
Digital Logic—theBareMinimum

NormanMatloff
Universityof CaliforniaatDavis

updatedOctober31,1999

Contents

1 Overview 2

2 Combinational Logic 2

2.1 A Few BasicGates . 2

2.1.1 AND Gates . 2

2.1.2 OR Gates . 3

2.1.3 NOT Gates . 4

2.1.4 NAND Gates . 4

2.1.5 NORGates . 5

2.1.6 XOR Gates . 5

2.2 SomeMSI CombinationalComponents . 5

2.2.1 Multiplexors . 6

2.2.2 Decoders . 6

2.3 Examples . 6

2.3.1 Half Adder . 6

2.3.2 Full Adder . 7

2.3.3 2-Bit Adder . 8

2.4 Timing . 8

3 Sequential Logic 9

1

2 COMBINATIONAL LOGIC

3.1 LatchesandFlip-Flops . 9

3.2 Edge-Triggering . 11

3.3 Example:A 2-Bit RippleCounter . 11

3.4 Example:TrackingCountsMod andDiv 5 . 12

4 Bus-BasedCir cuits 14

5 Example: Memory Chips and Systems 17

5.1 An SRAM MemoryChip . 17

5.2 A MemorySystem . 20

5.3 MemoryInterleaving . 21

5.4 DRAMs . 21

6 Example: A Simple CPU 21

1 Overview

As youknow, all informationinsideacomputeris processedandstoredas0-1bits. Herewewill look at the
basicbuilding blocksusedto manipulatethis0-1 information. 1

2 Combinational Logic

Thetermcombinational logic refersto circuitry thattransformsbits, asopposedto storing bits. For exam-
ple, theALU portionof a CPUtransformsdata,e.g. transformingtwo inputword-sizedbit stringsinto an
outputwhichis thesumof thetwo inputs.

2.1 A Few BasicGates

2.1.1 AND Gates

A basicAND gatehastwo inputsandoneoutput. 2 Let’scall thetwo inputsX andY, andtheoutputZ. Then
Z = 1 if andonly if X = 1 andY = 1, hencethename“AND.”

TheAND operationis representedin booleanequation settingsby multiplication, i.e. we write
1Our coursehasnodigital design prerequisite,andthussomeof this materialmustbepresentedhere.For thoseof youwhodo

have thisbackground,I askfor yourpatience; wewill quickly move to otherthings.
2Versionswith fan-in of morethantwo, i.e. having morethantwo inputs,exist too.

Digital Logic: 2

2 COMBINATIONAL LOGIC 2.1 A Few BasicGates

�������
(1)

As you cansee,this equation doessuccinctly summarizetheAND operation:For example,if X andY are
both1, thensince ���	� � � , thenZ will be1 too. If on theotherhand,for instance,X = 1 but Y = 0, Z will
be0.

Thestandardsymbolfor anAND gateis

Notethatfor any X (0 or 1),

 ���

(2)

and

� ����� (3)

2.1.2 OR Gates

Again, a basicOR gatewill have two inputs, but in this caseZ = 1 if andonly if X = 1 or Y = 1 (which
includesthecasein whichbothX andY are1).

Thebooleanequationis

������
��
(4)

wherethe‘+’ is standardadditionexceptthat1 + 1 is takento be1.

Thestandardsymbolfor anOR gateis

Notethatfor any X (0 or 1),

������
(5)

and

Digital Logic: 3

2 COMBINATIONAL LOGIC 2.1 A Few BasicGates

�
���� � (6)

2.1.3 NOT Gates

A NOT gatehasoneinput X andoneoutput Z, with theoutput beingthe logical negationof the input. In
otherwords, aninputof 1 producesanoutputof 0, andvice versa.

In booleanequations,a NOT operationis indicatedby anoverbar:

��� �
(7)

Thestandardsymbolfor a NOT gateis:

2.1.4 NAND Gates

Heretherearetwo inputsX andY, andoneoutputZ. Theterm“NAND” standsfor “not-and,” meaningthat
Z = 1 if thestatement“X = 1 andY = 1” is not true.

Thebooleanequationis

��� �������
(8)

Thestandardsymbolfor a NAND gateis

Notethatthelittl e circleheremeans“not.”

Obviously, if on thedayon which we shoppedat theGates’R Us storethey wereout of NAND gates,we
couldsynthesizea NAND by usinganAND togetherwith aNOT:

But of course,thiswould notbesodesirableasusing arealNAND. Thesynthesizedversionwouldprobably
have moretransistors thanthereal one,andthuswould beslower andtakeup morespaceon a chip, thus
reducingthetotalnumberof gateswe couldputonthechip.

Digital Logic: 4

2 COMBINATIONAL LOGIC 2.2 SomeMSI CombinationalComponents

2.1.5 NOR Gates

Again, inputsX andY, output Z, with Z beingequalto 1 if thestatement“X = 1 or Y = 1” is not true.

Thebooleanequationis

��� ����
����
(9)

Thesymbolfor aNORgateis:

Again, thesameeffect couldbesynthesizedby leadingtheoutput of anORinto aNOT.

2.1.6 XOR Gates

Herewe have inputsX andY, output Z, with Z beingequalto 1 if the statement“X = 1 or Y = 1 but not
both” is true.Thetermusedfor this is “exclusive-or,” abbreviatedto XOR.

Thebooleanequationis

��� ����
�� �
(10)

Thesymbolfor anXOR gateis:

Again, thesameeffect couldbesynthesizedby usingtwo NOT gates,two AND gatesandanOR gate.

2.2 SomeMSI Combinational Components

“MSI” standsfor “medium-scaleintegration.” We areintegratingamoderatenumberof gatesto form some
frequentlyusedbuilding blocks.

Digital Logic: 5

2 COMBINATIONAL LOGIC 2.3 Examples

2.2.1 Multiplexors

A multiplexor, or MUX, selectsoneof its datainputs andcopiesthat input to theoutput, with theselection
beingmadeaccordingto its addressinput.

As a simpleexample,considera MUX having two 1-bit datainputs,D1 andD0. To indicatewhichonewe
want,weneedanotherinput, A; A = 1 will meanwewantD1, andA = 0 will meanwewantD0.

Let’scall theoutputZ. Thentheequationfor Z is

������� �
 ���
 (11)

(MakeSUREthismakessenseto you.)

While it won’t bedrawn here,you should beableto seeabove thatwe couldconstruct thisMUX by using
two AND gates,oneNOT, andoneOR.

A MUX with four datainputs, D3, D2, D1 andD0 wouldneedtwo selectorbits,A1 andA0, andtheoutput
would be

����� � �
 � �!
�� � �
 � "!
 � � �
 � �
 � � �
 �
 (12)

(Again,makeSUREthismakessenseto you.)

2.2.2 Decoders

This is bestexplainedby example,sayfor a 3-to-8decoder. Let’s call the3-bit input linesX2, X1 andX0,
andtheoutput linesZ7, Z6, ..., Z1 andZ0. The3-bit inputcanbeconsideredthebinarycodingfor oneof
thenumbers0-7. Theoutput linesthentell uswhichoneof thenumbers0-7 is representedby theinput. For
example,suppose X2 = 0, X1 = 1 andX0 = 1, representingthenumber3; thenZ3 will be1, to indicatethat
fact,andall theotherZi will be0.

Building a decoderfrom gatesis quite straightforward from the equations, which themselves are also
straightforward.For example,from theexampleabove youcanseethattheequationfor Z3 is

�#�$� �%"&� � �
 (13)

2.3 Examples

2.3.1 Half Adder

Herewe will designlogic to addtwo 1-bit numberstogether. Let’scall thesumbit Sum.But notealsothat
theremaybea carrygenerated(thiswill happenif bothaddendsareequalto 1); we will call thisCout,for
“carry output.”

Digital Logic: 6

2 COMBINATIONAL LOGIC 2.3 Examples

Thelogic will look like this:

A B

Cout

Sum

(Thedarkcirclesrepresentwire connections. If two linescrossin thepicturebut thereis no darkcircle at
their intersection, thenthey donot toucheachother.

2.3.2 Full Adder

A full adderhasonemoreinputthandoesahalf adder. Wewill call thisinputCin, for “carry in.” Thereason
weneedthisextra inputis thatwewill beusing a full adderasabuilding blockto domulti-bit addition. For
example,considerthefollowingadditionof two 3-bit numbers,011and001:

11
011
001

100

Let’srefer to thebit positionsas2, 1 and0, from left to right. Thepoint thenis thattheaddition at position
0 resultedin a carryinto position 1 (shown in thepicture),andthatcarrymustbeincorporatedinto thesum
performedatposition 1. ThatcarrywouldbetheCin for position1 (andtheCoutfor position 0).

We will not draw the logic, but herearethe equations (remember, we arenow backto a single bit, even
thoughthelogic will beusedbelow asa building blockfor amulti-bit adder):

')(+* � � ,�-�.0/�
 ��, -1.2/1
�� , -�.0/�
���,3-1.0/
(14)

-14 (65 � ��,3-�.0/�
�� ,3-1.0/�
���, -1.2/�
���,�-�.0/
(15)

Let’susethefollowing (notstandard)symbolfor a full adder:

Digital Logic: 7

2 COMBINATIONAL LOGIC 2.4 Timing

Cin

A

B

SCout

FA

2.3.3 2-Bit Adder

Wecanput two full adderstogetherto form a2-bit adder, i.e. logic whichwill addtogether two 2-bit inputs,
producinga2-bit sumandapossible carry:

FA FA

A1 B1 A0 B0

0

S0S1C

Here(A1,A0) formsthefirst 2-bit addend,and(B1,B0)formsthesecond.Thesumis (S1,S0),andthecarry
(into bit position 3) is C. Notethataconstant0 is hardwiredinto theCin inputof thefull adderontheright.

2.4 Timing

Thedelayof atypicalgateis ontheorderof 10nanoseconds(ns),i.e. 10billionthsof asecond.Thissounds
extremelyfast, almostbeyond humanimagination, but in view of the fact thatcomputersperformtensof
millions of operationsper second,gatedelaysdo addup into tangibleamountsof time, andthusdirectly
affect theoverall speedof themachine.To getthefastestmachine,digital logic mustbeoptimized.In other

Digital Logic: 8

3 SEQUENTIALLOGIC

words,even though several setsof gatesmay be equivalent in effectinga certainfunction (sayaddition),
their timingsmaydiffer considerably, andit is desireto find anoptimalset.We don’t cover optimization in
thiscourse,but still thisprinciple should bekeptin mind.

Notethat in the2-bit adderexampleabove, theoverall delayis approximatelydoublethedelayof a single
full adder, sincetheleft full addermustwait for theoutputsof theright oneto bevalid; beforethattime,the
outputsof theleft onearegarbage.Thereareotheradderdesigns,suchascarry-lookaheadadders, which
aim to circumventthisproblem.

3 SequentialLogic

Sequentiallogic storesdata.Registersin aCPU,RAM andsoonstoredata.

3.1 Latchesand Flip-Flops

Wefirst look at theS-R latch. It hastwo inputs,R andS,andtwo outputs, Q and 7 . Its functionis thatof a
1-bit memory, with Q beingthebit currentlystored.3

Whenever we want to storea new bit in the latch, replacingthe old one,we simply pulsea 1 on R or S
momentarily, dependingonwhetherwe wantto storea 0 or a 1 in thelatch. (R andS standfor “reset” and
“set.”) As longasR andS stayat 0, thestoredvaluewill remainasis.

An S-Rlatchcanbeconstructedasfollows:

Q

Q
-

R

S

Suppose,for instance,thatcurrentlyQ = 1, andwe wish to changeQ to 0. Thatwould meanmomentarily
pulsing theR line to 1. Let’sseethatthisdoesindeedwork:

SinceQ = 1, 7 will be0. Thusthetwo inputs to theupperNOR gatewill be 1 (from R) and0 (from 7),
makingtheoutput 0. In otherwords,Q doeschangeto 0, asdesired.

Whatabout7 ? It will stayat0 for ashorttime,but assoonasQ changesto 0 andfeedsthatvaluebackinto
the lower NOR, theoutput of that lower NOR will now be1 (sinceS = 0). In otherwords, 7 doesindeed

3 8 is thenthenegationof thebit beingstored.Sincethis is generatedanyway, dueto thenatureof thelogic usedin construction
we getit “for free,” andthusmight aswell formally makeit oneof theoutputs.Thatway if 8 happensto beneededelsewherein
ourmachine,wewouldbeableto saveaNOT gatethere.

Digital Logic: 9

3 SEQUENTIALLOGIC 3.1 LatchesandFlip-Flops

changeto 1.

But thatis not theendof thestory, for wemustmakesurethatthosenew valuesof Q and 7 aremaintained.
Well, the feedbacknatureof the circuit hasexactly that result. For example,after 7 changesto 1, that
ensuresthattheoutputof theupperNOR gateis 0 (regardlessof whatR is), soQ will indeedcontinue to
stayat 0. Similarly, you shouldcheckthat thedesignensuresthat 7 will stayat 1, until suchtime asS is
pulsed.

Flip-flops arelike latches,exceptthatthey areclocked, sothatthey acceptnew inputonlyatcertaintimes.A
clock is a crystaldevice thatpulsesat regular intervals, sending 1,0,1,0,1,....For example,a 300megahertz
(mhz)PChasaclockwhichpulses300million timespersecond.4

Flip-flops,by virtueof having clockedinputacceptance,allow thedesigner muchmoreconvenientcontrol.
After all, in acomplex machine,theinputswill sometimesbegarbage(still 0 or 1, maybe,but notmeaning-
ful), andtheclockednatureallows usto makesurethat thestoredvalueswill changeonly whenwe want
themto, i.e. whennongarbagevaluesareat the inputs. Note that this alsomeansthat in many casesthe
clockpulse itself is notconnectedto theclockinputof aflip-flop, but ratherthatpulseis AND-edwith some
otherwiresthat representconditionsunderwhich the input datais valid. (You will seean exampleof this
laterin this tutorial, wherewe build aRAM circuit.)

A D flip-flop canbeconstructedasfollows:

D

Clk

Q

Q

TheD input(“data”) is thenew valueto bestoredat thetimeof theclockpulse. Youshould “walk through”
an instanceof theoperationof thiscircuit, againsaywherethevalue1 hadbeenstoredoriginally (Q = 1),
but in whichwewantthenew valueto be0 (D = 0). Tracethrough thesequenceof eventswhichwill occur
whentheclock pulse comes;you will find that 7 is thefirst to change,becoming1, with its feedbackinto
theupper-right NAND makingQ changeto 0, asdesired.

4Of course,thefastertheclock, thefasterthemachine. However, in choosingtheclock speed,we have to accountfor all gate
delays, signal propagationtimesalongwires,andsoon,sothatall signalsreachtheir destinationswithin oneclockcycle. In other
words,wemustchoosetheclockcycleto accommodatethelongest delayin theoverall circuit.

Digital Logic: 10

3 SEQUENTIALLOGIC 3.2 Edge-Triggering

3.2 Edge-Triggering

Many flip-flops areedge-triggered. What thismeansis thatthey aredesignedin sucha way thatan input
value(labeledD in thepictureabove)will haveeffectontheflip-flop only duringanarrow window of time,
specificallythetimeduringwhichtheclockpulse is risingor falling.5

Thisis doneto avoid feedbackproblemsin complex circuits. Theoutput of aflip-flop mayberoutedthrough
a seriesof gatesandultimatelyfed backin to thesameflip-flop asaninput. For instance,considertheIntel
assembly-languageinstruction

ADD AX,BX

(If you have not workedwith Intel machinesbefore,this instruction addsthe valuesin the AX andBX
registers,andstoresthesumbackinto AX.)

SupposeAX andBX originally containthe values5 and2, respectively. The new valuein AX should be
7. But if thecircuitry werepoorlydesigned,theaddition might continue,with the7 beingaddedto 2, thus
putting 9 into AX, andsoon. By limiting thesensitivity of flip-flops 6 to very narrow windows of time, this
feedbackproblemcannotoccur.

3.3 Example: A 2-Bit Ripple Counter

Recallthatann-bit stringcanrepresent(unsigned) integersin therange0, 1, 2, ...,
":91; � . An n-bit ripple

counter is simplya counter, whichwill continually cycle throughthesevalues.For example,a 2-bit ripple
counterwill cycle through0, 1, 2, 3, 0, 1, 2, 3, 0,...,or in bit form, 00,01,10,11,00,01,10,11,00, ...

We canconstructsuchacounterfrom two D flip-flops, two half adders,andaclock:
5Thesearecalledthe leadingedgeandfalling edgeof theclockpulse.
6Again,rememberthatregistersaremadeupof flip-flops.

Digital Logic: 11

3 SEQUENTIALLOGIC 3.4 Example:TrackingCountsMod andDiv 5

DFFDFF

HAHA

Clk

1

R1 R0

(In theDFF boxes,thetwo left inputs areD andClk, while thetwo right outputsareQ and 7 .)

Notethefollowing:

< theconstant1 is hard-wiredasoneof theinputsto theright-handhalf adder

< weareignoring the 7 outputsof theflip-flops

< theoutputsareR1 andR0; e.g. whenthecountis 2, we will have R1 = 1 andR0 = 0, since10 is the
binaryrepresentationof 2

< theinput labeledClk doesnotactuallyhave to beconnectedto a clock,andin mostapplicationswill
not be; instead,the input will simply be a line which we have arranged(elsewherein thecircuit) to
pulse to a1 every timesomeparticulareventof interestoccurs

3.4 Example: Tracking Counts Mod and Div 5

Thecircuit to bedesignedherewill have aninput line like a ripplecounterdoes,but insteadof trackingthe
raw countc of thenumberof timestheinput line is pulsed,wewill trackc mod5 andc div 5.

Hereis thecircuit:

Digital Logic: 12

3 SEQUENTIALLOGIC 3.4 Example:TrackingCountsMod andDiv 5

CTR

C

CTR

C

M1

M2

M0

D0

D1

D2

D3

DCD

input

init

The input line is visible at the left of the picture. Its quiescentstateis 0, but sometimespulses,i.e. 1s,
comein onthatline. (Thepulsesmightcomeatregularintervals,suchasfrom aclock,or at irregulartimes,
dependingon what application we neededthis circuit for.) The output pins areM0, M1 andM2, which
containc mod5, andD0, D1, D2 andD3, whichcontainc div 5 (though only upto 15 for thelatter).

TherearetwoboxeslabeledCTR;theseare4-bit ripplecounters.ThepinslabeledC in themarefor clearing,
i.e. resetting; if thispin is pulsed,all bitsof theripple counterwill beresetto 0. Similarly, thereis an“init”
inputat thetopof thepicture,to clearboththemodanddiv counters.

Thebox labeledDCD is a3-to-8decoder. Its output pinsareactive low, meaningthat0 means“yes” and1
means“no.” For example,let’s labelthesepinsZ7,Z6,...,Z0from left to right. ThenZ7 will beequalto 0 if
andonly if thethreeinputpinscontain111,thebinaryrepresentationof 7.

Whenever the mod counterreaches4, Z4 will be 0, which meansthat the output of the NOT gatewe’ve
connectedto Z4 will be 1. This 1 is thenANDed with thecircuit’s input line. So, thenext time the input
line is pulsed—whichwill bea countwhich is a multiple of 5—a pulsewill be felt at thec div 5 counter.
Thatcounterwill thenincrement,exactlywhatwe want.

Note that the gatedelayin DCD is helpingus here. Whenthe countis 4, the next pulse will changethe
countmomentarilyto 5 (andtherestof thecircuit will changethatto 0). However, evenwhenthecountfirst

Digital Logic: 13

4 BUS-BASED CIRCUITS

becomes5, Z4 will still beequalto 0 (indicating a countof 4, not5) for a shortperiodof time equalto the
gatedelayin DCD. This delayis good,becausewhenthepulsecomesat count4, we wantZ4 to stayat 0
long enoughsothat it makesCTR increment.This illustratesthedelicatetiming issueswhich canarisein
digital circuits.

4 Bus-BasedCir cuits

A bus is a setof parallelwires usedfor transferof dataamongvariouscomponents.You are probably
familiar with theideaof asystembus for acomputer, whichconnectscomponentssuchastheCPU,memory
andI/O devices.7

Sinceseveralcomponentsareattachedto thesamebus,how dowemakesurethatonly oneof themactually
isconnectedto thebusatatime?Theansweris thatweusetri-state buffers whichcanconnectacomponent
to abus,or electricallyisolatethecomponentaway from thebus.

To illustratethis, consider thedesignof a very simpleCPU which, for simplicity of exposition, will have
only two registers,R0 andR1,eachonly onebit wide, implementedasaDFF:

D

AS

AD

Clk

R0 R1

In eachregister, theupperleft input is for data,thelower left for theclock,andoutputis out theright side.

Again,keepin mind thatthebusshown hereis insidetheCPU,differentfrom thesystembus;thepurpose
of thebushereis for datatransferfrom oneregister(thesource) to another(thedestination). (Therealso
would beanALU, etc.,but wedonotshow otheritemshere.)

We seedata(D) andaddress(AS, AD) lineshere,just aswe would for a systembus. However, dueto the
simplenatureof our example,in which our word sizeis only onebit (!), we only needonedataline; if
we hadsay, 32-bitwords,we would need32 datalines,D31,D30,...,D0.Similarly, sincewe have only two
registers,we only needoneaddressline for the sourceregister, andonefor thedestination register; if we
hadsay, 16 registers,we would needfour addresslineseachfor sourceanddestination.

What is new here,though, is the presenceof triangleswhich look like NOT gatesbut areinsteadtri-state
buffers; thelatteraredistinguishedfrom theformer by thepresenceof anextra input line comingin at the

7In this context, thetermbus oftenconnotesnot just thewiresthemselves,but alsostandardsfor therolesplayedby thewires,
electricalcharacteristics,andsoon.

Digital Logic: 14

4 BUS-BASED CIRCUITS

sideof thetriangle, i.e. enteringata slopedleg of thetriangle:

A B

C

Theoperationis verysimple:If C = 1, thentheinputA is copiedto B. If C = 0, thenB is entirelyunaffected
by A.

I havechosenthename“AS” for “addressof source,” and“AD” for “addressof destination,” thinking of R0
andR1having addresses0 and1, respectively.

Supposewewishto copythecontentsof R1 to R0. Thenwewill put1 ontheAS line and0 ontheAD line.
Whatwill happenwhentheclockpulsecomes?

Look at thetri-statebuffer justbelow andto theright of R1. Its input (“A”) is R1’s Q value,i.e. thevalued
storedin registerR1. SinceAS = 1, the tri-statebuffer will allow its input to flow through, i.e. R1 will be
copiedto the D line. Meanwhile,R0 will not be copiedto the D line, becausethe input to R0’s tri-state
buffer is 0. (Thelittle circle to theleft of thatbuffer representsan inverter, i.e. a NOT gate.SinceAS = 1,
theinverterconvertsthesignalinputtedto R0’s tri-statebuffer to a 0.) Of course,that is whatwe want;we
would havechaosif bothR0 andR1werecopiedto D at thesametime.

Youshould now verify onyourown thatbecausewe put0 on theAD line, whentheclockpulses,thevalue
on theD line (whichwasfrom R1, aswe saw above) will flow into R0. Sowe will indeedhave copiedR1
to R0,asdesired.

You might bewonderingwhatwill controlwhich valuesgo ontoAS andAD. This is doneby thecontrol
logic, acombinational circuit whichhasasits input theopcodefrom thecurrentinstruction, andwhichhas
AS andAD (amongotherthings)asits output.

You will not work with the control logic andconstructan entireCPU until ECS154B,but let us at least
exploresomeoptions. First, let usaddanALU to thetwo-register, one-bussystemdepictedabove:

Digital Logic: 15

4 BUS-BASED CIRCUITS

D

R0 R1 R2 R3 ALU

AS1

AS0

AD1

AD0

Clk

We do not have room to show the connectinglines, gatesandtri-statebuffers; suffice it to say that they
aresimilar to thoseshown earlier. (You should try drawing somefor yourself,though,asa checkof your
understanding.) For simplicity, wearecontinuing to assumeaone-bitwordsize.

The ALU hastwo inputson its left, and one output on its right. Again, rememberthat the ALU is a
combinational circuit, for exampleperformingaddition,usingproperly-chosengatesaswehaveseenbefore.

Notethatwe have addedtwo new registers,R2 andR3. They areknown asprivate registers, “private” in
thesensethatthey will notbevisible to theprogrammer. Theinstructionformatfor themachinewould still
have eachregisterfield (sourceanddestination)within an instructionconsistof only onebit, which would
controlwhetherR0or R1 is involved;theprogrammerhasnoway to specifyR2or R3here.

Instead,R2 andR3 will serve astemporarystoragecellswhichsave updatadestinedfor theALU. As you
cansee,their Q outputs feedinto theALU, ratherthanbeingconnectedbackto theD bus line aswith R0
andR1.

Now considera machineinstruction ADD R0,R1,meaningthat theold valueof R0+R1will now become
thenew valueof R0. This instructionwouldrequirethreeclockcycles:

first clock: copyR0 to R2

secondclock: copyR1 to R3

third clock: enablethe tri-statebuffer connecting the output of theALU to D, andlet D flow
into R0

Therearealsoinputs, againnot shown, to theALU determiningwhich operationwe wantto perform,e.g.
add, subtract,logical-and,logical-or, etc. Thusin the third clock cycle the control logic would alsobe
putting thecodefor “add” on thecontrol inputs to theALU. 8 During thethird cycle we wouldalsoenable
theconnectionfrom theoutputof theALU to thebus.

8Thoughwe have not setit up this way here,in mostdesignsevena “move” operationis donethroughtheALU; in thecase
here,then,duringthefirst andsecond clock cyclesthecontrol logic wouldput thecodefor “move” ontotheALU’ s control input
lines.

Digital Logic: 16

5 EXAMPLE: MEMORY CHIPSAND SYSTEMS

By theway, you cannow begin to seehow thedigital logic designaffectsthe choiceof clock speed.The
clock cycle lengthmustbechosento cover theworst casethatwould occur. Herethatmeans,for instance,
thatthecycle mustbeat leastaslongasthetimeneededto doanaddition, andto copytwo valuesbetween
a registerandabus.

How could we makethis faster? Supposewe had two buses,ratherthanone, with all components(the
registersandtheALU) connectedto bothbuses.Thenwe couldloadbothR2 andR3 at thesametime, i.e.
duringthesameclock cycle: R0 would becopiedto R2 via thefirst bus,while at thesametime, R1 would
becopiedto R2via thesecondbus.Duringthesecondcyclewewould enabletheoutput from theALU to a
bus,saythefirst one,andenabletheinput to (in thisexample)R0. Theinstruction ADD R0,R1would then
takeonly two clockcycles,ratherthanthree—a33%speedup!

And by addinga third bus, we could get the time down to only onecycle. Now all of this is somewhat
oversimplified(wehave notaccountedfor timeneededto fetchtheinstruction from memoryanddecodeit,
etc.),but youcanat leastbegin to seetheprinciplehere—aclassiccomputersciencetime/spacetradeoff. If
we arewilli ng to usegreateramountsof preciousspaceon theCPUchip (morebusestakeup moreroom),
wecanreapa savingsin time.

With thisexample,theneedfor edge-triggeringor otheranti-feedbackmechanismshould bemoreapparent.
It wouldbeworthwhile for younow to gobackandreview thatsectionearlierin thisdocument.

5 Example: Memory Chips and Systems

5.1 An SRAM Memory Chip

To illustratetheprinciplesdevelopedhere,wewill consider thedesignof simplememorychipsandmemory
systems.

First consider the designof a “4x2” memorychip, meaningthat it contains four two-bit words. (This is
much,muchsmallerthanthe sizesof typical commercialmemorychips,but theprinciplesarethesame.)
We will call thefour wordsWord 0, Word 1, Word 2 andWord 3. (Remember, though, thattheseareword
numberswithin thischip,notwithin a systemconstructedfrom thischipandothers;moreon this later.)

Thechipwill have thefollowing pins: addresspinsA1 andA0 (two pinsencode
"$=#��>

addresses),which
indicatewhichof thefour wordsis to beaccessed;data-inpinsDI1 andDI0 (for writing datato thechip);
data-outpinsDO1 andDO0 (for readingdatafrom the chip); a write-enablepin WE, usedto inform the
chip thatwewish to write to it; anoutput-enable pin OE,usedto inform thechip thatwewish to readfrom
it; andachip-selectpin CS,to inform thechip thatit, ratherthansomeothermemorychip,will beinvolved
in thecurrentmemorytransaction.

Again,the“4x2” designationfor thischipmeansthatthechipcontainsfour words,eachtwo bitswide. Note
that this might be a quite differentviewpoint thanthat held by the CPU of our system.The CPU might,
say, view an“8x4” systemwould consistof eightfour-bit words. Thememoryfor suchasystemcouldthen
be constructedby usingin combinationfour 4x2 chips,aswe will do later. (TheCPU, though,would be
unawareof thechipstructureof thesystem.)

Theuseof separatepinsfor datainputandoutputhereis notstandard,but simplifiesthedesignsomewhat.

Digital Logic: 17

5 EXAMPLE: MEMORY CHIPSAND SYSTEMS 5.1 An SRAM MemoryChip

If we wereto have a single setof pinsfor bothfunctions(aswe will assumelater),thedesignbelow could
bemodifiedin a straightforwardway.

To design thischip, let usfirst designaone-bitcell whichwill serveasthebasicbuildingblockfor thechip:

D Q

C
WR

WL
OUT

IN

Herethereis a D flip-flop, which will hold thestoredbit, togetherwith threeinputs, IN, WL andWR, and
oneoutput, OUT.

Whenwe write datato this bit, thedatawill comein on theIN line, andtheWR line will be1. Whenwe
readdatafrom thebit, it will comeout theOUT line, andWR will be0.

Recall that the flip-flop is clocked,andrespondsto pulses(their leadingor trailing edges),ratherthanto
levels of a signal. In our casehere,it is likely that the WR line will sendsuchpulses,becauseit will be
theresultof AND-ing with a clock. Supposefor examplethatour systembus(which connectstheCPUto
memory)containsa W line andaCLOCK line. WecouldAND thosetwo linestogether, andfeedtheresult
into WR. Thenif theCPUassertstheW line, whentheclockpulseoccurs,thatpulse will appearonWR as
well.

WL (“word line”) hasthefollowing function. As you will seebelow, our full memorychip will consistof
a 4x2 arrayof theone-bitcellswe arenow examining. Eachrow of thatarrayconsists of oneword within
thememorychip, i.e. oneaddresswithin thechip. TheWL line for thetwo bitsof a givenword will go to
1 whenwewish to accessthatword. If WL is 0, thenyoucanseefrom thediagramabove thatnodatawill
beallowedinto or outof thebit cell; notetheroleof thetri-statedevice for thelattercase.

By theway, notethatif WR is 1, i.e. we aredoinga write to thisbit cell, dataactuallyis allowedoutof the
cell, whichseemswrong.However, thiswill beremediedby othertri-statedevicesin thechipasa whole.

Now hereis ourdesignfor thatchip:

Digital Logic: 18

5 EXAMPLE: MEMORY CHIPSAND SYSTEMS 5.1 An SRAM MemoryChip

WR

WL

IN OUT

WR

WL

IN OUT

WR

WL

IN OUT

WR

WL

IN OUT

WR

WL

IN OUT

WR

WL

IN OUT

WR

WL

IN OUT

2->4

dcdr

A1

A0

WR

WL

IN OUT

CS

WE

OE

DI1

DI0

DO1 DO0

As mentionedearlier, themainpartof thechip consists of a 4x2 arrayof thebit cellsdesignedabove. The
top row is Word 0 of thechip, therow just below it is Word 1, andsoon. A 2-to-4decoderat themiddle
left of thediagramselectstheproperrow of bit cells, i.e. theproperword, dependingon which addressis
desired.

Thedesignis straightforward.Let usconfirm,for instance,thatif CSis 0, nodatawill beallowedintoor out
of thischip. First,notethatif CSis 0, thentheinputsto WR in thebit cellswill alsobe0; thusnodatawill
beallowedinto any bit cell, exactly asplanned.Second,notethat if CSis 0, theinputs to thetwo tri-state
devicesneartheDO1andDO0pinswill alsobe0, insuring thatnodataflowsoutof thechip. Again,all of
this is important; we will beconnecting severalof thesechipsto a systembus,andmustinsurethatwe do
nothave datafrom two chipsflowing ontothesamebuslinesat thesametime.

Consistentwith our earliercommenton the1-bit cell design,theWE input herewould likely besetup as
theAND-ing togetherof, say, W andCLOCK lines in thesystembus. Thesamecommentappliesto our
memorysystemin thefollowingsubsystem(eventhoughtheCLOCK line is notdrawn).

Digital Logic: 19

5 EXAMPLE: MEMORY CHIPSAND SYSTEMS 5.2 A MemorySystem

5.2 A Memory System

Now, let usseehow amemorysystemcanbeconstructedfrom memorychips.Againfor simplicity, wewill
continue to assume4x2chips,9 andwewill assumeanoverallsystemof eightfour-bit words.10 Hereis how
wecanconstructthesystemfrom 4x2chips:

A2

A0

A1

D3

D2

D1

D0

R

W

A1
A0
D1
D0OE

CS

WE

OE

CS

WE

OE

CS

WE

OE

CS

WEA1
A0
D1
D0

A1
A0
D1
D0

A1
A0
D1
D0

The bus hereis a system bus like you learnedin ECS50 (or equivalentcourse),not the busesinternalto
CPUsandmemorychipswhichwe have discussedearlier. TheCPUandI/O devicesarealsoconnectedto
thisbus,but arenotshown here,nor is theCLOCK line shown. We areassumingthatnodirectmemory-to-
memoryaccessis possible;all readsfrom andwritesto memoryareperformedby theCPU.

Let’s call thefour chipsI, II, III andIV, from left to right. By inspectingwhich chip pinsareconnectedto
bus linesD3-D0, you canseethat chipsI andIII containthe lower two bits of eachfour-bit word, while
chipsII andIV containthehighertwo bits. By notingtheconnections of busline A2 to theCSpinsof the
chips,you canseethat of the entireaddressspace0-7, now speakingfr om the CPU/systemviewpoint,
chipsI andII containsystemwords0-3,andchipsIII andIV containsystemwords4-7.

Suppose,for example,we have a C programwith an int variablex, andthattheaddressof x happensto be
3 in thissystem.Thenx will bestoredin chipsI (lower 2 bits) andII (upper2 bits). If theC sourcecode
hassomethinglike

x = 5;

thenon,say, anIntel CPUthecompilerwill producecodelike
9For evenmoresimplicity, wenow assumethateachdatapin doesbothinputandoutput.

10Remember, theCPUwill seeonly thelatter, andnotknow how thesystembreaksdown in termsof chips.

Digital Logic: 20

6 EXAMPLE: A SIMPLE CPU 5.3 MemoryInterleaving

MOV X,5

In executingthisinstruction, theCPUwill put011on linesA2, A1 andA0, andput0101onD3-D0,andso
on.

5.3 Memory Interleaving

Thefour-chipsystemin theaboveexampleis saidtousehigh-order interleaved, whichmeansthatthemost
significant(“high-order”)bitsof theaddressdeterminewhichchips(in thiscaseachippair)agivenaddress
is storedin. With low-order interleaving, theleastsignificantbitsareusedinstead.Notethat(think about
this andmakesureyou understandit) in a high-orderinterleavedsystemconsecutive addressesarestored
within thesamechip(until we reachachipboundary)while in thelow-ordercaseconsecutiveaddressesare
storedin consecutive chips(modthenumberof chips).

5.4 DRAMs

Thekind of memorychipdescribedabove, in whicheach1-bit cell is implementedasaflip-flop, areknown
asstatic RAM (SRAM). By contrast,thebit cellsin dynamic RAM (DRAM) chipsconsistof tiny capacitors,
ratherthanflip-flops; a chargedcapacitorrepresentsa 1, while a dischargedonerepresentsa 0. The term
static refersto the fact that eachflip-flop in an SRAM continuously maintainsitself (asnotedwhenfirst
discussedflip-flopsin this tutorial); it will notchangeastimepasses,until wewantit to change.

Exceptfor thestructureof individualbits, theconnections betweenthebitsin aDRAM is verysimilarto that
of anSRAM. Onedifference,though, arisesfrom thefact thata bit in a DRAM will loseits chargeastime
passes,soit mustbeperiodicallyrefreshed,i.e. recharged,by additional circuitry. Therefreshoperationof
aDRAM alsobringssomereductionin systemperformance,asabit (or row of bits)is notaccessibleduring
the time it is beingrefreshed.On the otherhand,thesimplicity of DRAM bit cellsmeansthat we canfit
morebit cellsonachip, thussaving cost.

6 Example: A SimpleCPU

As anotherill ustrationof how theseprinciplescanbeused,wewill examinethedesignof a simpleCPU:

Digital Logic: 21

6 EXAMPLE: A SIMPLE CPU

DCDR DCDR DCDR

memory (RAM or ROM) PC

ALU

R
(more regs., not shown,
but same connections)

IRop src dst br. targetsrc

N,Z

add 1

MUX

(connections
not shown)

clock

We will assume8 registers.(Only oneof themis shown here,but theothersall have thesameconnections
astheoneshown.) All dataaccessedby theprogramwill be in theregisters,unlike mostCPUs,in which
datacanbeeitherin registersor in memory. Theprogramitself is in memory.11

Let’s review sometermsfirst: A CPU hasa specialregister, typically called a ProgramCounter(PC),
which specifiestheaddressin memoryof thenext instruction to beexecuted.At thebeginningof a fetch-
executecycle, the CPU will fetch the instruction from memorywhich is pointed to by the PC,depositing
the instruction in the Instruction Register (IR). Therethe instruction will be decoded,meaningthat the
digital logic in the CPU will executethe instruction accordingto the op codeandoperandsspecifiedin
the instruction. In our casehere,the latter arespecifiedin termsof which two registerswill be usedas
sourcesfor theinstruction,andwhichoneis to bethedestination.Thuseachof theseregisterfieldswill be
3 bitswide. Theexecutionof theinstructionsis performedmainlyby theArithmeticandLogic Unit (ALU).

11Thediagramdoesnot indicatewhich linesareinputsandwhichareoutputs.Hereis aguide:
Ins: Left of R; left andbottomof ALU; left of N,Z; bottomof IR; right of memory;left of IR; top andright of MUX; right of

add1.
Outs: Right of ALU; right of N,Z; bottomof R; top of DCDRstop andbottomof IR; left of MUX; top of memory;left of PC;

left of add1.

Digital Logic: 22

6 EXAMPLE: A SIMPLE CPU

While executionis beingperformed,thePCis alsobeingincrementedby 1 (exceptin thecaseof a branch),
to preparethePCfor thenext instructionwhenthisoneis done.

Referringto the two ALU inputs andits outputs assrc1,src2anddst, respectively, let us setup theseop
codes:

0000 dst = src1
0001 dst = src1 + src2
0010 dst = src1 - src2
0011 dst = src1 AND src2
0100 dst = src1 OR src2
0101 dst = NOT src1
0110 if N go to branch target
0111 if Z go to branch target
1000 go to branch target

Thisdesignfeaturesthreebuses.(Keepin mind thattheseareinternal CPU buses, not a systembuswhich
connectsa CPUto memoryandI/O devices. Also, notethatwe have a directconnectionherebetweenthe
CPUandmemory, insteadof usingabus.)Thetop two busesleadto theALU asinputs,while thethird bus
carriesoutputfrom theALU.

Notethebox labeled“N,Z” in thefigure.Thiscallsfor somemorereview. RecallthatCPUshave aregister
dedicatedto condition codes(someRISCCPUsallow any registerto beusedfor this), whichrecordcertain
factsabouttheoutputof thelastALU operation:TheN (“negative”) bit stateswhethertheALU output was
negative,while theZ (“zero”) bit recordswhetherthatoutput was0. In bothcases,1 meansyesand0 means
no; for instance,Z = 1 means“Yes,theoutputwas0.”

Thecondition codesareusedfor conditionalbranches.On Intel-CPUmachines,for instance,consider the
code

SUB AX,BX
JNZ T

Thefirst instruction subtractstheBX registerfrom theAX register. This will bedoneby theCPU,andthe
N andZ bitswill recordtheresult,whichin turnwill beusedby thesecondinstruction,JNZ: It says,“If the
Z bit is notset,thenjumpto T.”

Now, let’s look at thedesign. Observethatin IR, eachof theregisterfieldsis inputto adecoder(3-to-8),the
outputsof whichcontrolwhichregisteris copiedto thefirst bus,whichoneis copiedto thesecondbus,and
which registerwill be loadedwith theALU outputon thethird bus. The“op” sectionof IR is input to the
ALU, to controlwhatoperationthelatterdoes.

The“op” sectionof IR alsofeedsinto theMUX. ThelattermustprovidethePCeitherwith theincremented
previousPC value,or thebranchtarget (T in our exampleabove), dependingon (a) theop code(i.e. what
kind of branchwe aredoing, if any) and(b) thevaluesof N andZ.

Studythisdiagramcarefully, andthink abouthow to implementthedetails.

Digital Logic: 23

