Name:

Directions: Work only on this sheet (on both
sides, if needed); do not turn in any supplemen-
tary sheets of paper. There is actually plenty of
room for your answers, as long as you organize
yourself BEFORE starting writing. In order to
get full credit, SHOW YOUR WORK.

1. (15) Fill in the blanks: In a timesharing OS, suppose
we are transitioning from process A’s turn to B’s. Then
the values in the at the time A’s

and on

2. Look at page 70 of the Paul Carter book, Fig.4.6.

(a) (5) Give the numbers of the lines which an ENTER
instruction would serve in place of.

(b) (10) Suppose our subroutine’s local variables consist
of 2 integers and 12 pointers to characters. What
would the value of LOCAL BYTES be?

3. Consider the subroutine addone() on page 7 of the
handout on subroutines. Note that even though this sub-
routine is called from C, the subroutine itself was written
directly in assembly language; the listing you see on page
7 was not generated by applying gcc -S to a C version of
the subroutine.

(a) (5) The absence of which instruction(s) (note: in-
structions, not directives) tells us that this was writ-
ten directly in assembly language, not C?

(5) The lack of use of which piece of the Intel hard-
ware tells us that a C version of this subroutine would
have void as the type of its return value?

(c) (15) Show what code to add so that addone() has
two arguments instead of one. Both arguments are
pointers to words to be incremented; for example,
the code

int x =7, y = 12;
addone (&x,&y) ;

would result in x = 8 and y = 13. (Just show the
extra instructions to add, not the entire revised sub-
routine.)

4. Consider the following source code:

main(int argc, char *xargv)

{ int x,n,i;

x = atoi(argv[1]);
scanf ("%d",&n) ;

DO W=

7 for (i = 0; i < m; i++) A
8 X =X * 2

9 }

10 printf ("%d\n",x);

11 exit(1);

12}

Only lines 5-11 are executable statements. We compile
on CSIF.

(a) (10) List the numbers of the lines which will defi-
nitely result in this program relinquishing control of
the CPU.

(b) (5) List the numbers of the lines during whose exe-
cution an interrupt (i.e. a pulse of current arriving

at the CPU) from the timer may occur.

(c) (5) List the numbers of the lines during which their
execution an interrupt from the keyboard may occur.

5. (10) In the instruction movl 532(%ecx),%esp on
page 9 of the handout on OS, list all the contents of MAR
and MDR during execution of the instruction. Ignore in-
struction fetch and cache effects. Assume that just before
the movl is executed, ¢(ECX) = 424, ¢(EBX) = 626,
c(ESP) = 828, c¢(424) = 2000, c(626) = 10000, c(956) =
1600, c(1600) = 2828, ¢(828) = 121212, ¢(1360) = 200,
¢(1158) = 16, where c() means “contents of.” (You may
not use all of, or even most of, this information).

6. Consider this code:

main()

{ int x[10],y[10],i; char c[80];

y[i]l = 0x41414141;
strepy(c,y);

strlen(c);

1

2

3

4

5 for (i = 0; i < 20; i++)
6

7

8 i-=

9

3

(a) (10) State at which line(s) — if any — a seg fault
might occur. Explain IN DETAIL why the seg
fault(s) might occur (or if you don’t think any will
occur, state IN DETAIL why not).

(b) (5) State IN DETAIL what possible values i may

have after line 8, assuming no seg fault occurs any-
where in the program.

In both cases, assume that when a program occupies just
part of a page, the portion of that page which is not
occupied contains random garbage.

Solutions:

1. Registers; TSS; the stack; the OS.
2. 2-4; 56.

3.a.

pushl Y%ebp
movl %esp, %ebp

3.b. EAX.
3.c.

movl 12(%especially), %ebx
incl (%ebx)

4.a. 6, 10, 11.

4.b. 5-11.

4.c. 5-11.

5. MAR 956; MDR 1600.
6.a.

There is no problem in line 6, since the accesses to “y” will
be to x, thus still in a page or pages which are allocated
to this program.

But line 7 could be trouble. The function strcpy() looks
for a null character. It won’t find one in y or x, and so
will keep going. If the random garbage in the remainder
of the page has a 0 byte in it, then fine, but otherwise a
seg fault will occur.

6.b.
80 + distance to the null byte, up to 4096.

