
Overview of Functionsof anOperatingSystem

NormanMatloff
Universityof California,Davis

c
�

2001,N. Matloff

May 31,2001

Contents

1 Introduction 2

1.1 It’ sJusta Program! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 WhatIs anOSfor, Anyway? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 A Bit More onSystemCalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 MakingTheseConceptsConcrete:CommandsYouCanTry Yourself . . . . . . . . . . . . 5

2 System Bootup 6

3 Application Program Loading 7

4 Timesharing 8

4.1 Many Processes,TakingTurns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 Exampleof OSCode:Linux for Intel CPUs . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.3 ProcessStates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.4 How theProcessTreeIs Built . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.5 MakingTheseConceptsConcrete:CommandsYouCanTry Yourself . . . . . . . . . . . . 11

5 Virtual Memory 12

5.1 MakeSureYouUnderstandtheGoals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.2 Exampleof Virtual Natureof Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.3 Overview of How theGoalsAre Achieved . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1



1 INTRODUCTION

5.4 CreationandMaintenanceof thePageTable . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.5 DetailsonUsageof thePageTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.5.1 Virtual-to-PhysicalAddressTranslation,PageTableLookup . . . . . . . . . . . . . 15

5.5.2 PageFaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.5.3 AccessViolations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.6 Improving Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.7 Intel PageTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.8 MakingTheseConceptsConcrete:CommandsYouCanTry Yourself . . . . . . . . . . . . 19

A Hardware Interrupts 19

A.1 GeneralOperation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A.2 SomeDetailsfor Intel CPUsandPCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1 Introduction

1.1 It’s Just a Program!

First andforemost,it is vital to understandthatanoperating system (OS) is justa program– a very large,
very complex program,but still just a program.TheOSprovidessupport for the loading andexecutionof
otherprograms(whichwe will refer to below as“applicationprograms”),andthetheOSwill setthingsup
so that it hassomespecialprivilegeswhich userprogramsdon’t have, but in the end,the OS is simply a
program.

For example,whenyour program,saya.out,1 is running, theOSis not running, ThustheOShasno power
to suspendyourprogramwhile yourprogramis running– sincetheOSisn’t running!Thisis akey concept,
solet’sfirst makesurewhatthestatementevenmeans.

What doesit meanfor a programto be “running” anyway? Recallthat the CPU is constantly performing
its fetch/execute/fetch/execute/...cycle For eachfetch,it fetcheswhatever instruction theProgramCounter
(PC) is pointing to. If the PC is currentlypointing to an instruction in your program,thenyour program
is running! Eachtime an instruction of your programexecutes,the circuitry in the CPU will updatethe
PC,having it point to eitherthenext instruction(theusualcase)or aninstruction locatedelsewherein your
program(in thecaseof jumps).

The point is that the only way your programcanstoprunningis if the PC is changedto point to another
program,saytheOS.How might this happen?Otherthancasesinvolving bugsin your program,thereare
only two waysthiscanoccur:

1Or it couldbeaprogramwhichyoudidn’t write yourself,saygcc.

OSFunctions:2



1 INTRODUCTION 1.2 WhatIs anOSfor, Anyway?

� Yourprogramcanvoluntarily relinquish theCPUto theOS.It doesthisvia a system call.whichis a
call to somefunction in theoperatingsystemwhichprovidessomeusefulservice.
For example,supposethe C sourcefile from which a.out wascompiledhada call to scanf(). The
scanf() functionis aC library function,whichwaslinkedinto a.out duringcompilation of a.out. But
scanf() itself callsread(), a functionwithin theOS.So,whena.out reachesthescanf() call, thatwill
result in a call to the OS, but after the OS doesthe readfrom the keyboard,the OS will return to
a.out.2

� The other possibility is that a hardwareinterruptoccurs. (SeeAppendix Afor an introduction to
hardwareinterrupts, andtheir implementationon Intel-basedmachines.)This is a signal– a physical
pulseof currentalonganinterrupt-request line in thebus– from someinput/output(I/O) devicesuch
asthekeyboardto theCPU.Thecircuitry in theCPUis designedto thenjump to a placein memory
whichwedesignateduponbootupof themachine.Thiswill beaplacein theOS,sotheOSwill now
run. TheOSwill attendto theI/O device, e.g. recordthekeystroke in thecaseof thekeyboard,and
thenreturnto theinterruptedprogram.

Note in our keystrokeexample that the keystroke may not have beenmadeby you. While your
programis running, someotheruserof the machinemay hit a key. The interruptwill causeyour
programto besuspended;theOSwill run thedevicedriver for whicheverdevicecausedtheinterrupt
– thekeyboard,if thepersonwassitting at theconsoleof themachine,or thenetwork interfacecard,
if thepersonwasloggedin remotely, sayvia telnet – which will recordthekeystrokein the buffer
belonging to thatotheruser;andtheOSwill do IRET, causingyourprogramto resume.

So,whenyourprogramis running, it is king. TheOShasnopower to stopit. Theonly waysyourprogram
canstoprunning is if it voluntarily doessoor is forcedto stopby actionoccuringatanI/O device.

1.2 What Is an OS for, Anyway?

Themajorfunctionsof a typical OSareto:

� loadapplicationprogramsfor execution

� provideservices,e.g. I/O, in theform of functionswhich theapplicationprogramscancall

� enabletimesharing, in whichmany applicationprogramsseemto berunningsimultaneouslybut are
actually“taking turns,”bycoordinating with hardwareoperations

� enablevirtual memory operationsfor applicationprograms,whichbothallowsflexible useof mem-
ory andenforcessecurity, againby bycoordinating with hardwareoperations

� maintainthefile system

� manageI/O, including networking
2An exceptionis thesystemcall exit() , whichis calledby yourprogramwhenit is finishedwith execution.If youdonot include

thiscall in yourC sourcefile, thecompilerwill putonein for you.

OSFunctions:3



1 INTRODUCTION 1.3 A Bit More onSystemCalls

Notecarefullytheinteractionof theOSwith thehardware.TheOSmanagestheI/O devices,thusshielding
theauthorsof application programsfrom having to do dealdirectly with them. For example,suppose you
wish to have your programreadfrom a disk file. It would be a real nuisanceif you hadto dealwith the
minutedetailsof the physical locationson disk of the variouspiecesof the file. Instead,you simply call
fopen()andfread(),andtheOSwill worry aboutthatfor you. TheOSknows theselocations, by theway,
becausewhenthe file wascreated,the creationwasdonethroughthe OS too; at that time, the OS chose
thoselocations, andrecordedthem.

In addition, if the hardwareallows for it, and if the OS is designed to makeuseof it, 3 thenthe OS not
only relievestheapplicationprogrammerfrom having to performthephysical accessesof thedisk, but also
forbids him/her from doing so. This is for the purposeof security;we would not want the applications
programmerto eitherinadvertently or maliciouslytrashsomeoneelse’sdiskfile, for instance.

How theOSdoesthesethingsis explainedin thefollowing sections. We will modelthediscussion aftera
UNIX system,but the description hereappliesto mostmodernOSs. It is assumedherethat the readeris
familiar with basicUNIX commands;a Unix tutorial is availableathttp://heather.cs.ucdavis.
edu/~matloff/unix.html

1.3 A Bit More on System Calls

Recallthat theOS makesavailableto application programsservicessuchasI/O.4 Whenyou call printf(),
for instance,it is just in theC library, not theOS,but it in turncallswrite(), which is in theOS.Thecall to
write() (whichyourprogramcouldalsomakedirectly) is a systemcall.

MostmodernCPUsrunin two or moreprivilege levels. As notedearlier, wefor examplewouldnotwantto
giveordinaryapplicationprogramsdirectaccessto I/O devices,e.g. diskdrives,for securityreasons.Thus
theCPUis designedsothatcertaininstructions,for examplethosewhichperformI/O, canbeexecutedonly
athigherprivilegelevels,sayKernelMode.(Thetermkernel refersto theOS.)

For thisreason,oneusuallycannotimplementasystemcall usinganordinarysubroutineCALL instruction,
becausewe needto have a mechanismthatwill changethemachineto KernelMode. (Clearly, we cannot
justhave an instructionto do this, sinceordinaryuserprogramscouldexecutethis instructionandthusget
into KernelMode themselves,wreakingall kinds of havoc!) Anotherproblemis that the linker will not
know wherein theOSthedesiredsubroutineresides.

Instead,systemcallsareimplementedvia aninstructiontypewhichis calledasoftware interrupt. OnIntel
machines,this takestheform of theINT instruction,whichhasoneoperand.

We will assumeLinux in theremainderof thissubsection, andtheoperandis 0x80. In otherwords,thecall
to write() in yourC program(or in printf()) will betranslatedto

3For example,PentiumCPUsdohavesuchcapabilities,but theWindowsOSdoesnotmakeuseof them.Linux andWindows
NT domakeuseof them.

4Youshouldnot jumpto theconclusion thatall, or almostall, of theservicesdealwith I/O. For example,theexecve()serviceis
usedby oneprogramto starttheexecutionof another. Anothernon-I/Oexampleis getpid(),whichwill returntheprocess number
of theprogramwhichcallsit.

OSFunctions:4



1 INTRODUCTION 1.4 MakingTheseConceptsConcrete:CommandsYouCanTry Yourself

(code to put parameters values into designated registers)
int 0x80

The INT instruction works like a hardwareinterrupt, in te sensethat it will force a jump to the OS, and
changetheprivilege level to KernelMode,enablingtheOSto executetheprivilegedinstructionsit needs.
Youshouldkeepin mind, though,thatherethe“interrupt” is causeddeliberatelyby theprogramwhichgets
“interrupted,”via anINT instruction. This is muchdifferentfrom thecaseof ahardwareinterrupt,which is
anactiontotally unrelatedto theprogramwhichis interrupted.

Theoperand,0x80above, is theanalogof thedevice numberin thecaseof hardwareinterrupts.TheCPU
will jump to thelocation indicatedby thevectorat c(IDT)+8*0x80.

WhentheOSis done,it will executeanIRET instruction to returnto theapplication programwhich made
thesystemcall. TheIRET alsomakesachangebackto UserMode.

As indicatedabove, a system call generallyhasparameters,just asordinarysubroutine callsdo. Onepa-
rameteris commonto all theservices– theservicenumber, whichis passedto theOSvia theEAX register.
Otherregistersmaybeusedtoo,dependingontheservice.

As anexample,thefollowingIntel Linux assemblylanguageprogramwritesthestring“ABC” to thescreen:

hi: .string "ABC"

.globl _start
_start:

movl $4, %eax # the write() system call, number 4 obtained
# from /usr/include/asm/unistd.h

movl $1, %ebx # 1 = file handle for stdout
movl $hi, %ecx # write from where
movl $3, %edx # write how many bytes
int $0x80 # system call

For this particularOS service,the parametersare passedin the registersEBX, ECX andEDX (and, as
mentionedbefore,with EAX specifyingwhichservicewe want).

1.4 Making These Concepts Concrete: Commands You Can Try Yourself

The UNIX strace commandwill report which system calls your programmakes. Placeit beforeyour
programnameon thecommandline,aswith thetime commandabove.

OSFunctions:5



2 SYSTEMBOOTUP

2 System Bootup

As will be explainedlater, whenwe wish to run an applicationprogram,the OS loadsthe programinto
memory. But how doestheOS itself get loadedinto memoryandbegin execution?Theprocessby which
this is doneis calledbootup.

TheCPUhardwarewill bedesignedsothatuponpoweruptheProgramCounter(PC) is initializedto some
specificvalue,say0xfffffff0 in the caseof Intel CPUs. And thosewho fabricate the computer(i.e. who
put togethertheCPU,memory, bus,etc. to form acompletesystem)will includea smallROM at thatsame
address,againsay0xfffffff0. Thecontentsof theROM aretheboot loader program.So,immediatelyafter
powerup,thebootloaderprogramis running!

Thegoalof theboot loaderis to loadin theOSfrom disk to memory. In thesimpleform, theboot loader
readsa specifiedareaof the disk, copiesthe contentsthere(which will be the OS) to memory, andthen
finally executesaJMPinstruction(or equivalent) to thatsectionof memory—sothatnow theOSis running.
In a morecomplicatedform, the boot loaderonly readspartof the OS into memory, andthenperformsa
JMPinstructionto theOS;theOSthenreadstherestof itself into memory.

For the sakeof concreteness,let’s look morecloselyat the Intel case. The programin ROM hereis the
BIOS, theBasicI/O System.It contains partsof thedevice driversfor thatmachine,5andalsocontainsthe
bootloaderprogram.

Thebootloaderprogramhasbeenwritten to readfrom thefirst sectorof thedisk.6Thatsectoris calledthe
MasterBootRecord(MBR). Thebootloaderin ROM will copythecodefrom theMBR to memory, starting
at location0x00007c00.It thendoesa jumpto thataddress,sothatthatcodeis now running.

Now if themachinehadoriginallybeenshippedwith Windowsinstalled,thecodein theMBR waswrittento
thenloadtheWindowsOSinto memory. If on theotherhandthemachinehadbeenshippedwith Windows
NT, OS/2,Linux or someotherOSinstalled,thecodein theMBR wouldhavebeenwrittenaccordingly, and
thatOSwould now beloadedinto memory.

Many peoplewho useLinux retainboth Windows andLinux on their harddrives,andhave a dual-boot
setup.They startwith aWindowsmachine,but theninstallLinux aswell. As partof theprocessof installing
Linux, a programnamedLILO (Linux Loader)is written into theMBR. So,whenthebootloaderin ROM
loadsthecodefrom theMBR into memoryandjumpsto thatpart of memory, LILO will now run. LILO
will thenasktheuserwhetherhe/shewantsto bootLinux or Windows,andthenloadtherequestedsystem
into memory.

In any case,after theOSis loadedinto memoryby thecodein theMBR, thatcodewill performa jump to
theOS,sotheOSis running. Typically, not all of theOSwill be in memoryyet, sotheOSwill now read
therestof itself into memory.

5Thesemayor maynotbeused,depending on theOS.Windowsuses them,but Linux doesn’t.
6Disksaredividedin blockscalledsectors. Thebootdevicecouldbesomethingelseinsteadof aharddrive,suchasafloppyor

aCD-ROM. This is setin theBIOS,with apriority orderingof whichdeviceto try to bootfrom first.

OSFunctions:6



3 APPLICATION PROGRAM LOADING

3 Application Program Loading

Supposeyouhave justcompiledaprogram,producing, sayfor a Linux system,anexecutablefile a.out. To
run it, youtype

% a.out

For thetime being,assumea verysimplemachine/OScombination,with novirtual memory. Hereis what
will occur:

� Duringyour typingof thecommand,theshell is running,saytcsh or bash. Again, theshellis justa
program(onewhichcouldbeassignedasahomeworkproblemin acourse),andit readsthecommand
youtype.

� Theshellwill thenmakeasystemcall, execve(),7 askingtheOSto runa.out. TheOSis now running.

� The OS will look in its disk directory, to determinewhereon disk thefile a.out is. It will readthe
beginning sectionof a.out, which containsinformationon thesizeof theprogram,a list of thedata
segmentsusedby theprogram,andsoon.

� The OS will checkits memory-allocationtable(this is just an array in the OS) to find an unused
regionor regionsof memorylargeenoughfor a.out. (NotethattheOShasloadedall currently-active
programsin memoryup to now, just like it is loadinga.out now, soit knowsexactly which partsof
memoryarein useandwhich arefree.) We needspacebothfor a.out’s instructions(calledthe text
portionof theprogramin UNIX terminology),anddata– staticdataitems(scalarandarrayvariables,
calledthedata segmentin UNIX), aswell asfor stackspaceandtheheap (usedfor callsto calloc()
andmalloc()).

� TheOSwill thenloada.out (includingtext anddata)into thoseregionsof memory, andwill update
its memory-allocationtableaccordingly. Also, the OS will createa page table for a.out, which we
will describelater.

� TheOSwill checka certainsectionof thea.out file, in which the linker previously recordeda.out’s
entry point, i.e. theinstructionin a.out atwhichexecutionis to begin.

� TheOSis now readyto initiateexecutionof a.out. It will setthestackpointer to point to theplace
it hadchosenearlier for a.out’s stack. (The OS will save its own registervalues,including stack
pointer value,beforehand.)Thenit will actuallystarta.out, sayby executinga JMP instruction(or
equivalent)to jumpto a.out’sentrypoint.

� Thea.out programis now running!
7It will alsocall another systemcall, fork(), but wewill notgo into thathere.

OSFunctions:7



4 TIMESHARING

Note thata.out itself may call execve() andstartotherprogramsrunning. For example,gcc doesthis.8 It
first runsthecpp C preprocessor(which translates#include,#defineetc. from your C sourcefile). Thenit
runscc1, whichis the“real” compiler(gcc itself is justa managerthatrunsthevariouscomponents,asyou
canseenow); this producesanassemblylanguagefile.9 Thengcc runsas, theassembler, to producea .o
machinecodefile. The lattermustbe linkedwith somecode,e.g. /usr/lib/crt1.o,which setsup themain()
structure,e.g.accessto the“argv” command-linearguments,andto theC library, e.g./lib/libc.so.6;so,gcc
runsthelinker, ld. In all tesecases,gcc startstheseprogramsby callingexecve().

4 Timesharing

4.1 Many Processes, Taking Turns

Timesharing involveshaving severalprograms(or evenseveral instancesof thesameprogram)runningin
whatappearsto bea simultaneousmanner. Sincethesystemhasonly oneCPU (we will excludethecase
of multiprocessor systemsin thisdiscussion), thenthissimultaneityis of courseonly anill usion,sinceonly
oneprogramcanrunatany giventime,but it is a worthwhile illusion,aswewill see.

First of all, how is this illusion attained?Theansweris thatwe have theprogramsall taketurnsrunning,
with eachturn– calledaquantum or timeslice – beingof veryshortduration,for example50milliseconds.
Say we have four programs,u, v, x and y, runningcurrently. What will happenis that first u runs for
50 milliseconds, thenu is suspendedandv runsfor 50 milliseconds,thenv is suspendedandx runsfor
50 milliseconds, andso on (after y getsits turn, thenu getsa secondturn, etc.). Sincethe turn-switching
(formally knownascontext-switching) is happening sofast(every50milliseconds),it appearsto ushumans
thateachprogramis runningcontinuously(though at one-fourthspeed),ratherthanon andoff, on andoff,
etc.

But how cantheOSenforcethesequanta?For example,how cantheOSforcetheprogramu above to stop
after 50 milliseconds?As discussedearlier, the answeris, “It can’t! The OS is deadwhile u is running.”
Instead,theturnsareimplementedvia a timing device,whichemitsa hardwareinterruptat thepropertime.
For example,we could setthe timer to emit an interruptevery 50 milliseconds.We would write a timer
devicedriver, andincorporateit into theOS.10

The timer device driver saves all u’s currentregister values,including its PC valueand the value in its
ProcessorStatusRegister. Later, whenu’snext turncomes,thosevalueswill berestored,andu will resume
executionasif nothing ever happened.For now, though, the OS routine will restorev’s previously-saved
registervalues,makingsureto restorethePCvaluelastof all. Thatlastactionforcesa jumpfrom theOSto
v, right at thespotin v wherev wassuspendedat theendof its lastquantum.(Again, theCPUjust “minds

8Remember, a compileris just a programtoo. It is a very large andcomplex program,but in principleno different from the
programsyouwrite.

9You canview this file by runninggcc with its -S option. This is oftenhandy if you aregoingto write anassembly-language
subroutineto be calledby your C code,so that you canseehow the compiler will dealwith the parametersin the call to the
subroutine.

10Wewill makesuch anassumptionhere.However, whatis morecommonis to havethetimer interruptmorefrequentlythanthe
desiredquantumsize.Thetimer is setto interruptevery10mill iseconds.If wewantaquantumsizeof 50,wewrite theOSsothat
aprogram’s turn is endedafterthefifth interrupt.

OSFunctions:8



4 TIMESHARING 4.2 Exampleof OSCode:Linux for Intel CPUs

its own business,” anddoesnot“know” thatoneprogram,theOS,hashandedovercontrolto another, v; the
CPUjustkeepsperformingits fetch/executecycle, fetchingwhatever thePCpoints to.)

At any given time, thereare many differentprocesses in memory. Theseare instancesof executionsof
programs.If for instancetherearethreeusersrunningthegcc C compilerright now on a given machine,
hereoneprogramcorrespondsto threeprocesses.

4.2 Example of OS Code: Linux for Intel CPUs

Hereis abit abouthow thecontext switch is donein Linux, in theversionfor Intel machines.Eachprocess
hasa sectionof memory, calledtheTaskStateSegment(TSS),which storesvariouspiecesof information
aboutthatprocess,suchastheregistervalueswhich theprogramhadat thetime its lastturn ended.In the
codebelow registersEBX andECX point to theTSSsof theprocesswhoseturn justended,sayu, andthe
processto whichwewill give thenext turn,sayv.

As an exampleof the operations performed,and to show you concretelythat the OS is indeedreally a
programwith realcode,hereis a typicalexcerptof code:11

pushl %esi
pushl %edi
pushl %ebp
movl %esp, 532(%ebx) ...
movl 532(%ecx), %esp
...
popl %ebp
popl %edi
popl %esi
...
iret

Hereis whatthatcodedoes.In theLinux sourcecode,theTSSis accessedasaC struct, whichhasvarious
fieldsto storethingslike registervalues.For example,tss.espcontainsthepreviously-storedvalueof ESP,
thestackpointer; thisfield happensto belocated532bytespastthebeginning of theTSS.

Now, uponentry to the above OS code,ESPis still pointing to u’s stack,so the threePUSHinstructions
saveu’svaluesof theESI,EDI andEBPregistersonu’sown stack.12 Theotherregistervaluesof u mustbe
savedtoo, including its valueof ESP. Thelatter is doneby theMOV operation(“movl” in AT&T assembly
languagesyntax),whichcopiesthecurrentESPvalue,i.e. u’sESPvalue,to tss.espin u’sTSS.Otherregister
saving is similar, thoughnotshown here.

Now theOSmustprepareto startv’snext turn. Thusv’s previously-savedregistervaluesmustberestored
to theregisters.To understandhow thatis done,youmustkeepin mindthatthatsamecodeabovehadbeen

11I haveslightly modifiedsomeof this for thesakeof simplicity.
12Note theneedto write this in assembly language insteadof C, sinceC would not give usdirectaccess to theregistersor the

stack.Mostof Linux is writtenin C, but machine-dependent operationslike theoneheremustbedonein assembly language.

OSFunctions:9



4 TIMESHARING 4.3 ProcessStates

executedwhenv’s lastturn ended.Thusv’s valueof ESPis in tss.espof its TSS,andthesecondMOV we
seeabove copiesthatvalueto ESP. So,now weareusingv’sstack.

Next, notesimilarly that at the endof v’s last turn, its valuesof ESI, EDI andEBP werepushedonto its
stack,andof coursethey arestill there.So,we justpopthemoff, andbackinto theregisters,which is what
thosethreePOPinstructionsdo.

Finally, notethatthemechanismwhichmadev’s lastturn endwasa hardwareinterrupt from thetimer. At
thattime,thevaluesof theFlagsRegister, CSandPCwerepushedontothestack.An IRET instructionpops
all thatstuff backinto thecorrespondingregisters.Noteonly doesthatrestoreregisters,but sincev’sold PC
valueis restored,v is now running!

4.3 Process States

TheOSmaintainsaprocess table whichshowsthestateof eachprocessin memory, mainlyRunstateversus
Sleepstate.A processwhichis in Runstatemeansthatit is readyto runbut simplywaitingfor its next turn.
TheOSwill repeatedlycyclethroughtheprocesstable,startingturnsfor processesin Runstatebut skipping
over thosein Sleepstate.Theprocessesin Sleepstatearewaiting for something, typically anI/O operation,
andthuscurrentlyineligible for turns. So, eachtime a turn ends,the OS will browsethroughits process
table,looking for aprocessin Runstate,andthenchoosingonefor its next turn.

Sayourapplicationprogramu abovecontainsacall to scanf()to readfrom thekeyboard.Recallthatscanf()
calls the OS function read(). The latter will checkto seewhetherthereare any charactersreadyin the
keyboardbuffer. Typically therewon’t beany charactersthereyet, becausetheuserhasnot startedtyping
yet. In thiscasetheOSwill placethisprocessin Sleepstate,andthenstarta turn for anotherprocess.

How doesa processgetswitchedto runstatefrom Sleepstate?Sayourapplicationprogramu wasin Sleep
statebecauseit waswaiting for userinput from thekeyboard(sayit waswaitingfor justasinglecharacter).
As explainedearlier, whenthe userhits a key, that causesa hardwareinterruptfrom the keyboard,which
forcesa jump to the OS.Supposeat that time programv happenedto be in the midstof a quantum.The
CPUwould temporarilysuspendv andjump to thekeyboarddriver in theOS.The latterwouldnoticethat
theprogramu hadbeenin Sleepstate,waiting for keyboardinput, andwould now move u to Runstate.

Note,though,thatthatdoesnotmeanthattheOSnow startsu’snext turn;u simplybecomeseligible to run.
Recallthateachtime oneprocess’turn ends,theOS will selectanotherprocessto run, from thesetof all
processescurrentlyin Runstate,andu will now bein thatset.

4.4 How the Process Tree Is Built

On UNIX systems,the first thing the OS doesafter bootupis to starta processnamedinit. That process
thenstartsall otherOSprocesses,suchastheonehandling userlogins, in.logind. Whena userlogsin, the
latterstartsupa shellfor theuser, saytcsh, whichin turnwill startwhateverprocessestheusercommands,
saya.out. As we haveseenbefore,thosemayin turnspawn furtherprocesses.

OSFunctions: 10



4 TIMESHARING 4.5 MakingTheseConceptsConcrete:CommandsYouCanTry Yourself

4.5 Making These Concepts Concrete: Commands You Can Try Yourself

First, try the ps command.On UNIX systems,muchinformationon currentprocessesis givenby the ps
command,including:

� state(Run,Sleep,etc.)

� pageusage(how many pages,numberof pagefaults, etc.)

� ancestry(whichprocessis the“parent” of thegivenprocess)

The reader is urged to try this out. You will understand the concepts presented here much better after
seeing some concrete information which the ps command can give you. Theformatof thiscommand’s
optionsvariessomewhatfrom machineto machine(onLinux, I recommend“ps ax”), socheckthemanpage
for details,but run it with enoughoptions thatyougetthefullestoutputpossible.

Anothercommandto try is w. Oneof the piecesof informationgiven by the w commandis the average
numberof processesin Runstatein thelastfew minutes.Thelarger this numberis, theslower will bethe
responsetimeof themachineasperceivedby auser, ashisprogramis now takingturnstogether with more
programsrunby otherpeople.

OnLinux (andsomeotherUNIXx) systems,youcanalsotry thepstree command,whichgraphicallyshows
the“family tree” (ancestryrelations)of eachprocess.For example,hereis theoutput I gotby running it on
oneof ourCSIFPCs:

% pstree
init-+-atd

|-crond
|-gpm
|-inetd---in.rlogind---tcsh---pstree
|-kdm-+-X
| ‘-kdm---wmaker-+-gnome-terminal-+-gnome-pty-helpe
| | ‘-tcsh-+-netscape-commun---netscape-+
| | ‘-vi
| |-2*[gnome-terminal-+-gnome-pty-helpe]
| | ‘-tcsh]
| |-gnome-terminal-+-gnome-pty-helpe
| | ‘-tcsh---vi
| ‘-wmclock
|-kerneld
|-kflushd
|-klogd
|-kswapd
|-lpd
|-6*[mingetty]

OSFunctions: 11



5 VIRTUAL MEMORY

|-2*[netscape-commun---netscape-commun]
|-4*[nfsiod]
|-portmap
|-rpc.rusersd
|-rwhod
|-sendmail
|-sshd
|-syslogd
|-update
|-xconsole
|-xntpd
‘-ypbind---ypbind

%

Notehow, for example,thatsomeuseris runningvi. He gave thevi commandto tcsh, which starteda vi
processfor him. The tcsh had in turn beenstartedby gnome-terminal, a versionof xterm runningthe
window thisuserhadbeenrunningtheshellin.

5 Virtual Memory

5.1 Make Sure You Understand the Goals

Now let usaddin theeffectof virtual memory(VM). VM hasthefollowingbasicgoals:

� Overcomelimitationsonmemorysize:
Wewantto beableto runaprogram,or collectively severalprograms,whosememoryneedsarelarger
thantheamountof physical memoryavailable

� Relieve thecompilerandlinker of having to know whatmemoryis freewhena programis run:
We want to facilitate relocation of programs,meaningthat the compilerandlinker, do not have to
worry aboutwherein memorya programwill beloadedwhenit is run.

� Enablesecurity:
Wewantto ensurethatoneprogramwill notaccidentally(or intentionally) destroyanotherprogram’s
operationby writing to thelatter’sareaof memory

� Enablesharing:
We wantto beableto have only onecopyin memoryof the“text” portion of a largeprogram(e.g. a
compiler)eventhoughseveralusersareeachrunninginstancesof theprogram

OSFunctions: 12



5 VIRTUAL MEMORY 5.2 Exampleof Virtual Natureof Addresses

5.2 Example of Virtual Nature of Addresses

Thewordvirtual means“apparent.”It will appearthataprogramresidesentirelyin mainmemory, whenin
factonly partof it is there;it will appear(e.g. from thecompiler’spointof view) thattheprogramis loaded
startingat location0 in memory, but thatwill notbethecasein actuality.

To makethismoreconcrete,suppose ourC sourcefile from whichwe compileda.out includedastatement

int x;

andsupposethecompilerandlinker hadassignedtheaddress200to x. In otherwords,astatementin ourC
sourcefile like

printf("%d",&x);

would print out thevalue200.

Thena.out mighthave instructionslike

movl (200),%eax

onanIntel machine.This instructioncopiesthecontentsof word200of memoryto theCPUregisterEAX.

At thetime a.out is loadedby theOSinto memory, theOSwill divideboththetext (instructions)anddata
portionsof a.out intochunks,andfind unusedplacesin memoryatwhichto placethesechunks.Thechunks
arecalledpages of theprogram,andthesame-sizedplacesin memoryin whichtheOSputsthemarecalled
pagesof memory. TheOS setsup a page table, which is anarrayin memorywhich is maintainedby the
OS, in which the OSrecordsthecorrespondences,i.e. lists which pageof theprogramis storedin which
pageof memory.

So,whatappearsto bein word200in memoryfrom theprogramcodeabove mayactuallybein, say, word
1204.At thetime theCPUexecutesthatinstruction, theCPUwill determinewhere“word 200” really is by
doinga lookupin thepagetable.In ourexamplehere,thetablewill show thattheitemwe wantis actually
in word1204,andtheCPUwill thenreadfrom thatlocation.

In thisexample,we saythevirtual address is 200,andthephysical address is 1204.

5.3 Overview of How the Goals Are Achieved

Let’s look at ourstatedgoalsin Section5.1above,andseehow they areachieved:

OSFunctions: 13



5 VIRTUAL MEMORY 5.4 CreationandMaintenanceof thePageTable

� Overcomelimitationsonmemorysize:
To conserve memoryspace,the OS will initially load only part of a.out into memory, with the re-
mainderbeingleft backon disk. Thepagesof theprogramwhich arenot loadedwill be markedin
thepagetableascurrentlybeingnonresident, andtheir locationson disk will beshown in thetable.
During executionof the program,if the programneedsoneof the nonresident pages,theCPU will
noticethatthepageis nonresident (this is calleda “pagefault”), andcauseaninternalinterrupt.That
causea jumpto theOS,whichwill bring in thatpagefrom disk, andthenjumpbackto theprogram,
whichwill resumeat theinstructionwhichaccessedthemissingpage.
Notethatpageswill oftengobackandforth betweendiskandmemoryin thismanner. Eachtime the
programneedsa missingpage,thatpageis brought in from diskanda pagewhich hadbeenresident
is writtenbackto disk in orderto makeroomfor thenew one.

A big issueis thealgorithmtheOSusesto decidewhichpageto movebackto diskwhenever it brings
a pagefrom diskaftera pagefault. This is beyondthescopeof thisdocumenthere,but onepoint to
noticeis thatthealgorithm will bechosensoasto workwell on“most” programs.For someprograms,
thatalgorithm will resultin a lot of pagefaults,dueto it frequentlybeingthecasethat right after a
pageis replaced,thatsamepageis neededagain.

� Relievethecompilerandlinkerof theburdenof knowing whatmemoryis freeat thetimetheprogram
executes:
This is clearfrom theexampleabove, wherethelocation “200” which thecompilerandlinker setup
for x wasin effect changedby theOSto 1204at thetime theprogramwasloaded.TheOSrecorded
this in thepagetable,andthenduringexecutionof theprogram,theVM hardwarein theCPU does
lookupsin thepagetableto getthecorrectaddresses.

� Enablesecurity:
Thepagetablewill consistof oneentryperpage.Thatentrywill, asnotedearlier, includeinformation
asto wherein memorythatpageof theprogramcurrentlyresides,of if currentlynonresident,where
ondisk thepageis stored.But in addition, theentrywill alsolist thepermissionstheprogramhasto
accessthisparticularpage– read,write,execute– in amanneranalogousto file-accesspermissions. If
theprogramtriesto accessapagefor whichit doesnothave theproperpermission,theVM hardware
in theCPUwill causeaninternalinterrupt,causingtheOSto run. TheOSwill thenkill theprocess,
i.e. remove it from theprocesstable.

� Enablesharing:
Suppose for exampletwo usersof agivenmachinewishto rungcc right now. Thisis ahugeprogram,
soconservingmemoryis quiteimportant.An obviousstrategy on thepartof theOSwouldbeto load
only onecopyof thetext (i.e. instructions)partof gcc; of course,theremustbeseparatecopiesof the
datasections,asthedata(.c sourcecodefiles) for thetwo usersaredifferent.
VM allows usto accomplishthis. Eachuser’s pagetablewill list the sameentriesfor the text, and
thusthey will sharethetext partof theprogram.

5.4 Creation and Maintenance of the Page Table

Notecarefullytherolesof theplayershere: It is thesoftware,theOS, thatcreatesandmaintainsthepage
table,but it is thehardwarethatactuallyusesthepagetableto generateaddresses,checkpageresidency and

OSFunctions: 14



5 VIRTUAL MEMORY 5.5 DetailsonUsageof thePageTable

checksecurity.

WhentheOScreatesanew process,it mustfind chunks(pages)of memoryinto whichit will loadpartor all
of thegivenprogram.It will createa pagetablefor this process,andrecordin thepagetablethelocations
of thesechunks(aswell asrecordthelocationsondiskof thechunkswhich it did not loadinto memory).

Thehardwarewill haveaspecialPageTableRegister(PTR)to pointto thepagetableof thecurrentprocess.
WhentheOSstartsa turn for a process,it will restorethepreviously-savedvalueof thePTR,andthusthis
process’pagetablewill now bein effect.

5.5 Details on Usage of the Page Table

5.5.1 Virtual-to-Physical Address Translation, Page Table Lookup

Whenever the runningprogramgeneratesan address– either the addressof an instruction, aswill be the
casefor aninstructionfetch,or theaddressof data,aswill bethecaseduringtheexecutionof sometypesof
instructions– thisaddressis only virtual. It mustbetranslatedto thephysical addressatwhichtherequested
item actuallyresides.Thecircuitry in theCPUis designedto do this translation by performinga lookupin
thepagetable.

Theaddressspaceis brokeninto pages.For convenience,saythepagesizeis 4096bytes.For any virtual
address,thevirtual pagenumberis equalto theaddressdividedby thepagesize,4096, andits offsetwithin
thatbyteis theaddressmod4096.Since �������	��

��� , thatmeansthat in a 32-bit virtual address,theupper
20bits form thepagenumber, andthelower12bits form theoffset.

Considerfor exampletheIntel instruction

movl $3, (0x735bca62)

This would copy the constant3 to location0x735bca62(193539426base-10).That meansvirtual page
number0x735bc (472508base-10),offset0xa62(2658base-10)within thatpage.In otherwords, thefirst
byteof thewordwewill write to is byte2658within page472508in thevirtual addressspace.

Supposetheentriesin our pagetableare32 bits wide, i.e. oneword perentry.13 Let’s labelthebits of an
entry31to 0,wherebit 31is in themost-significant(i.e. leftmost)positionandbit 0 is in theleastsignificant
(i.e. rightmost) place.Supposetheformatof anentryis asfollows:

� bits31-12:physicalpagenumberif resident,disk locationif not

� bit 11: 1 if pageis resident,0 if not

� bit 10: 1 if have readpermission, 0 if not

� bit 9: 1 if havewrite permission,0 if not
13If we wereto look at thesourcecodefor theOS,we would probablyseethat thepagetableis storedasa very long arrayof

typeunsigned int, with eacharrayelementbeingonepagetableentry.

OSFunctions: 15



5 VIRTUAL MEMORY 5.5 DetailsonUsageof thePageTable

� bit 8: 1 if haveexecutepermission,0 if not

� bits7-0: otherinformation, notdiscussedhere

Now, hereis whatwill happenwhentheCPUexecutestheinstruction

movl $3, (0x735bca62)

above:

� TheCPU,seeingthatthis is virtual pagenumber0x735bc,will go to getthatentryin thepagetable,
asfollows. Supposethecontentsof thePTR is 0x256a1000. Thenthetableentryof interesthereis
at location0x735bc* 4 + 0x256a1000= 0x2586e6f0.TheCPUwill readfrom thatlocation, getting,
say, 0xc2248eac.

� The CPU looks at bits 11-8 of that entry, getting 0xe, finding that the pageis residentandthat the
programhasreadandwrite permissionbut not executepermission. The permissionrequestedwas
write, sothis is OK.

� The CPU looks at bits 31-12, getting 0xc2248. The virtual offset, which we found earlier to be
0xa62,is always retained,so the CPU now knows that the physical addressof the virtual location
0x735bca62is 0xc2248a62. The CPU putsthis in the Memory AddressRegister(MAR), puts3 in
the Memory DataRegister(MDR), andassertsthe Write line in the bus. This writes 3 to memory
location 0xc2248a62,andwe aredone.

5.5.2 Page Faults

Supposein our exampleabove bit 11 of thepagetableentryhadbeen0, indicating thattherequestedpage
wasnot in memory. This event is known asa page fault. If thatoccurs,theCPUwill performaninternal
interrupt,14 which will force a jump to the OS.The OS will first decidewhich currently-resident pageto
replace,thenwrite thatpagebackto disk.15 TheOSwould thenbring in therequestedpagefrom disk. The
OSwould thenupdatetwo entriesin thepagetable: (a) it would changetheentry for thepagewhich was
replaced,changingbit 11 to indicatingthe pageis not resident,andchangingbits 31-12;and(b) the OS
would updatethe pagetableto indicatethat the new item is residentnow in memory, andshow whereit
resides.

Sinceaccessingthedisk is far, far slower thanaccessingmemory, a programwill run quite slowly if it has
toomany pagefaults. If for exampleyourPCathomedoesnothaveenoughmemory, youwill find thatyou
oftenhave to wait while a large application programis loading, duringwhich time you canhearthe disk
drivedoinga lot of work, astheOSejectsmany currently-residentpagesto bringin thenew application.

14TheCPUwill alsorecordthePCvalueof theinstructionwhichcaused thepagefault, sothatthat instructioncanberestarted
afterthepagefault is processed. In PentiumCPUs,theCR2registeris usedto storethisPCvalue.

15While we will not assumesohere,mostOSswill do this write-back only if it is necessary. Oneof thebits in our field of bits
7-0abovewouldbeused asthedirty bit for thispurpose. We will notpursuethisaspect here.

OSFunctions: 16



5 VIRTUAL MEMORY 5.5 DetailsonUsageof thePageTable

5.5.3 Access Violations

If on theotherhandanaccessviolation occurs,theOSwill announceanerror – in UNIX, referredto asa
segmentation fault – andkill theprocess,i.e. remove it from theprocesstable.

For example,considering thefollowingcode:

int q[200];

main()

{ int i;

for (i = 0; i < 2000; i++)~ {
q[i] = i;

}

}

Notice that the programmerhasapparentlymadean error in the loop, setting up 2000iterations instead
of 200. The C compilerwill not catchthis at compiletime, nor will the machinecodegeneratedby the
compilercheckthatthearrayindex is outof boundsatexecutiontime.

If this programis run on a non-VM platform,16 thenit will merrily executewithout any apparenterror. It
will simply write to the180wordswhich follow theendof thearrayq. This may or may not be harmful,
dependingonwhatthosewordshadbeenusedfor.

But on a VM platform, in our caseUNIX, an error will indeedbe reported,with a “Segmentationfault”
message.However, aswe look into how this comesabout,the timing of theerror may surpriseyou. The
error is not likely to occurwheni = 200;it is likely to bemuchlaterthanthat.

To illustratethis, I ran this programon a PC underLinux. I first addedsomecodeto aid in investigating
whatexactlyoccurs:

int q[200];

main()

{ int i;

printf("%x %x\n",&q[0],&q[199])
16Recallthat“VM platform” requiresboththatourCPUhasVM capability, andthatourOSusesthiscapabili ty.

OSFunctions: 17



5 VIRTUAL MEMORY 5.6 Improving Performance

for (i = 0; i < 2000; i++)~ {
printf("%d\n",i);
q[i] = i;

}

}

After runningthisprogram,I foundthattheseg fault occursnotat i = 200,but actuallyat i = 616.Let’ssee
why.

Thefirst call to printf() revealsthatq beginsatvirtual address0x8049640 (andendsat0x804995c).OnIntel
machines,the pagesizeis 4096bytes,so a virtual addressbreaksdown into a 20-bit pagenumberanda
12-bitoffset,justasin Section5.5.1above. In ourcasehere,q beginsin virtual pagenumber0x8049, offset
0x640.Convertingtheseto base10 for convenience,wefind thatq beginsin virtual pagenumber32841, at
byte1600of thatbyte.

Now it is the latternumberwhich is of interesthere.Remember, thepagesizeis 4096bytes,andwe now
know thatq beginsat the ����������� byteof a page.17 Thenq ends200words(800bytes)later, at the 
����������
byteof thepage.Now, here is thepoint: Thefirst few nonexistent“elements” of q which follow theendof
q are still in thatsamepage– andsincetheprogramhaswrite permission for theentirepage,therewill be
noseg fault for trying to write to “q[200]”, “q[201] ”, andsoon.

Eventually, for largeenoughi, “q[i]” will not be in thatpage,andits virtual pagenumberwill correspond
to anentryin thepagetablewhichdoesnothavewrite permission. Thenthepagefault will occur. It turned
out to befor i = 616.

5.6 Improving Performance

Virtual memorycomesat a big cost, in the form of overheadincurredby accessingthe pagetables. For
thisreason,thehardwarewill alsotypically includea translation lookaside buffer (TLB). This is aspecial
cacheto keepa copyof partof thepagetablein theCPU, to reducethenumberof timesonemustaccess
memory, wherethepagetableresides.

5.7 Intel Page Tables

On Intel machines,eachprocessactuallyhasmany tables,not just one. And someof themmay even be
nonresident currently;in otherwords,eventhepagetablesarepaged!

Thereis a “pagetabletable,” which servesasdirectoryof pagetablesfor the currentprocess.A special
register, CR3,points to thepagetabletable.

A virtual addressis brokendown into threefields,ratherthanthetwo in ourdescriptionsabove:
17Recallthattheoffsetis retainedafterthevirtual-to-physicaladdresstranslation.So,eventhoughwedonotknow whatphysical

pagenumberq wasin whenI rantheprogram,it doesnotmatterin termsof offset.No matterwhichphysical pageit was,weknow
thatq beganat the ������� �"! bytein thatpage.

OSFunctions: 18



A HARDWARE INTERRUPTS5.8 MakingTheseConceptsConcrete:CommandsYouCanTry Yourself

� bits31-22:i, theindex into thepagetabletable

� bits21-12:j, index into somepagetable

� bits11-0: theoffset

So, in processinga virtual address,theCPU will first fetch from theaddressc+4*i, wherec is thecurrent
contentsof CR3. That fetchedword w will tell theCPU whetherthepagetablefor this virtual addressis
currentlyresidentin memory. If thattableis resident,w will show theaddressof thetable,d, while if it is
nonresident, it will show whereondiskto getit. TheCPUwill bringin thetablefrom diskin thelattercase.
OncetheCPUhasd, it will thenfetchfrom theaddressd+4*j, yieldingthepagetableentryfor theitemour
runningprogramhasrequested.At thispoint, theoperationsarethesameasdescribedearlier.

5.8 Making These Concepts Concrete: Commands You Can Try Yourself

The UNIX time commandwill reporthow muchtime your programtakesto run, how many pagefaults
it generated,etc. Placeit just beforeyour program’s nameon thecommandline. (This programcouldbe
eitheroneyouwrote,or somethinglike, say, gcc.) For example,if youhavea programx with argument12,
type

time x 12

insteadof

x 12

Also, the top programis very good,displaying lots of good informationon the memoryusageof each
process.

A Hardware Interrupts

A.1 General Operation

A hardwareinterrupt is anelectricalsignal sentfrom anI/O device alonganinterrupt-requestline IRQ in
thesystembusto theCPU (theline will beconnectedto anIRQ pin in theCPU).TheCPUis designedto
finish whatever instruction i andthenjump to anotherpartof memorywherean interrupt service routine
(ISR), or device driver, hasbeenstored.Keepin mind thatthedevicedriversarepartof theOS.

TheISR now runs(first saving on thestackthevaluesof any registersit will use,asany subroutinewould
do), performingwhatever actionsareneededto reador write the I/O data. Whenit is done,the ISR pops

OSFunctions: 19



A HARDWARE INTERRUPTS A.2 SomeDetailsfor Intel CPUsandPCs

from thestackany previously-savedregistervalues,andexecutesanIRET (“interrupt return”) instruction.
The latter is similar to an ordinaryRET instructionusedto returnfrom a subroutine call, but in this case
we arereturningto whatever programhadbeenrunningat the time theCPU received the interruptsignal.
Sincethe hardwarehadsaved the programstateat that time, which is now restoredby the hardware,the
otherprogramnow resumesexecutionat thepointatwhichit hadbeeninterrupted.

Most machinesusevectored interrupts.This meansthat thereis a tablestoredin memory(initialized by
theOSuponbootup) whichstoresone“interruptvector” for eachpossible interruptingI/O device. Whenan
interruptis receivedfrom device i, theCPUwill look up thevectorfor the # �"� device. Thevectorwill state
thelocationof thedriver for thatdevice,andtheCPUwill thendoa jumpto thatlocation, causingthedriver
to begin executing.

But how doesthe CPU know which device causedthe interrupt? Oneway of handling this would be to
have a differentIRQ bus line for eachI/O device. Somesystemsdo usethis approach,but generallyit is
infeasible,asa typical machinehasmany I/O devices,andwe do not want to designthe CPU to have so
many pins. (Pinstakeuppreciousspaceon theperipheryof a chip.)

A.2 Some Details for Intel CPUs and PCs

Linux andsimilar systemsrun the Intel CPU in protected mode, which enablesthe hardwareto provide
varioustypesof securityfeaturesneededby amodernOS,suchasvirtual memory. Following is asimplified
description of how thesesystemswork.

Again for securityreasons,we wantI/O to beperformedonly by theOS.TheIntel CPUhasseveralmodes
of operation,which we will simplify hereto justUserModeandKernel(i.e. OS) Mode. Thehardwareis
setupsothatI/O instructionssuchasIN andOUT canbedoneonly in KernelMode.

The Intel CPU containsanInterruptDescriptorTable,IDT, which pointsto thebeginningof the interrupt
vector table in memory. Eachvector is 8 byteslong, so the vector for the # �"� I/O device is locatedat
c(IDT)+8*i, wherec() means“contentsof.”

A PC alsoincludesanotherpieceof Intel hardware,the 8259A interruptcontroller. The I/O devicesare
actuallyconnectedto the8259A,which in turn is connectedto the IRQ line, insteadof the devicesbeing
connecteddirectly to theIRQ. The8259A hasmany inputpins,onefor eachI/O device.18

Whenaninterruptfrom device i occurs,the8259Awill recordthevalueof i, andthenasserttheIRQ line
in thebus.TheIntel CPUwill thenpushethevaluesof theFlags,CSandPCregistersontothestack,19 and
thenproceedto determinethevalueof i. It doesthisby assertingtheINTA (“interruptacknowledge”) line
in the bus. The8259Athensendsthevalueof i alongthedatabus,whereit is received by the CPU.The
CPUthendoesthelookupin thevectortable,findstheinformationfor device i, andjumpsto thedriver for
device i. The informationin thevectorfor device i will alsoresultin theCPU changingto KernelMode,
whichis importantsincethedrivermustexecuteI/O instructionssuchasIN andOUT.

Thedriver will thenexecute,readingand/orwriting dataat theportsof the I/O device. Whenthedriver is
done,it executesIRET, everythingis restored,andtheinterruptedprogramresumesexecutionwhereit left

18If werun outof suchpins,two or more8259Adevicesmaybecascaded together.
19Don’t worry abouttheCSregister.

OSFunctions: 20



A HARDWARE INTERRUPTS A.2 SomeDetailsfor Intel CPUsandPCs

off, asif nothinghadever happened.

If several I/O devicescauseinterruptsat aboutthesametime, the8259Acan“queue”them,sothatall will
beprocessed.

OSFunctions: 21


