 24 deleted intensity new outcome = 22 deleted phenols new outcome = 20 deleted Malic new outcome = 18

The variables used in this model are: Alcohol Ash Alcalinity Flavanoids Nonflavanoid Proanthocyanins Hue diluted

k = 0.05full outcome = 28 deleted Proline new outcome = 26 deleted Magnesium new outcome = 24deleted intensity new outcome = 22deleted phenols new outcome = 20deleted Malic new outcome = 18

The variables used in this model are: Alcohol Ash Alcalinity Flavanoids Nonflavanoid Proanthocyanins Hue diluted

significance test approach no variables

2c – n<1000 p<10 continuous Y

<u>https://archive.ics.uci.edu/ml/datasets/Energy+efficiency</u> use 1~8 attributes to predict the 9th k = 0.01full outcome = 0.9154303

The variables used in this model are: X1 X2 X3 X4 X5 X6 X7 X8 k = 0.05 full outcome = 0.9154303 deleted X5 new outcome = 0.8978163 The variables used in this model are: X1 X2 X3 X4 X6 X7

ÿ significance test approach k = 0.01 or k = 0.05 (same) X1 X2 X3 X5 X7 X8

2c – n>5000 p<10 continuous Y Blocks Classification

```
use 2~9 attributes to predict the 1st attributek = 0.01 full outcome = 0.2802776
deleted F5
new outcome = 0.2800135
deleted F7
new outcome = 0.2789552
The variables used in this model are: F1 F2 F3 F4 F6 F8
k = 0.05
full outcome = 0.2802776
deleted F5
new outcome = 0.2800135
deleted F7
new outcome = 0.2789552
deleted F1
new outcome = 0.2703461
The variables used in this model are: F2 F3 F4 F6 F8
significance test approach
k = 0.01 or k = 0.05 (same)
F1 F2 F3 F4 F5 F6 F7 F8
```

2d - Leave one out strategy of PAC

Cross Validation – Method used to validate the effectiveness of different models by training the algorithm on a subset of data

Function – leavelout01() calculates the PAC value using the leave one out method

Function – predVal(x,y,predictors) evaluates the predicted value of Y based on logistic regression with 0.5 as the criterion

2d - Leave one out strategy of PAC

Using the "leaving one out " to do the pima example, we get the same result full outcome = 0.7682292deleted Thick new outcome = 0.7682292deleted Insul new outcome = 0.7695312deleted BP new outcome = 0.7695312deleted Age new outcome = 0.7708333The variables used in this model are: NPreg Gluc BMI Genet