Overview of Functionsof anOperatingSystem

NormanMatloff
Universityof California,Davis
(©2001,N. Matloff

May 31,2001

Contents

1 Introduction
1.1 It'sJdustaProgram! L
1.2 WhatlsanOSfor, Anyway? o e
1.3 ABitMoreonSystemCalls

1.4 Making TheseConceptLoncrete:CommandsrouCanTry Yourself
2 System Bootup
3 Application Program L oading

4 Timesharing
4.1 Many ProcessestakingTurns i e
4.2 Exampleof OSCode:LinuxforintelCPUs
4.3 ProcessStates.
4.4 HowtheProcesdreelsBuilt

4.5 Making TheseConceptLoncrete:CommandsrouCanTry Yourself

5 Virtual Memory
5.1 MakeSureYouUnderstandheGoals
5.2 Exampleof Virtual Natureof Addresses. oo

5.3 Overvienw of How theGoalsAre Achieved

10
10
11

1 INTRODUCTION

5.4 CreationandMaintenancefthePageTable. 14
5.5 DetailsonUsageofthePageTable. 15
5.5.1 Virtual-to-Phical AddressTranslationPageTableLookwp 15
552 PageFaults 16
5.5.3 Accessviolations. 17

5.6 ImprovingPerformance 18
5.7 IntelPageTables 18
5.8 Making TheseConceptLoncrete:Command’ouCanTry Yourself 19
A Hardware Interrupts 19
Al Generaloperation. 19
A.2 SomeDetailsfor Intel CPUsandPCs 20

1 Introduction

1.1 It'sJust a Program!

Firstandforemost,it is vital to understandhatan operating system (OS) s justa program— avery large,
very complex program,but still justa program.The OS providessuppet for the loadirg andexecutionof
otherprogramgwhichwe will referto belon as“applicationprograms”),andthethe OSwill setthingsup
sothatit hassomespecialprivilegeswhich userprogramsdon't have, but in the end, the OS is simply a
program.

For example,whenyour program saya.out,® is runnirg, the OSis not running Thusthe OS hasno power
to suspengour programwhile your programis running— sincethe OSisn’t running! Thisis akey concept,
solet’sfirst makesurewhatthe statemenevenmeans.

What doesit meanfor a programto be “running” aryway? Recallthatthe CPU is constatly performing
its fetch/execute/fetch/eecute/...cycle For eachfetch, it fetcheswhatever instructon the ProgramCounter
(PC)is poirting to. If the PCis currentlypoirting to aninstuctionin your program,thenyour program
is running Eachtime aninstructon of your programexecutesthe circuitry in the CPU will updatethe

PC, havingit pointto eitherthenext instruction (theusualcase)or aninstructon locatedelsevherein your

program(in the caseof jumps).

The pointis thatthe only way your programcan stoprunningis if the PCis changedo poirt to another
program,saythe OS. How mightthis happen?Otherthancasesnvolving bugsin your program,thereare
only two waysthis canoccur:

0rit couldbeaprogramwhich youdidn’t write yourself,saygcc.

OSFunctions2

1 INTRODUCTION 1.2 Whatls anOSfor, Anyway?

e Your programcanvolungrily relinqushthe CPUto the OS. It doesthis via a system call.whichis a

call to somefunction in the operatingsystemwhich providessomeusefulservice.

For example,supposeahe C sourcefile from which a.out wascompiledhada call to scanf(). The
scanf() functionis a C library function,whichwaslinkedinto a.out duringcompilation of a.out. But
scanf() itself callsread(), a functionwithin the OS. So,whena.out reacheshe scanf() call, thatwill

resultin a call to the OS, but after the OS doesthe readfrom the keyboard,the OS will returnto
a.out.?

The other possilility is that a hardwareinterruptoccurs. (See Appendk Afor an introduction to

hardwardnterrupts andtheirimplementatioron Intel-basednachines.)Thisis a signal- a physcal

pulse of currentalonganinter rupt-r equest line in thebus—from someinputoutput(l/O) device such
asthekeyboardto the CPU. Thecircuitry in the CPUis desigredto thenjump to a placein memory
whichwe designatediponbootupof themachine. Thiswill beaplacein the OS,sothe OSwill now

run. The OSwill attendto thel/O device, e.g. recordthekeystrole in the caseof the keyboard,and
thenreturnto theinterruped program.

Note in our keystrokeexamplethat the keystrdke may not have beenmadeby you. While your
programis running someotheruserof the machinemay hit a key. The interruptwill causeyour
programto be suspendedhe OSwill runthedevice driver for whichever device causedheinterrupt
—thekeyboard,if the personwassitting at the consoleof the machine or the netwak interfacecard,
if the personwasloggedin remotely sayvia telnet — which will recordthe keystrokein the buffer
belongng to thatotheruser;andthe OSwill do IRET, causingyour programto resume.

So,whenyour programis running it is king. The OShasno power to stopit. Theonly waysyour program
canstoprunnirg is if it volurtarily doessoor is forcedto stopby actionoccuringatan|/O device.

1.2

What Isan OSfor, Anyway?

Themajorfunctionsof atypical OSareto:

loadapplicationprogramdor execution
provide servicese.g. /O, in theform of functiors which theapplicaton programscancall

enabletimesharing, in whichmary applicationprogramsseento berunningsimulaneouslybut are
actually“taking turns,” by coodinating with hardware operations

enablevirtual memory operationgor applicationprogramswhich bothallowsflexible useof mem-
ory andenforcessecurity againby by coorinaing with hardware operatiorns

maintainthefile system

managd/O, includng netwaking

2An exceptionis thesygem call exit() , whichis calledby your programwhenit is finishedwith execution.If youdonotinclude
this call in your C sourcefile, thecompilerwill putonein for you.

OSFunctions:3

1 INTRODUCTION 1.3 A Bit More on SystemCalls

Notecarefullytheinteractionof the OSwith thehardware The OSmanageshel/O devices,thusshieldirg
the authorsof applicaton programsrom having to do dealdirectly with them. For example,suppos you
wish to have your programreadfrom a diskfile. It would be a real nuisanceaf you hadto dealwith the
minute detailsof the physcal locationson disk of the variouspiecesof thefile. Instead,you simply call
fopen()andfread(),andthe OSwill worry aboutthatfor you. The OS knows theselocations by theway,
becausavhenthe file wascreatedthe creationwasdonethroughthe OStoo; at thattime, the OS chose
thoselocations andrecordedhem.

In additon, if the hardwareallows for it, andif the OS is desigred to makeuseof it, 3 thenthe OS not
only relievestheapplicaton programmeirom having to performthe phystal accessesf thedisk, but also
forbids him/herfrom doing so. This is for the purposeof security; we would not want the applicatiors
programmeto eitherinadwertenly or maliciouslytrashsomeoneslses diskfile, for instance.

How the OS doesthesethingsis explainedin thefollowing sectiors. We will modelthediscussn aftera
UNIX system but the descripton hereappliesto mostmodernOSs. It is assumedherethatthe readeris
familiar with basicUNIX commandsa Unix tutorialis availableatht t p: / / heat her . c¢s. ucdavi s.
edu/ ~mat | of f/ uni x. ht m

1.3 A Bit Moreon System Calls

Recallthatthe OS makesavailableto applicatio programsservicessuchas|/O.4 Whenyou call printf(),
for instancejt is justin theC library, notthe OS, but it in turn callswrite(), whichis in the OS. Thecall to
write() (which your programcouldalsomakedirectly)is a sysemcall.

MostmodernCPUsrunin two or moreprivilegelevels. As notedearlier we for examplewould notwantto
give ordinaryapplicationprogramgdirectaccesgo I/0 devices,e.qg. diskdrives,for securityreasonsThus
theCPUis designedothatcertaininstructons,for examplethose which performl/O, canbeexecutedonly
athigherprivilege levels,sayKernelMode. (Thetermkernel refersto the OS.)

For thisreasonpneusuallycannotmplementa systencall usinganordinarysubrouine CALL instructbn,
becauseve needto have a mechanisnthatwill changethe machineto KernelMode. (Clearly, we cannot
justhave aninstructionto do this, sinceordinaryuserprogramscould executethis instructionandthusget
into KernelMode themseles, wreakingall kinds of havoc!) Anotherproblemis thatthe linker will not
know wherein the OSthedesiredsubroutneresides.

Instead systencallsareimplementedsia aninstuctiontypewhichis calleda softwareinterrupt. Onintel
machinesthistakestheform of theINT instruction,which hasoneoperand.

We will assume.inux in theremaindeiof this subsectionandthe operands 0x80. In otherwords,the call
to write() in your C program(or in printf()) will betranslatedo

3For example,PentiumCPUsdo have suchcambilities,but the Windows OS doesnot makeuseof them. Linux andWindows
NT do makeuseof them.

“You shouldnotjumpto theconcluson thatall, or almostall, of the servicesiealwith I/O. For example theexecwe() serviceis
usedby oneprogramto startthe executionof another Anothernon-1/0 exampleis getpid(),whichwill returnthe proces number
of the programwhich callsit.

OSFunctions4

1 INTRODUCTION 1.4 Making TheseConceptoncrete.Commandsrou CanTry Yourself

(code to put paraneters values into designated registers)
int 0x80

The INT instructon works like a hardwareinterrupt,in te sensethatit will force a jump to the OS, and
changethe privilege level to KernelMode, enablingthe OS to executethe privilegedinstructonsit needs.
Youshouldkeepin mind, thowgh, thatherethe“interrupt” is causedeliberatelyby the programwhich gets
“interrupted,”via anINT instructbn. Thisis muchdifferentfrom the caseof ahardwardanterrupt,whichis
anactiontotally unrelatedo theprogramwhichis interruped.

Theoperand0x80above, is the analogof the device numberin the caseof hardwarednterrupts. The CPU
will jumpto thelocatian indicatedby thevectorat c(IDT)+8*0x80.

Whenthe OSis done,it will executean IRET instructon to returnto the applicaton programwhich made
thesystemcall. ThelRET alsomakesa changebackto UserMode.

As indicatedabore, a sysem call generallyhasparametersjust asordinarysubrotine callsdo. Onepa-
rameteris commonto all theservices- the servicenumberwhichis passedo the OSviathe EAX register
Otherregistersmaybe usedtoo, dependingntheservice.

As anexample thefollowing Intel Linux assemblyanguagegrogramwritesthestring“ABC” to thescreen:

hi : .string "ABC'

.globl _start

_start:
nmovl $4, %ax # the wite() systemcall, nunber 4 obtai ned
from /usr/include/asniunistd.h
novl $1, %ebx # 1 =file handle for stdout
novl $hi, %ecx # wite fromwhere
nmovl $3, %edx # write how many bytes
int $0x80 # system cal |

For this particularOS service,the parametersare passedn the registersEBX, ECX andEDX (and, as
mentionedefore,with EAX specifyingwhich servicewe want).

1.4 Making These Concepts Concrete: Commands You Can Try Your self

The UNIX strace commandwill reportwhich sysem calls your programmakes. Placeit beforeyour
programnameon thecommandine, aswith thetime commandabove.

OSFunctions5

2 SYSTEMBOOTUP

2 System Bootup

As will be explainedlater, whenwe wish to run an applicationprogram,the OS loadsthe programinto
memory But how doesthe OS itsef getloadedinto memoryandbegin execution?The procesdy which
thisis doneis calledbootup.

The CPUhardwarewill be desigred sothatuponpowerupthe ProgramCounter(PC)is initializedto some
specificvalue, say OxfffffffO in the caseof Intel CPUs. And thosewho fabricate the computer(i.e. who
puttogetherthe CPU, memory bus, etc. to form acompletesystem)will includea smallROM atthatsame
addressagainsayOxfffffff0. Thecontentof the ROM aretheboot loader program.So,immediatelyafter
powerup,thebootloaderprogramis runnirg!

The goalof the bootloaderis to loadin the OS from disk to memory In the simpleform, the bootloader
readsa specifiedareaof the disk, copiesthe contentsthere (which will be the OS)to memory andthen
finally executesa IMPinstructbn (or equivalen) to thatsectionof memory—sahatnow the OSis running.
In a more complicatedform, the bootloaderonly readspart of the OS into memory andthenperformsa
JMPinstuctionto the OS;the OSthenreadstherestof itsef into memory

For the sakeof concretenesdet’'s look more closelyat the Intel case. The programin ROM hereis the
BIOS, the Basicl/O System.It contairs partsof the device driversfor thatmachine®andalsocontainsthe
bootloaderprogram.

Thebootloaderprogramhasbeenwritten to readfrom thefirst sectorof the disk.6Thatsectoris calledthe
MasterBootRecordMBR). Thebootloaderin ROM will copythecodefrom theMBR to memory startirg
atlocation0x000@’c00.It thendoesa jumpto thataddresssothatthatcodeis now running.

Now if themachinehadoriginally beenshippedwith Windowsinstaled, thecodein theMBR waswrittento
thenloadthe Windows OSinto memory If ontheotherhandthe machinehadbeenshippedwith Windows
NT, OS/2,Linux or someotherOSinstalled,thecodein theMBR would have beenwrittenaccordinglyand
thatOSwould now beloadedinto memory

Many peoplewho useLinux retainboth Windows and Linux on their harddrives, and have a dual-boot
setup.They startwith aWindows machine put theninstallLinux aswell. As partof theproces®f instlling
Linux, a programnamedLILO (Linux Loader)is writteninto the MBR. So,whenthe bootloaderin ROM
loadsthe codefrom the MBR into memoryandjumpsto thatpartof memory LILO will now run. LILO
will thenaskthe userwhetherne/shewvantsto bootLinux or Windows, andthenloadtherequestedgysem
into memory

In ary caseafterthe OSis loadedinto memoryby the codein the MBR, thatcodewill performa jump to
the OS,sothe OSis running. Typically, notall of the OSwill bein memoryyet, sothe OSwill now read
therestof itselfinto memory

SThesemayor maynotbeuseddepenihg onthe OS. Windows use them,but Linux does't.
SDisksaredividedin blockscalledsectors. Thebootdevice couldbesomethingelseinsteadbf a harddrive, suchasafloppyor
aCD-ROM. Thisis setin the BIOS, with a priority orderingof which deviceto try to bootfrom first.

OSFunctions6

3 APPLICATION PROGRAM LOADING

3 Application Program L oading

Supposeg/ou have justcompileda program producing sayfor a Linux sysem, anexecutablefile a.out. To
runit, youtype

% a. out

For thetime being,assume very simplemachine/OSombinationwith novirtual memory. Hereis what
will occur:

During your typing of thecommandthe shellis running,saytcsh or bash. Again, theshellis justa
program(onewhich couldbeassigne@sahomevork problemin acourse) andit readgshecommand

youtype.

Theshellwill thenmakea systemcall, execve(),” askingthe OSto runa.out. The OSis now running.

The OSwill look in its disk directory to determinewhereon disk thefile a.out is. It will readthe
beginning sectionof a.out, which containsnformationon the sizeof the program,alist of the data
segmentausedby the program,andsoon.

The OS will checkits memory-allocatiortable (this is just an arrayin the OS) to find an unused
region or regionsof memorylarge enouglhfor a.out. (Notethatthe OShasloadedall currently-actve

programsn memoryup to now, justlike it is loadinga.out now, soit knows exactly which partsof

memoryarein useandwhich arefree.) We needspacebothfor a.out’s instructions(calledthe text

portion of theprogramin UNIX terminology),anddata— staticdataitems(scalarandarrayvariables,
calledthedata segmentin UNIX), aswell asfor stackspaceandtheheap (usedfor callsto calloc()
andmalloc()).

The OSwill thenloada.out (includingtext anddata)into thoseregionsof memory andwill update
its memory-allocatioriableaccordingly Also, the OSwill createa page table for a.out, which we
will describdater.

The OSwill checka certainsectionof thea.out file, in whichthe linker previously recordeda.out’s
entry point, i.e. theinstructionin a.out atwhich executionis to begin.

The OSis now readyto initiate executionof a.out. It will setthe stackpointer to pointto the place
it had chosenearlierfor a.out’s stack. (The OS will save its own register values,including stack
poirter value,beforehand.)Thenit will actuallystarta.out, sayby executinga JMP instuction (or
equialent)to jumpto a.out’s entry point.

Thea.out programis now runnirg!

"It will alsocall anothe systenrcall, fork(), but we will notgointo thathere.

OSFunctions7

4 TIMESHARING

Notethata.out itself may call execve() andstartotherprogramsrunnirg. For example,gcc doesthis.? It
first runsthecpp C preprocessofwhich translategtinclude #defineetc. from your C sourcefile). Thenit
runsccl, whichis the“real” compiler(gcc itself is justa managethatrunsthe variouscomponentsasyou
canseenow); this producesan assemblytanguagsfile.® Thengcc runsas, the assemblerto producea .o
machinecodefile. The latter mustbe linked with somecode,e.g. /usrlib/crtl.0, which setsup the main()
structureg.g.accesso the“argv” command-lineargumentsandto the C library, e.g./lib/libc.so0.6;s0,gcc
runsthelinker, Id. In all tesecasesgcc startstheseprogramsby calling execwe().

4 Timesharing

4.1 Many Processes, Taking Turns

Timesharing involveshaving several programgor even severalinstancesof the sameprogram)runningin
whatappeargo be a simulaneousmanner Sincethe systemhasonly one CPU (we will excludethe case
of multiproceser sysemsin this discussin), thenthis simultaneityis of courseonly anillusion,sinceonly
oneprogramcanrunatary giventime, but it is aworthwhile illusion,aswe will see.

Firstof all, how is this illusion attained?The answeris thatwe have the programsall taketurnsrunning,
with eachturn— calleda quantum or timeslice — beingof very shortduration for example50 milliseconds.
Say we have four programs,u, v, x andy, runningcurrently Whatwill happenis that first u runs for
50 millisecords, thenu is suspende@ndv runsfor 50 millisecondsthenv is suspende@ndx runsfor
50 milliseconds, andso on (aftery getsits turn, thenu getsa secondurn, etc.). Sincethe turn-swiching
(formally known ascontext-switching) is happenig sofast(every 50 milliseconds)it appearso ushumans
thateachprogramis runningcontnuously(thoud at one-fourthspeed)ratherthanon andoff, on andoff,
etc.

But how canthe OS enforcethesequanta”or example,how canthe OSforcetheprogramu abore to stop
after 50 milliseconds?As discussectarlier the answeris, “It cant! The OSis deadwhile u is running”
Insteadtheturnsareimplementedria atiming device, which emitsa hardwarenterruptat the propertime.
For example,we could setthe timer to emit an interruptevery 50 milliseconds. We would write a timer
device driver, andincorporatet into the 0S 10

The timer device driver saves all u’s currentregister values,including its PC value and the valuein its
ProcessoBtatusRegister Later, whenu’s next turncomesthosevalueswill berestoredandu will resume
executionasif nothing ever happenedFor now, thoudh, the OS routine will restorev’s previously-saved
registervalues makingsureto restorethe PCvaluelastof all. Thatlastactionforcesajumpfrom the OSto
v, right at the spotin v wherev wassuspendedt theendof its lastquantum.(Again, the CPU just “minds

8Remembera compileris just a programtoo. It is a very large andcomplex program,but in principle no differentfrom the
programsyou write.

9You canview this file by runninggec with its -S option. Thisis often hand if you aregoingto write anasembly-languag
subroutineto be calledby your C code,so that you canseehow the compilerwill dealwith the parametersn the call to the
subroutine.

Owe will makesud anassimptionhere.However, whatis morecommoris to have thetimer interruptmorefrequentlythanthe
desiredquanturrsize. Thetimer is setto interruptevery 10 millisecands. If wewanta quantunsizeof 50, we write the OS sothat
aprogramsturnis encedafterthefifth interrupt.

OSFunctions8

4 TIMESHARING 4.2 Exampleof OSCode:Linux for Intel CPUs

its own business anddoesnot“know” thatoneprogram the OS,hashandedver controlto anotherv; the
CPUjustkeepsperformingits fetch/executecycle, fetchingwhaterer the PC points to.)

At ary giventime, thereare mary differentprocesses in memory Theseareinstancef executionsof
programs.If for instancetherearethreeusersrunningthe gcc C compilerright now on a given machine,
hereoneprogramcorrespond$o threeprocesses.

4.2 Exampleof OS Code: Linux for Intel CPUs

Hereis abit abouthow the context switch is donein Linux, in theversionfor Intel machinesEachprocess
hasa sectionof memory calledthe Task StateSegment(TSS), which storesvariouspiecesof information
aboutthatprocesssuchasthe registervalueswhich the programhadat the time its lastturn ended.In the

codebelow registersEBX andECX pointto the TSSsof the processvhoseturn justendedsayu, andthe

procesgo whichwe will givethenext turn, sayv.

As an exampleof the operatios performed,andto shav you concretelythat the OS is indeedreally a
programwith realcode,hereis atypical excerptof code?

pushl %esi
pushl %edi
pushl %ebp

novl %esp, 532(%bx)
nmovl 532(%ecx), %esp

popl %ebp
popl %edi
popl %esi
iret

Hereis whatthatcodedoes.In theLinux sourcecode the TSSis accessedsa C struct, which hasvarious
fieldsto storethingslike registervalues.For example,tss.esgontainghe previously-storedvalueof ESR
the stackpoirter; thisfield happenso belocated532bytespastthe beginning of the TSS.

Now, uponentryto the abore OS code,ESPis still pointing to u’s stack,so the threePUSH instrictions

save u'svaluesof the ESI, EDI andEBPregisterson u’s own stack!? Theotherregistervaluesof u mustbe

savedtoo, including its valueof ESP Thelatteris doneby the MOV operation(*movl” in AT&T assembly
languagesyntax) which copieshecurrentESPvalue,i.e. u'sESPvalue,totss.espn u’sTSS.Otherregister

saving is similar, thoughnotshowvn here.

Now the OS mustprepareto startv’s next turn. Thusv’'s previoudy-saved registervaluesmustbe restored
to theregisters.To understandhow thatis done,you mustkeepin mindthatthatsamecodeabove hadbeen

I have slightly modifiedsomeof this for the sakeof simplicity.
2Note the needto write this in asembly languge insteadof C, sinceC would not give usdirectacces to theregistersor the
stack.Most of Linux is writtenin C, but machinedependet operationdike theoneheremustbedonein assemly languae.

OSFunctions9

4 TIMESHARING 4.3 ProcessStates

executedwhenv’s lastturn ended.Thusv’'s valueof ESPis in tss.esmf its TSS,andthe secondViOV we
seeabove copiesthatvalueto ESP So,now we areusingv’s stack.

Next, notesimilarly thatat the end of v's lastturn, its valuesof ESI, EDI and EBP were pushedontoits
stack,andof coursethey arestill there.So, we just popthemoff, andbackinto theregisterswhichis what
thosethreePOPiInstructonsdo.

Finally, notethatthe mechanisnwhich madev’s lastturn endwasa hardwareinterrug from thetimer. At
thattime, thevaluesof theFlagsRegister CSandPCwerepushedntothestack.An IRET instructionpops
all thatstuff backinto thecorrespondingegisters.Noteonly doesthatrestoreregisters put sincev’sold PC
valueis restoredy is now runnirg!

4.3 Process States

TheOSmaintainsa process table which shovsthestateof eachprocessn memory mainly Runstateversus
Sleepstate.A processvhichis in Runstatemeanghatit is readyto run but simplywaitingfor its next turn.
The OSwill repeatedlgyclethroughthe processable,startingturnsfor processes Runstatebut skippirg
overthosein Sleepstate.Theprocesses Sleepstatearewaiting for somethingtypically anl/O operation,
andthuscurrentlyineligible for turns So, eachtime a turn ends,the OS will browsethroughits process
table,looking for a processn Runstate andthenchoosingonefor its next turn.

Sayourapplicationprogramu above contairs a call to scanf()to readfrom the keyboard.Recallthatscanf()
calls the OS functionread(). The latter will checkto seewhetherthereare ary characterseadyin the
keyboardbuffer. Typically therewon't beary charactershereyet, because¢he userhasnot startedtyping
yet. In thiscasethe OSwill placethisprocessn Sleepstate andthenstartaturnfor anothermprocess.

How doesa procesgietswitchedto run statefrom Sleepstate?Sayour applicaton programu wasin Sleep
statebecausét waswaiting for userinpu from the keyboard(sayit waswaitingfor justasinglecharacter).
As explainedearlier whenthe userhits a key, that causes hardwareinterruptfrom the keyboard,which
forcesa jump to the OS. Supposeat thattime programv happenedo be in the midstof a quantum.The
CPUwould temporarilysuspend andjump to thekeyboarddriverin the OS. Thelatterwould noticethat
the programu hadbeenin Sleepstate waiting for keyboardinpu, andwould nov move u to Runstate.

Note,though, thatthatdoesnot meanthatthe OS now startsu’s next turn; u simply becomeligible to run.
Recallthateachtime one processturn ends,the OSwill selectanothermprocesgo run, from the setof all
processesurrentlyin Runstate,andu will now bein thatset.

44 HowtheProcess Treels Built

On UNIX sysems,thefirst thing the OS doesafter bootupis to starta processmamedinit. Thatprocess
thenstartsall otherOS processessuchastheonehandlng userloging in.logind. Whenauserlogsin, the
latter startsup a shellfor theuser saytcsh, whichin turnwill startwhaterer processetheusercommands,
saya.out. As we have seenbefore thosemayin turn spavn further processes.

OSFunctions 10

4 TIMESHARING 4.5 Making TheseConceptsConcreteCommandsyou CanTry Yourself

45 Making These Concepts Concrete: Commands You Can Try Your self

First, try the ps command.On UNIX systemsmuchinformationon currentprocessess givenby the ps
commandjncluding:

e state(Run,Sleep.etc.)
e pageusagghow mary pagesnumberof pagefaults etc.)

e ancestrywhich processs the“parent” of thegivenprocess)

Thereader isurged totry thisout. You will under stand the concepts presented here much better after
seeing some concrete information which the ps command can give you. The formatof thiscommands
optionsvariessomavhatfrom machineto maching(onLinux, | recommendps ax”), socheckthemanpage
for details,but runit with enoughoptiors thatyou getthefullestoutputpossble.

Anothercommandto try is w. One of the piecesof informationgiven by thew commandis the average
numberof processes Runstatein thelastfew minutes.Thelargerthis numberis, the slower will bethe
respons#ime of themachineasperceved by a user ashis programis now takingturnstogetter with more
programgun by otherpeople.

OnLinux (andsomeotherUNIXx) systemsyou canalsotry the pstree commandwhichgraphicallyshowvs
the“family tree” (ancestryrelations)of eachprocessFor example,hereis the outpu | gotby runnirg it on
oneof our CSIFPCs:

% pstree

init-+-atd
| -crond
| - gpm
| -inetd---in.rlogind---tcsh---pstree
| - kdm +- X
| ‘- kdm - - wreker - +- gnome-t er mi nal - +- gnone- pt y- hel pe
| | ‘-tcsh- +- net scape- commun- - - net scape- +
| | Lo vi
| | - 2*[gnome-t erm nal - +- gnone- pt y- hel pe]
| | ‘-tcsh]
| | - gnome-term nal - +- gnone- pty- hel pe
| | ‘-tcsh---vi
| ‘-wntl ock
| - kernel d
| - kfl ushd
| - kl ogd
| - kswapd
| -1 pd
I

-6*[m ngetty]

OSFunctions 11

5 VIRTUAL MEMORY

| - 2*[net scape- commun- - - net scape- conmun]
| - 4*[nf si od]
| - port map
| -rpc.rusersd
| - rwhod

| - sendnai |
| - sshd

| - sysl ogd

| -updat e

| - xconsol e

| - xnt pd

‘- ypbi nd- - - ypbi nd
%

Note how, for example,thatsomeuseris runningvi. He gave thevi commando tcsh, which starteda vi
procesdor him. Thetcsh hadin turn beenstartedby gnome-terminal, a versionof xterm runningthe
window thisuserhadbeenrunningtheshellin.

5 Virtual Memory

5.1 MakeSureYou Understand the Goals

Now letusaddin theeffectof virtual memory(VM). VM hasthefollowing basicgoals:

e Overcomédimitationson memorysize:
We wantto beableto runaprogram or collectively severalprogramswhosememoryneedsarelarger
thantheamountof phystal memoryavailable

¢ Relievethecompilerandlinker of having to know whatmemoryis freewhena programis run:
We wantto facilitate relocation of programsmeaningthatthe compilerandlinker, do not have to
worry aboutwherein memorya programwill beloadedwhenit is run.

e Enablesecurity:
We wantto ensurehatoneprogramwill notaccidentally(or intenionally) destroyanothemprograms
operatiorby writing to thelatter’'s areaof memory

e Enablesharing:
We wantto be ableto have only onecopyin memoryof the“text” portion of alarge program(e.g. a
compiler)eventhoughseveralusersareeachrunninginstance®f the program

OSFunctions 12

5 VIRTUAL MEMORY 5.2 Exampleof Virtual Natureof Addresses

5.2 Example of Virtual Nature of Addresses

Thewordvirtual means'apparent.”It will appearthata programresidesentirelyin mainmemory whenin
factonly partof it is there;it will appear(e.g.from thecompiler's pointof view) thatthe programis loaded
startingatlocation0O in memory but thatwill notbethecasein actuality

To makethismoreconcrete suppos our C sourcefile from whichwe compileda.out included a statement

int Xx;

andsuppaethe compilerandlinker hadassignedheaddres200to x. In otherwords,a statemenin our C
sourcdfile like

printf("%", &) ;

would print outthevalue200.

Thena.out might have instructbnslike

nmovl (200), %eax

onanIntel machine.Thisinstructon copiesthe contentsof word 2000f memoryto the CPUregisterEAX.

At thetime a.out is loadedby the OSinto memory the OSwill divide boththetext (instructions)anddata
portiors of a.out into chunksandfind unugdplacesn memoryatwhichto placethesechunks.Thechunks
arecalledpages of the program andthe same-sizeglacesin memoryin whichthe OS putsthemarecalled
pagesof memory The OS setsup a page table, which is anarrayin memorywhich is maintainedoy the
OS, in which the OSrecordsthe correspondencesge. lists which pageof the programis storedin which
pageof memory

So,whatappearso bein word 200in memoryfrom the programcodeabore mayactuallybein, say word
1204.At thetime the CPU executeghatinstriction, the CPUwill determinewvhere“word 200" really is by
doingalookupin the pagetable.In ourexamplehere thetablewill shav thattheitemwe wantis actually
in word 1204,andthe CPUwill thenreadfrom thatlocation

In thisexample,we saythevirtual address is 200,andthe physical addressis 1204.

5.3 Overview of How the Goals Are Achieved

Let'slook at our statedyoalsin Section5.1above, andseehow they areachieved:

OSFunctions 13

5 VIRTUAL MEMORY 5.4 CreationandMaintenancef the PageTable

e Overcomédimitationson memorysize:
To consere memoryspacethe OS will initially load only partof a.out into memory with the re-
mainderbeingleft backon disk. The pagesof the programwhich arenot loadedwill be markedin
the pagetableascurrentlybeingnonresidentandtheir locations on disk will be shavn in thetable.
During executionof the program,if the programneedsone of the nonresidenpages.the CPU will
notice thatthe pageis nonresiden(thisis calleda“pagefault”), andcauseaninternalinterrupt. That
causeajumpto the OS,whichwill bringin thatpagefrom disk andthenjump backto the program,
whichwill resumeattheinstriction which accessethemissingpage.
Notethatpageawill oftengo backandforth betweerdiskandmemoryin thismanner Eachtime the
programneedsa missingpage thatpageis brough in from disk anda pagewhich hadbeenresident
is written backto diskin orderto makeroomfor thenew one.

A bigissueis thealgorithmthe OSusego decidewhich pageto move backto diskwheneerit brings

apagefrom disk aftera pagefault. Thisis beyondthe scopeof thisdocumentere,but onepoirt to

noticeis thatthealgorithm will bechosersoasto work well on“most” programsFor someprograms,
thatalgorithm will resultin a lot of pagefaults,dueto it frequentlybeingthe casethatright aftera

pageis replacedthatsamepageis neededhgain.

¢ Relievethecompilerandlinker of theburdenof knowing whatmemoryis freeatthetime theprogram
executes:
Thisis clearfrom the exampleabore, wherethelocatian “200” whichthecompilerandlinker setup
for x wasin effect changedy the OSto 1204at thetime the programwasloaded.The OSrecorded
thisin the pagetable,andthenduring executionof the program,the VM hardwaren the CPU does
lookupsin the pagetableto getthecorrectaddresses.

e Enablesecurity:

Thepagetablewill consisbf oneentryperpage.Thatentrywill, asnotedearlier include information
asto wherein memorythat pageof the programcurrentlyresidespf if currentlynonresiént, where
ondisk the pageis stored.But in addition theentrywill alsolist the permissionghe programhasto
accesshisparticubrpage-read write, execute—in amanneranalogouso file-accespermissias. If
theprogramtriesto access pagefor whichit doesnothave the properpermissiontheVM hardware
in the CPUwill causeaninternalinterrupt,causinghe OSto run. The OSwill thenkill theprocess,
i.e. remove it from the procesgable.

e Enablesharing:
Suppos for exampletwo usersof agivenmachinewishto rungcc right now. Thisis ahugeprogram,
soconservingnemoryis quiteimportant.An obvious stratgy on thepartof theOSwouldbeto load
only onecopyof thetext (i.e. instrictions)partof gec; of coursetheremustbe separateopiesof the
datasectiors, asthedata(.c sourcecodefiles) for thetwo usersaredifferent.
VM allows usto accomplishthis. Eachusers pagetablewill list the sameentriesfor the text, and
thusthey will sharethetext partof theprogram.

5.4 Creation and Maintenance of the Page Table

Note carefullythe rolesof the playershere: It is the software the OS, thatcreatesandmaintainsthe page
table,butit isthehardwardahatactuallyuseghepagetableto generateddressesheckpageresidenyg and

OSFunctions 14

5 VIRTUAL MEMORY 5.5 Detailson Usageof the PageTable

checksecurity

WhentheOS createsanew processit mustfind chunks(pagespf memoryinto whichit will loadpartor all
of the givenprogram. It will createa pagetablefor this processandrecordin the pagetablethelocatiors
of thesechunks(aswell asrecordthelocatimson disk of the chunkswhichit did notloadinto memory).

Thehardwarewill have aspecialPageTableRegister(PTR)to pointto thepagetableof thecurrentprocess.
Whenthe OS startsa turn for a processit will restorethe previoudy-savedvalueof the PTR, andthusthis
processpagetablewill now bein effect.

5.5 Detailson Usage of the Page Table
5.5.1 Virtual-to-Physical Address Trandation, Page Table L ookup

Whenever the runningprogramgeneratesin address- eitherthe addresf aninstructon, aswill bethe
casefor aninstuctionfetch,or theaddres®f data,aswill bethe caseduringthe executionof sometypesof
instructons—thisaddresss only virtual. It mustbetranslatedo thephyscal addresatwhichtherequested
item actuallyresides.Thecircuitry in the CPU s desigiedto do this translaton by performinga lookupin
thepagetable.

The addresspaceis brokeninto pages.For corvenience saythe pagesizeis 4096 bytes. For ary virtual
addressthevirtual pagenumberis equalto theaddresslivided by the pagesize,4096 andits offsetwithin
thatbyteis theaddressnod 4096. Since4096 = 2'2, thatmeanshatin a 32-bitvirtual addressthe upper
20 bitsform thepagenumbey andthelower 12 bits form the offset.

Consideifor examplethelntel instructon

nmovl $3, (0x735bcab62)

This would copy the constant3 to location 0x735lza62 (19353426 base-10). That meansvirtual page
numberOx73%c (472508base-10)pffset0xa62(2658base-10within thatpage.In otherwords thefirst
byte of thewordwe will write to is byte2658within page472508in thevirtual addresspace.

Supposehe entriesin our pagetableare 32 bits wide, i.e. oneword perentry 3 Let’s labelthe bits of an
entry31to 0, wherebit 31isin themost-sigificant(i.e. leftmost)positonandbit 0 is in theleastsignficant
(i.e. rightmog) place.Supposg¢heformatof anentryis asfollows:

e bits31-12:physicalpagenumberif residentdisklocationif not

e bit 11:1if pageisresidentQ if not

e bit 10: 1if have readpermissia, O if not

e bit9: 1if have write permission(if not

131t we wereto look at the sourcecodefor the OS, we would probablyseethat the pagetableis storedasa very long array of
typeunsigned int, with eacharrayelementeingonepagetableentry.

OSFunctions 15

5 VIRTUAL MEMORY 5.5 Detailson Usageof the PageTable

e bit 8: 1 if have executepermission if not

e bits 7-0: otherinformation notdiscusedhere

Now, hereis whatwill happenwvhenthe CPU executegheinstuction

novl $3, (0x735bcab62)
above:

e TheCPU,seeinghatthisis virtual pagenumberOx735bcwill goto getthatentryin thepagetable,
asfollows. Supposehe contentf the PTR is 0x256a100. Thenthetableentry of interesthereis
atlocation0x735bc* 4 + 0x25611000= 0x2586e6f0.The CPUwill readfrom thatlocatian, getting,
say 0xc2248eac.

e The CPU looks at bits 11-8 of thatentry, getting Oxe, finding thatthe pageis residentandthatthe
programhasreadandwrite permissionbut not executepermission The permissiorrequestedvas
write, sothisis OK.

e The CPU looks at bits 31-12, gettirg Oxc2248. The virtual offset, which we found earlier to be
0xa62,is always retained,so the CPU now knows that the physcal addresof the virtual locatian
0x73%cab2is 0xc224&62. The CPU putsthis in the Memory AddressRegister (MAR), puts3in
the Memory Data Register (MDR), andassertghe Write line in the bus. This writes 3 to memory
locatian Oxc2248a62andwe aredone.

5.5.2 PageFaults

Supposeén our exampleabove bit 11 of the pagetableentryhadbeen0, indicatirg thatthe requestegbage
wasnotin memory This eventis known asa page fault. If thatoccurs,the CPUwill performaninternal
interrupt* which will force a jump to the OS. The OS will first decidewhich currently-residenpageto
replace thenwrite thatpagebackto disk.*®> The OSwould thenbringin therequestegagefrom disk The
OSwould thenupdatetwo entriesin the pagetable: (a) it would changethe entry for the pagewhich was
replacedchangingbit 11 to indicatingthe pageis not resident,and changingbits 31-12; and (b) the OS

would updatethe pagetableto indicatethatthe new itemis residentnow in memory andshov whereit

resides.

Sinceaccessinghe diskis far, far slower thanaccessingnemory a programwill run quite slowly if it has
toomary pagefaults. If for exampleyour PCathomedoesnothave enoughmemory youwill find thatyou
often have to wait while a large applicaton programis loadirg, duringwhich time you canhearthe disk
drive doingalot of work, asthe OSejectsmary currently-resigntpagedo bringin thenew applicaton.

“TheCPUwill alsorecordthe PCvalueof theinstructionwhich cause the pagefault, sothatthatinstructioncanberestarted
afterthe pagefaultis processd. In PentiumCPUs the CR2registeris usedto storethis PCvalue.

While we will notassme sohere,mostOSswill dothiswrite-badk only if it is necesary Oneof thebits in our field of bits
7-0 abore wouldbeuseal asthedirty bit for this purpose We will not pursuethis aspethere.

OSFunctions 16

5 VIRTUAL MEMORY 5.5 Detailson Usageof the PageTable

5.5.3 AccessViolations

If ontheotherhandanacceswiolation occurs,the OSwill announcenerror—in UNIX, referredto asa
segmentation fault —andkill theprocessi.e. remove it from theprocesgable.

For example,considemg thefollowing code:

int q[200];
mai n()
{ int i;

for (i =0; i < 2000; i++)~ {
qli] =1i;

Notice that the programmerhasapparentlymadean error in the loop, settirg up 2000 iteratiors instead
of 200. The C compilerwill not catchthis at compiletime, nor will the machinecodegeneratedy the
compilercheckthatthearrayindex is outof bourdsat executiontime.

If this programis run on a non-VM platform 18 thenit will merrily executewithou ary apparenerror. It
will simply write to the 180wordswhich follow the endof the arrayq. This may or may not be harmful,
dependingnwhatthosewordshadbeenusedfor.

But on a VM platform, in our caseUNIX, an errorwill indeedbe reported,with a “Segmentationfault”
messageHowever, aswe look into how this comesabout,the timing of the error may surpriseyou. The
erroris notlikely to occurwheni = 200;it is likely to bemuchlaterthanthat.

To illustratethis | ranthis programon a PC underLinux. | first addedsomecodeto aid in investigting
whatexactly occurs:

int g[200];
mai n()
{ int i;

printf("9% 9%\n", &q[O0], &q[199])
Recallthat“vM platform” requiresboththatour CPUhasVM capility, andthatour OSuseshis capali ty.

OSFunctions 17

5 VIRTUAL MEMORY 5.6 Improving Performance

for (i =0; i < 2000; i++)~ {
printf("%\n",i);
li] =1i;

After runningthis program,|l foundthattheseg faultoccursnotati = 200,but actuallyati = 616. Let'ssee
why.

Thefirst call to printf() revealsthatq beginsatvirtual addres®x8049640 (andendsat 0x804®5c). OnIntel
machinesthe pagesizeis 4096 bytes,so a virtual addresdreaksdown into a 20-bit pagenumberanda
12-bitoffset,justasin Sections.5.1above. In ourcasehere,q beginsin virtual pagenumber0Ox8049 offset
0x640.Corvertingtheseto basel 0 for corveniencewe find thatq beginsin virtual pagenumber32841 at
byte 16000f thatbyte.

Now it is the latter numberwhich is of interesthere. Rememberthe pagesizeis 4096bytes,andwe nowv
know thatq beginsat the 16015 byte of a page!’ Thenq ends200words (800 bytes)later, at the 2400 *»
byte of the page.Now here is the point: Thefirst few nonistent“elements” of g which follow the end of
g are still in that samepage— andsincethe program haswrite permisgn for the entire page there will be
no se fault for trying to write to “q[200]”, “g[201]”, andsoon.

Eventually for largeenoughi, “q[i]” will notbein thatpage,andits virtual pagenumberwill correspond
to anentryin the pagetablewhich doesnot have write permissio. Thenthe pagefaultwill occur It turned
outto befor i = 616.

5.6 Improving Performance

Virtual memorycomesat a big cost,in the form of overheadincurredby accessinghe pagetables. For
thisreasonthe hardwarewill alsotypically includeatrangation lookasde buffer (TLB). Thisis aspecial
cacheto keepa copy of partof the pagetablein the CPU, to reducethe numberof timesonemustaccess
memory wherethe pagetableresides.

5.7 Intel Page Tables
On Intel machinesgachprocessactuallyhasmary tables,not just one. And someof themmay even be
nonresidencurrently;in otherwords,eventhe pagetablesarepaged!

Thereis a “pagetabletable,” which senesasdirectoryof pagetablesfor the currentprocess.A special
register CR3, pointsto the pagetabletable.

A virtual addresss brokendown into threefields, ratherthanthetwo in our descriptims above:

YRecallthattheoffsetis retainedafterthevirtual-to-physicabddres translation.So, eventhoughwe do notknow whatphyscal
pagenumberg wasin whenl ranthe programjt doesnotmatterin termsof offset. No matterwhich physicé pageit was,weknow
thatq beganatthe 1601 ** bytein thatpage

OSFunctions 18

A HARDWARE INTERRUPTES8 Making TheseConceptoncrete.Commandsyou CanTry Yourself

e bits31-22:i, theindex into the pagetabletable
e bits21-12:j, index into somepagetable

e bits11-0:theoffset

So,in processing virtual addressthe CPU will first fetch from the address+4*i, wherec is the current
contentof CR3. Thatfetchedword w will tell the CPU whetherthe pagetablefor this virtual addresss
currentlyresidenin memory If thattableis residentw will shav theaddres®f thetable,d, whileif it is
nonresidet it will shov whereondiskto getit. The CPUwill bringin thetablefrom diskin thelattercase.
OncetheCPU hasd, it will thenfetchfrom theaddressl+4%j, yieldingthe pagetableentryfor theitemour
runningprogramhasrequestedAt this poirt, the operatios arethe sameasdescribecdearlier

5.8 Making These Concepts Concrete: Commands You Can Try Your self
The UNIX time commandwill reporthow muchtime your programtakesto run, how mary pagefaults

it generatedetc. Placeit just beforeyour programs nameon the commandine. (This programcould be
eitheroneyouwrote,or somethindike, say gcc.) For example,if you have a programx with agument12,

type

tine x 12

insteadof

X 12

Also, the top programis very good, displayng lots of goodinformation on the memoryusageof each
process.

A Hardwarelnterrupts

A.1 General Operation

A hardwarenterrupt is anelectricalsigral sentfrom anl/O device alonganinterrupt-requesine IRQ in
the systembusto the CPU (theline will be connectedo anIRQ pin in the CPU). The CPU s designedo
finish whatever instriction i andthenjump to anothermpartof memorywhereaninterrupt service routine
(ISR), or device driver, hasbeenstored.Keepin mindthatthedevice driversarepartof the OS.

The ISR now runs(first saving on the stackthe valuesof ary registersit will use,asary subrouthe would
do), performingwhatever actionsare neededo reador write the /O data. Whenit is done,the ISR pops

OSFunctions 19

A HARDWARE INTERRUPTS A.2 SomeDetailsfor Intel CPUsandPCs

from the stackary previoudy-savedregistervalues,andexecutesan IRET (“interrupt return”) instructon.
The latteris similar to an ordinaryRET instuction usedto returnfrom a subrotine call, but in this case
we arereturningto whatever programhadbeenrunningat the time the CPU receved the interruptsignal.
Sincethe hardwarehad saved the programstateat thattime, which is now restoredby the hardware the
otherprogramnow resumesxecutionatthe pointatwhichit hadbeeninterrupted

Most machinesusevectored interrupts. This meansthatthereis a tablestoredin memory(initialized by
theOSuponbootp) whichstoresone“interruptvector” for eachpossble interrupting I/0 device. Whenan
interruptis receved from device i, the CPU will look up thevectorfor thei ** device. Thevectorwill state
thelocationof thedriverfor thatdevice,andthe CPUwill thendoajumpto thatlocation causinghedriver
to begin executing.

But how doesthe CPU know which device causedhe interrupt? Oneway of handlng this woud be to
have a differentIRQ bus line for eachl/O device. Somesystemslo usethis approachput generallyit is
infeasible,as a typical machinehasmary 1/0O devices,andwe do notwantto designthe CPU to have so
mary pins (Pinstakeup preciousspaceontheperipheryof achip.)

A.2 Some Detailsfor Intel CPUsand PCs

Linux andsimilar sysemsrun the Intel CPU in protected mode, which enableghe hardwareto provide
varioustypesof securityfeaturesneededy a modernOS,suchasvirtual memory Following is asimplified
descriptia of how thesesystemswvork.

Againfor securityreasonsye wantl/O to be performedonly by the OS. TheIntel CPU hasseveralmodes
of operationwhich we will simplify hereto justUserMode andKernel(i.e. OS) Mode. The hardwareis
setup sothatl/O instructionssuchasIN andOUT canbedoneonly in KernelMode.

The Intel CPU containsan InterruptDescriptorTable, IDT, which pointsto the beginning of the interrupt
vector tablein memory Eachvectoris 8 byteslong, so the vector for the i ** 1/O device is locatedat
c(IDT)+8%*i, wherec() means‘contentsof.”

A PC alsoincludesanotherpieceof Intel hardware the 8259Ainterruptcontroller Thel/O devicesare
actuallyconnectedo the 8259A, whichin turn is connectedo the IRQ line, insteadof the devicesbeing
connectediirectlyto theIRQ. The 8259 hasmary inputpins,onefor eachl/O device.18

Whenaninterruptfrom devicei occurs,the 8259Awill recordthevalueof i, andthenasserthe IRQ line

in thebus. The Intel CPUwill thenpushethevaluesof the Flags,CS andPC registersontothe stack,!® and
thenproceedo determinghevalueof i. It doesthis by assertinghe INTA (“interruptacknavledge”)line

in the bus. The 8259Athensendghe valueof i alongthe databus, whereit is received by the CPU. The
CPUthendoesthelookupin the vectortable,findstheinformationfor device i, andjumpsto the driver for

devicei. Theinformationin thevectorfor devicei will alsoresultin the CPU changingto KernelMode,

whichis importantsincethe driver mustexecutel/O instuctionssuchasIN andOUT.

Thedriverwill thenexecute readingand/orwriting dataat the portsof the /0O device. Whenthedriveris
done,it executedRET, everythingis restoredandtheinterruped programresumesxecutionwhereit left

18It we run outof suchpins, two or more8259Adevicesmay be cascaded together
%Don’t worry aboutthe CSregister

OSFunctions 20

A HARDWARE INTERRUPTS A.2 SomeDetailsfor Intel CPUsandPCs

off, asif nothing hadever happened.

If severall/O devicescausenterruptsat aboutthe sametime, the 8259A can“queue”them,sothatall will
beprocessed.

OSFunctions 21

