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Consider an Internet file for which data on last time of access/modification (A/M) of the file
are collected at periodic intervals, but for which direct A/M data are not available. Methodology
is developed here which enables estimation of the A/M rates, in spite of having only indirect
data of this nature. Both parametric and nonparametric methods are developed. Theoretical and
empirical analyses are presented which indicate that the problem is indeed statistically tractable,
and that the methods developed are of practical value. Behavior of the parametric estimators
is examined when these assumptions are violated, and these estimators are found to be robust
against some such violations.
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1. INTRODUCTION

One of the major functions of computer networks—ranging from databases on pri-
vate local area networks to World Wide Web sites—is the sharing of information.
Two questions that then arise concern the number of people who are sharing that
information and the frequency with which the information is updated.

Consider for example an Internet site that distributes public-domain software,
written by various authors, available on the Web. In order to justify the time
and funding the authors devote to these projects, it would be of interest to know
how many users download the software, that is the long-run average number of
downloads per unit time.

Another example arises with Web search engines. The user inputs one or more
keywords, say “sailboats.” The search engine will then produce a lengthy list of Web
sites related to sailboats, ordered according to various criteria. One such criterion
(possibly provided by the user as an option) might be frequency of modification;
some users may be interested mainly in active sites which are frequently updated.
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In this case, we are interested in modification rates instead of access rates.
Another application involving modification rates concerns the design of Web

crawlers. The efficiency of a Web crawler would be much improved if it could
do more frequent checks of sites which are known to have higher modification rates,
and less frequent checks of sites with lower rates. This application is pursued in
Cho and Garcia-Molina [?].

If we had direct data on access/modification (A/M) transactions, estimation of
these and other simple rates would be straightforward [?, Chapter 12]. However,
such data may either be difficult to collect or else simply unavailable to the public.

However, there is often related, publicly accessible information that is available,
in the form of time of the last A/M transaction times for a file. For example, FTP
typically offers last-access time, and HTTP Web servers can allow users to acquire
last-modification times [?].

At first glance, last-A/M time data seems statistically insufficient for estimating
A/M rates, as there is no direct relation between the data and the rates. However,
this paper will develop methodology with which one actually can estimate the A/M
rates from last-A/M time data.

2. ASSUMPTIONS AND NOTATION

Let N(t) denote the total number of A/M transactions that have occurred on or
before time t. Define

λ = lim
t→∞

N(t)
t

when this limit exists. For now (this assumption will be broadened later) assume
that A/M transactions to the given file occur as a (time-homogeneous) Poisson
process, in which case the limit does exist.

Suppose we sample the process at n intervals of length τ , in each case recording
the time of the last A/M transaction in the interval.

Let Li denote the (unobserved) number of file A/M transactions in the ith inter-
val, so that

P(Li = k) =
e−λτ (λτ)k

k!
, k = 0, 1, 2, . . . ,

for i = 1, 2, 3, . . ..
A problem that will become central to the issues addressed in this work is that

some Li may be 0. Let Mn denote the number of i for which Li > 0, i = 1, 2, . . . , n.
In addition, let A1 denote the value of the first nonzero Li, A2 the second one, and
so on.

Define Ti1, . . . , TiAi
to be the A/M transaction times to the file within the interval

associated with Ai, mod τ . In other words, Ti1, . . . , TiAi are the times of the
transactions, as measured from the beginning of that interval. We are able to
observe only Mn and for i = 1, . . . ,Mn the values of Wi = TiAi . Estimation based
on the Wi will be conditional on Mn, while estimation based on Mn itself will be
unconditional.
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3. TWO COMPETING ESTIMATORS OF AN A/M RATE

3.1 Estimation of λ via Mn

We begin with the simpler estimator, based only on Mn. It would seem more
natural to estimate λ from the Wi, but if Mn is small, there will be too few Wi to
get an accurate estimate from them, so we turn to using Mn itself.

Remark 1. As pointed out in Cho and Garcia-Molina [?], this also covers the
case in which we do not have the Wi at all, but do have Mn. For example, we may
record a Web page at regular intervals, and thus by comparison of a new page to
its previously recorded copy determine whether a modification had been made. In
this kind of setting, we would know Mn but not the Wi.

Define

p = P(Li > 0) = 1− e−λτ (1)

so that

λ = −1
τ

ln(1− p). (2)

The maximum likelihood estimator (MLE) of λ based on Mn is

λ̌ = −1
τ

ln(1− p̌) = −1
τ

ln(1−Mn/n) (3)

[?, Example 7.1.2].
As noted by Lehmann, λ̌ will not exist (or can be taken to be infinite) if Mn = n.

With the very large sample sizes typical for the settings considered in the present
work, this nonexistence problem is mainly of theoretical interest, but it could occur
if λ or τ is very large. Cho and Garcia-Molina [?] present a modified estimator
which is guaranteed to exist.

3.2 Estimation of λ via the Wi

3.2.1 Derivation of the Likelihood Equation. We wish to find the MLE of λ
based on W1, . . . ,WMn , conditional on Mn. We thus need the density g of the
Wj . To this end, let Y denote the time, as measured from the epoch (i − 1)τ , of
the occurrence of the last A/M event before iτ , with Y = 0 if there are no events
during

(
(i−1)τ, iτ

]
. Let J1, J2 and J3 denote the number of events in the intervals(

(i−1)τ, (i−1)τ +t
]
,
(
(i−1)τ +t, iτ

]
, and

(
(i−1)τ, iτ

]
, respectively, for 0 < t < τ .

Then

P (Y ≤ t|J3 > 0) =
P (J2 = 0 and J3 > 0)

P (J3 > 0)

=
P (J2 = 0 and J1 > 0)

P (J3 > 0)

=
e−λ(τ−t) − e−λτ

1− e−λτ
,
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where the last step uses the fact that J1 and J2 are independent.
Thus

g(w) =
λeλw

eλτ − 1
, (4)

for 0 < w < τ . The conditional likelihood function of W1 = w1, . . . ,Wm = wm

given Mn = m is then

L(w1, . . . , wm) = g(w1)g(w2) · · · g(wm) =
λm

(eλτ − 1)m
· exp

(
λ

m∑
i=1

wi

)
.

Maximizing the logarithm of this expression shows that the conditional MLE, λ̂,
must satisfy the equation

r(λ̂) = W̄ , (5)

where W̄ = (W1 + . . . + Wm)/m and

r(t) =
τ

1− e−tτ
− 1

t
. (6)

Let W have the density in Equation (4). Then W̄ has mean

EW̄ = EW =
τ

1− e−λτ
− 1

λ
= r(λ), (7)

and variance

Var(W̄ ) =
1
m
·Var(W )

=
1
m

[
τ2

1− e−λτ
− 2

λ
r(λ)− (EW )2

]
. (8)

3.2.2 Asymptotic Properties of λ̂. The estimator λ̂ is a strongly consistent esti-
mator of λ, meaning that λ̂ → λ as m →∞ with probability one. Furthermore, λ̂
has an asymptotic normal distribution and is optimal in the sense that it achieves
minimal asymptotic variance. (In the unconditional setting, the binomial-based λ̌
is well known to have these properties.)

One may easily verify the conditions for these properties [?, Section 4.2.2]: First,
the density (4) must be thrice-differentiable with respect to λ, which is clearly the
case. Second, the integrals, with respect to w, of that density and its logarithm
must be differentiable under the integral sign with respect to λ, again clearly true.
And finally, the partial derivative of the logarithm of (4), evaluated at w = W , i.e.

∂

∂λ
ln[g(w;λ)]

∣∣∣
w=W

= W +
1
λ
− τ

1− e−τλ
= W − r(λ),

must have finite variance, which we showed in (8).
ACM Journal Name, Vol. V, No. N, Month 20YY.
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3.2.3 Solution of the Likelihood Equation. Equation (5) has no closed-form so-
lution. Thus iterative numerical methods must be used.

However, we will at least establish conditions under which the root exists and is
unique. First, we show that r(t) is a strictly increasing function of t. To see this,
for convenience scale so τ = 1, and write

r′(t) =
( et−1

t )
2
− et

(et − 1)2
. (9)

We need to show that the numerator is positive for t > 0. Using a Taylor series
expansion for et, we have

et − 1
t

=
∞∑

i=0

ti

(i + 1)!
. (10)

Square this and then subtract the Taylor series for et. The squared quantity will
consist of the sum of the squares of terms of (10),

∞∑
i=0

t2i

(i + 1)!2
, (11)

and the sum of the cross products,

2
∞∑

i,j=0,i<j

ti

(i + 1)!
tj

(j + 1)!
. (12)

For each k = 0, 1, . . ., we will consider terms of degree k in the variable t, searching
for a group of terms in the square of (10) whose sum is greater than or equal to the
k-power term 1

k! t
k in the Taylor series for et. Here are the cases:

k = 0:
The term at i = 0 in (11) matches the term at k = 0 in the Taylor series

for et.
k = 1:

The term at i = 0, j = 1 in (12) matches the term at k = 1 in the Taylor
series for et.
k > 1:

The sum of the term at i = 1 in (11) and the term at i = 0, j = 2 in (12)
is greater than t2/2!.

So, the squared quantity in the numerator of (9) has terms corresponding to all
those in et, plus more, so we have a strictly postive difference. Thus the numerator
of (9) is indeed positive.

In addition, by a couple of applications to L’Hospital’s Rule we find that r(0)
is equal to 0.5τ . Also, r(t) goes to τ as t → ∞. Since r(t) is continuous, we see
that it can take on any value between 0.5τ and τ . However, W̄ can take on any
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value between 0 and τ . Thus the solution of the equation exists and is unique if
W̄ > 0.5τ , and otherwise the MLE is 0.0.

If desired, the approximate probability that the MLE will be nonzero, for any
values of λ, τ and m of interest, can be calculated using the Central Limit Theorem
and Equations (7) and (8).

Later, in determining the statistical accuracy of our estimator, we will again need
to deal with this non-closed form of the MLE, but will present a way to circumvent
the problem.

4. STATISTICAL INFERENCE ON λ

In the Web applications of interest here, a rough point estimate of the A/M rate
would often be sufficient, and formal statistical inference methods (confidence inter-
vals, hypothesis testing) would not be needed. Nevertheless, in some cases inference
methods may be of interest. For example, an analyst may be interested in inves-
tigating whether a Web page’s current A/M rate has increased substantially from
a past rate. In this section we develop machinery for conducting formal statistical
inference.

4.1 The “Delta Method”

The “delta method” [?, Section 3.1] says, roughly, that a sufficiently smooth func-
tion of an asymptotically Gaussian-distributed sequence of random variables is itself
an asymptotically Gaussian-distributed sequence. More precisely, suppose

lim
k→∞

P

(
Uk − θ
1√
k
σ(θ)

≤ t

)
= Φ(t) for all real t,

where Φ(t) is the cumulative distribution function for the standard normal distribu-
tion. Then if h is continuously differentiable in a neighborhood of θ and h′(θ) 6= 0,
and σ(·) is continuous in a neighborhood of θ,

lim
k→∞

P

(
h(Uk)− h(θ)
1√
k
|h′(θ)|σ(θ)

≤ t

)
= Φ(t) for all real t. (13)

The quantity [h′(θ)]2σ2(θ)/k is then the asymptotic variance (AVar) of h(Uk).
The estimated square root of this quantity,

SE(h(Uk)) = |h′(Uk)|σ(Uk)/
√

k,

is known as the standard error of Uk. The standard error can be used for statistical
inference purposes. For instance, it follows directly from (13) that as k → ∞ an
asymptotically valid 95% confidence interval for h(θ) based on h(Uk) is

h(Uk)± 1.96|h′(Uk)|σ(Uk)/
√

k.

(The limit in Equation (13) remains valid if the standard error is used in place of
the denominator in the fraction in that equation [?, Section 1.5.4].)
ACM Journal Name, Vol. V, No. N, Month 20YY.
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4.2 Inference via λ̌

In the notation above, take k to be n, take θ to be p, and take Uk to be p̌ =
Mn/n. Also, informed by Equation (2), then in Equation (13) take h(t) to be
− 1

τ ln(1 − t). Since the Central Limit Theorem shows that p̌ is approximately
normally distributed with mean and variance p and p(1 − p)/n, then by the delta
method λ̌ has an approximately normal distribution which has mean λ and variance

1
nτ2

· p

1− p
.

Inference can then be done by replacing p in this expression by p̌. In other words,

SE(λ̌) =
1
τ

√
1
n
· p̌

1− p̌
. (14)

4.3 Inference via λ̂

Now, let us see what can be done in the case of λ̂. Again, the main issue is what
to take for the function h. Note first that since λ̂ is a function of W̄ , we would
ordinarily take h to be this function. In other words, h would be the functional
inversion of Equation (5). However, as noted earlier, we do not have this latter
function in closed form.

We could find the approximate value of that function (actually, its derivative)
during our iterative procedure to find λ̂, but there is an easier approach. Instead,
we use the delta method on the function r in Equation (5), “pretending” that we do
not know the asymptotic variance of W̄ but do know that of λ̂. Since we actually
do know the asymptotic variance of W̄ , we can solve for what we do want. Here
are the details.

Considering W̄ to be a function of λ̂ in Equation (5), rather than vice versa, and
thus “applying the delta method in reverse,” we have that

Var(W̄ ) = AVar(W̄ ) = [r′(λ)]2AVar(λ̂),

so that the standard error of λ̂ is

SE(λ̂) =
1

r′(λ̂)

√
V̂ar(W̄ ) =

1
√

m · r′(λ̂)

√
τ2

1− e−λ̂τ
− 2

λ̂
r(λ̂)− r2(λ̂). (15)

5. THE HOMOGENEOUS POISSON ASSUMPTION AND ALTERNATIVES

Up to this point, we have been assuming that the A/M transactions occur as a
Poisson process, and that the process is time-homogeneous, meaning that λ does
not vary through time. Let us now give these assumptions closer examination.

5.1 Formulation as a Renewal Process

Let Si denote the time between the (i− 1)st and ith A/M transactions. Under the
homogeneous Poisson assumption, these intertransaction times are independent and
identically distributed, with the common distribution being exponential. Now we
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continue to assume that the Si are independent and have a common distribution,
but we drop the assumption that that distribution is exponential.

We do continue to assume that that distribution is absolutely continuous. In
other words, letting S denote a generic random variable having the distribution of
each Si, then there exists a nonnegative function fS such that

P (Si ≤ s) = FS(s) =
∫ s

0

fS(u) du for all s ≥ 0.

It is also assumed that E(S) < ∞.
As before, let N(t) denote the total number of A/M transactions that have

occurred on or before time t, so that

N(t) = max{i : S1 + . . . + Si ≤ t} for all t ≥ 0.

The set of random variables N(t) comprise a renewal process [?].
For any fixed-time multiple of τ , iτ , consider the random variable Zi, defined

to be the time since the last renewal, called the backward recurrence time. From
renewal theory, the (asymptotic, as i →∞) density function of Zi is

b(t) =
1− FS(t)

E(S)
. (16)

Note, though, that 1/E(S), being the reciprocal of the mean intertransaction
time, is equal to the asymptotic mean number of A/M transactions per unit time
[?, Section 5.3]. In other words

b(t) = λ[1− FS(t)]. (17)
Note that this and the fact that S is nonnegative and has an absolutely continuous
distribution implies that

λ = b(0). (18)
This will be useful in later material.

5.2 Examining the Wi to Assess the Exponential Assumption

If the Sj are exponentially distributed, as we assumed earlier, then Equation (16)
shows that the quantities Zi are also (asymptotically) exponentially distributed.
Thus we can investigate the appropriateness of the exponential assumption by ap-
plying standard statistical goodness-of-fit assessment procedures to the quantities
Zi.

It should be noted, though, that in our context there is typically a large amount
of data (as seen for example in Section 6), which means that if a formal goodness-
of-fit hypothesis test is used, even slight departures from the exponential model
will (misleadingly) result in rejection of the hypothesis at standard significance
levels. Thus care should be used [?, Chapter 7], and the goodness-of-it assessment
should be treated as exploratory only. Histograms or other nonparametric density
estimation techniques can be used to plot the Zi and check for roughly exponential
shape.
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5.3 The Behavior of λ̌ in the Nonexponential, Small-τ Case

How robust is the estimator λ̌ to the exponential assumption? In this section,
we will investigate the behavior of λ̌ in the case in which the intertransaction
distribution is nonexponential and τ is small.

We must first generalize our earlier definition of the quantity p. In the Pois-
son context of that equation, the probability of the ith observation interval being
nonempty, p = P(Li > 0), was independent of i, due to the memoryless property
of the exponential distribution. This is not the case in our more general setting
here, but we can still define p to be the long-run probability of an interval be-
ing nonempty. Specifically, since the ith interval will be nonempty if and only if
Zi < τ , the material in Section 5.1 shows that the quantities P(Li > 0) converge
to an integral of b(t), so we can define p as

p = lim
i→∞

P(Li > 0) =
∫ τ

0

b(t)dt. (19)

Recall that we are assessing the robustness of the estimator λ̌ = − 1
τ ln(1−Mn/n),

whose derivation assumes an exponential distribution, in the case in which S is
not exponentially distributed but τ is small. As noted earlier, for nonexponential
settings, A/M transactions in one observation interval are not independent of the
ones in other intervals, so Mn is not a sum of independent random variables. Thus
we should verify that limn→∞Mn/n exists and is equal to p:

Lemma 5.1.

lim
n→∞

Mn

n
= p with probability 1. (20)

Proof. First define Bi to be the time of the ith A/M transaction, mod τ :

Bi = (S1 + · · ·+ Si) mod τ,

for i = 1, 2, . . ., and define B0 = 0.
Also for i = 1, 2, . . ., define Qi to be the number of empty intervals “skipped

over” by the ith A/M transaction:

Qi = max
(
b(Bi−1 + Si)/τc − 1, 0

)
.

For example, suppose τ = 1.0 and B15 = 0.2. If S16 = 0.5, say, then this new
A/M transaction will be in the same observation interval as the preceding one. If
S16 = 0.9, then the new transaction will occur in the interval immediately following
the last transaction. In both of these examples, Q16 will be 0. But if S16 = 1.9,
the interval immediately following the last will be empty, and the new transaction
will occur in the next interval after that, so that Q16 will be 1.

Note that the number of empty intervals which occur up to the nth A/M trans-
action is

Q1 + · · ·+ Qn + 1{S1>τ}, (21)
ACM Journal Name, Vol. V, No. N, Month 20YY.
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where the indicator random variable 1{S1>τ} is equal to 1 if S1 > τ and 0 otherwise.
This formulation of the count of empty intervals will be important below.

Due to the independence of the Si, the pairs (Bi, Qi), i = 1, 2, . . . form a discrete-
time, continuous state space Markov process. Assume that the density of S satisfies
conditions to make the process convergent to a stationary distribution. For instance,
this will obtain if the support of S is a finite closed interval. (Rey-Bellet [?, Re-
mark 8.2] shows that compactness of the state space, plus a continuous analog of
irreducibility, implies convergence of a Markov process.) For convenience, we will
assume this here.

For each k = 0, 1, . . ., let Cnk denote the number of Qi = k, for i = 1, . . . , n.
Then the quantities

lim
n→∞

Cnk

n
will converge to the second marginal component in the stationary distribution of
the Markov process.

Thus since Q1 + · · ·+ Qn =
∑

k kCnk we have

lim
n→∞

Q1 + · · ·+ Qn

n
= c (22)

for some constant c, with probability one. Then (22) and the fact that N(t) →∞
as t →∞ with probability 1 imply that

lim
t→∞

Q1 + · · ·+ QN(t)

N(t)
= c

with probability 1. Set t = nτ, n = 1, 2, . . .. Then consideration of (21) yields that

Q1 + · · ·+ QN(nτ) + 1{S1>τ} = n−Mn.

Thus

lim
n→∞

Mn

n
= 1− lim

n→∞

Q1 + · · ·+ QN(nτ) + 1{S1>τ}

n

= 1− lim
n→∞

Q1 + · · ·+ QN(nτ)

N(nτ)
· N(nτ)

n

= 1− cλτ,

with probability 1, since standard renewal theory shows that

lim
u→∞

N(u)
u

= λ w.p. 1.

So, Mn/n converges to some constant. Then the relation

E
(

Mn

n

)
=

P(L1 > 0) + · · ·+ P(Ln > 0)
n

,

(19) and the Bounded Convergence Theorem yield (20).
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Then from (19),

lim
n→∞

λ̌ = lim
n→∞

−1
τ

ln
(

1− Mn

n

)
= −1

τ
ln(1− p) = u(τ) w.p. 1,

where

u(x) =
− ln

[
1−

∫ x

0
b(t)dt

]
x

.

Now expanding at τ = 0, we have

lim
n→∞

λ̌ = u(0) + u′(0)τ + o(τ). (23)

From (18) we see that u(0) = λ. To evaluate u′(0), let y(x) =
∫ x

0
b(t)dt. Then

u′(x) =
x · y′(x)

1−y + ln(1− y)

x2
, (24)

so

u′(0) =
z(x)
2x

∣∣∣
x=0

,

where z(x) is the derivative of the numerator in (24), i.e.

z(x) = x · (1− y)y′′(x) + [y′(x)]2

(1− y)2
.

Thus

u′(0) =
(1− y)y′′(x) + [y′(x)]2

2(1− y)2

∣∣∣
x=0

=
b′(0) + [b(0)]2

2
.

As previously noted, b(0) = λ, and from (17) we see that b′(0) = −λfS(0). Thus

lim
n→∞

λ̌ = λ +
[−λfS(0) + λ2]

2
· τ + o(τ) (25)

In other words, for small τ the estimator λ̌ will be approximately consistent for
λ, i.e.

lim
n→∞

λ̌ ≈ λ,

even without the Poisson assumption, thus greatly extending the applicability of
this estimator.
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Equation (25) also gives us some idea as to whether λ̌ will have a tendency to
over- or underestimate λ in various non-Poisson cases. (Note that in the Poisson
case, fS(0) = λ, so the second term in (25) is 0, reflecting the fact that λ̌ is an
exactly consistent estimator of λ in that setting.) If for instance S has a uniform
distribution on (0, c), we will have λ = 2/c > fS(0), resulting in λ̌ having a tendency
to overestimate λ.

5.4 Two Data-Exploratory Approaches

Continue to assume that the A/M transactions occur as a renewal process. From
renewal theory we know that the exponential assumption holds if and only if our
renewal process has independent increments, meaning that it has the property that
renewal counts in disjoint time intervals are independent. Thus even if we were
to find a suitable nonexponential parametric model for the intertransaction times,
say a gamma distribution, we would have a problem with standard statistical es-
timation and inference methodology; that methodology assumes that the Wi are
independent, which would not be true.

We found in the previous subsection that the exponential assumption is not
important for λ̌ if τ is small. For other nonexponential cases, we now present
two exploratory tools for estimation of A/M rates. These will be based of a novel
application of tools for nonparametric density estimation. Here Equation (16) will
play a central role. Assume here that time has been scaled so that τ = 1.

Nonparametric density estimation is a refinement of the usual histogram methods
taught in elementary statistics courses. It is used primarily as a tool for exploratory
data analysis, with the aim being to answer questions about the overall shape of the
density function, such as: Is the density unimodal or multimodal? Where does the
bulk of the distribution lie? By contrast, in practice it is rare for nonparametric
density estimation to be used to estimate a density at only one point, which is what
we will do here: In light of Equation (18), our job is to estimate b(0) from our data
Zi, without assuming a parametric family such as the exponential.

5.4.1 A Graphical Approach. The classic kernel nonparametric density estima-
tor, applied here to the function b(t), is

b̂(t) =
1

nh

n∑
i=1

K

(
t− Zi

h

)
,

where h is a smoothing parameter and the kernel K is chosen to be a mean-0 density
function in its own right. The choice of K is up to the user, provided K satisfies
certain regularity conditions [?].

The smoothing parameter h is similar to the bin width in histograms. A large
body of mathematical theory exists on this point; here we will assume, as is com-
mon, that h → 0 and nh →∞ as n →∞. Choose

K(t) =
{

0.5, −1 < t < 1,
0, otherwise.

With this choice of K we would have
ACM Journal Name, Vol. V, No. N, Month 20YY.
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b̂(0) =
0.5#(−h, h)

nh
, (26)

where #(u,v) denotes the count of the number of Zi in the interval (u,v).
However, here #(−h, h) = #(0, h) and for this reason kernel estimators are

subject to serious bias problems near the boundary of a density’s nonzero region.
For a kernel estimator f̂ of a density f based on a kernel K which has the value 0
outside of (-1,1),

E[f̂(0)] =
∫ 0

−1

K(u)du f(0) + O(h)

[?]. So, in our case here,

E [̂b(0)] = 0.5b(0) + O(h).

Thus we will redefine (26) to be

b̂(0) =
#(0, h)

nh
(27)

to make the estimator consistent.
It is up to the user to choose the value of the smoothing parameter h. Though

some methods have been proposed for choosing h, no fully practical method has
yet been developed. This is especially true for our situation, in which we wish to
minimize mean squared error at a specific point (here t = 0) rather than the usual
criterion of integrated mean squared error. Thus nonparametric density estimation
is used typically as a data-exploratory tool rather than a means of formal statistical
inference [?], and we present Equation (27) in that spirit.

Note also that while one may need a large amount of data to make this work well,
in the applications considered by this paper, we typically do have large amounts of
data, as noted earlier.

5.4.2 An Approach Based on Isotonic Inference Methodology. Another approach
would rely on the fact that Equation (16) shows that b(t) is a nonincreasing function,
suggesting the use of isotonic inference methodology [?], which takes into account
ordinal relationships.

In particular, we could make use of nonparametric maximum likelihood estima-
tors for unimodal densities [?], a class which of course includes monotonic densities.
These estimators are automatic, meaning that they do not have a smoothing pa-
rameter like h above for which the user must choose a value. This would appear to
solve the problem which arose in the previous section.

However, the classic estimator of this type is inconsistent at t = 0 [?]. A variation
which overcomes this problem has been developed [?]. It is rather complicated to
implement and again suffers from the fact that it is aimed at minimizing integrated
mean squared error, rather than mean squared error at t = 0, but this may be a
promising direction to take, and should be the subject of future research.
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5.5 Time Homogeneity Aspect of the Poisson Assumption

Even if the access pattern is Poisson, the rate λ might be time-varying instead of
constant. For example, if the users of a Web page are disproportionately located
in the U.S. and their usage is low during, say, early morning hours, then λ(t) may
be periodic with period 24 hours. How well do our estimators λ̌ and λ̂ do in such
a situation?

To investigate this, consider settings in which the accesses follow a nonhomoge-
neous Poisson process whose rate function λ(t) has period τ [?, Section 6.3.1]. (We
assume here that the period is known, e.g. 24 hours, and that τ has been chosen to
match the period.) Then if X is the number of accesses during one period of λ(t),

P (X = k) =
1
k!

e−m(τ)[m(τ)]k

and EX = m(τ), where

m(t) =
∫ t

0

λ(s) ds.

Note that this means that our A/M rate ν is now m(τ)/τ .
Let us first consider the behavior of λ̌. In analogy with (1) and (2), define

q = P(Li > 0) = 1− exp[−m(τ)],

so that

ν = −1
τ

ln(1− q).

From (3), we now can see the behavior of λ̌ in the periodic case we are examining
here. The quantity p̌ = Mn/n will converge almost surely to q as n → ∞ (unlike
the situation in Section 5.3, events in different intervals are i.i.d. here), and thus
λ̌ will converge to ν, just as desired. And the standard error given by (14) will
remain valid as well, since Mn is still binomial, with parameter q.

However, the situation is quite different in the case of λ̂. For our counterexample,
take τ = 1, and suppose λ(t) has total mass 1 in a small interval centered at t =
0.5:

λ(t) =
{

1
2δ , t ∈ (0.5− δ, 0.5 + δ),
0, otherwise,

for a small value of δ which we will choose below. In this setting, we will have ν = 1
and

W̄ ∈ (0.5− δ, 0.5 + δ).

Recall that λ̂ is the solution of Equation (5), so in our case here,

r(λ̂) ≤ 0.5 + δ (28)
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with probability 1.
From Section 3.2.3 we know that the unique solution of

r(u) = 0.5

is u = 0, and since the function r is continuous and strictly increasing, (28) shows
that we can choose δ so that, say, λ̂ ≤ 0.1 with probability 1. Yet ν = 1. Thus λ̂
will not be a consistent estimator of ν.

Fortunately, there is a way to work around this problem: One can simply increase
the value of τ . If for example we collected data every 2 hours and suspect a daily
pattern, we could do our analysis with τ set to, say, 480 hours instead of 2. The
data in each set of 240 sampling intervals would be collapsed into one interval.

This has the effect of changing the nonhomogeneous Poisson process into an ap-
proximately homogeneous one. To see this, think of the effect on a nonhomogeneous
Poisson process with period τ if we “compress” λ(t) so that the period is τ/k, keep-
ing τ constant. Formally, this would mean replacing λ(t) by λ(kt). For large k the
behavior of the resulting nonhomogeneous Poisson process is approximately that of
a homogeneous Poisson process.

Increasing the value of τ may result in some loss of information. This will typically
be less of an issue, once again because the applications described here would tend
to have large amounts of data.

6. EMPIRICAL ASSESSMENTS

6.1 Comparison of λ̂ and λ̌ via Simulation

Intuitively, λ̂ should typically be a superior estimator to λ̌, since the former is based
on “richer” information than the latter (that is, last-A/M times rather than counts
of nonzero intervals). However, such intuition must be tempered by the fact that
if λτ is small, the quantity Mn might also be very small—in which case λ̂ will be
based on such a small sample that λ̌ may actually be the superior estimator.

To investigate this, a simulation study was performed, calculating the mean
squared errors (MSE) for λ̂ and λ̌, E[(λ̂− λ)

2
] and E[(λ̌− λ)

2
]. The settings simu-

lated had values of λ ranging from 0.4 to 10.0 in increments of 0.05, for n = 50 and
n = 200 sampling intervals of size τ = 1.0. The MSE for each setting was based on
10,000 replications. The results are shown in Figures 1 and 2, in the form of the
square root of MSE, normalized by λ; in other words, what is plotted is

√
MSE
λ .

The figures confirm the intuitive speculation described above. For a sample size
of 50, λ̌ performs better than λ̂ for λ < 3.7, while for n = 200 the change point
comes earlier, at approximately λ = 3.0. In other words, a sample size of n = 200
is large enough so that we will get a fairly large value of Mn even if λ is small.

6.2 Performance on Real Data

The author applied the methodology developed here to three of his Web pages,
listed here with the corresponding numbers of accesses:

http://heather.cs.ucdavis.edu/~matloff/unix.html 22853
http://heather.cs.ucdavis.edu/~matloff/latex.html 14993
http://heather.cs.ucdavis.edu/~matloff/chinese.html 4469
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Fig. 1. MSE comparison, n = 50.

Since this was direct data Tij , rather than time-of-last-A/M, the author could
determine the true values of λ from the data (though technically these too were
just estimates), and then compare them to the values of the estimators λ̌ and λ̂
computed from the indirect data Mn and Wi. In other words, the data served as
a good real-world test bed for the methodology. Again, keep in mind that here we
are playing the role of an analyst who would only have access to Mn and the Wi.

First let us assess the quantities Zi for an exponential distribution, as discussed
in Section 5.2. A kernel-based density estimate for the case of the UNIX data
set, using the R statistical package [?] with the default value for the smoothing
parameter, is shown in Figure 3. The estimate is not monotone decreasing, as it
would be if the parent population were to have an exponential distribution.

Moreover, Figure 4 suggests that the access times have a time-varying rate. This
figure was generated from the UNIX data by converting the time of day of each
A/M transaction to minutes since 12:00 a.m. of that day, and then computing a
kernel density estimate from that data. As suspected, there tended to be fewer
accesses in the middle of the night (U.S. time).

The corresponding graphs for the LATEX and Chinese-software data sets, not
shown here, were similar. Thus these data sets provide an opportunity to examine
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 2. MSE comparison, n = 200

the robustness of the estimators λ̂ and λ̌ to the time-homogeneous and exponential
assumptions.

Let us calculate λ̂ and λ̌ on the UNIX data set, for various values of τ . The
results are shown in Figure 5. (Time units are minutes.) First note that, similar to
the simulation results in Section 6.1, λ̂ tends to be a superior estimator relative to
λ̌ only for larger values of τ . (The latter property may be due to the observation
made in Section 5.5 regarding a strategy for dealing with nonhomogeneous Poisson
processes.) In other words, max (λ̂, λ̌) seems to be the general estimator of choice,
and that estimator does fairly well on these data sets, in spite of their departure
from the Poisson assumption.

Second, we see that as predicted by the theoretical analysis in Section 5.3, λ̌ does
quite well in the case of small τ .

Interestingly, we find similar results for the LATEX and Chinese-software data sets,
as seen in Figures 6 and 7, respectively.

7. COMPARISON WITH THE WORK OF CHO AND GARCIA-MOLINA

Another approach to this problem was taken by Cho and Garcia-Molina (CGM) [?].
Those authors, and the author of the present paper, became aware of each other’s
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Fig. 3. Kernel estimate of Z density.

work in late 2002, after both papers had been submitted for publication. Thus the
work on each of the two papers was done independently of the other. This section
compares the results of the two papers. The important points of comparison are as
follows.

Each of the two papers presents two Poisson-based estimators. CGM’s first esti-
mator is identical to λ̌ in the present paper. (As noted earlier, CGM also present
a modification of this estimator.) Both papers made the Poisson assumption for
this estimator, though they arrived at it from different approaches (CGM from a
bias-reduction argument, the present paper using MLE).

Each paper again makes the time-homogeneous Poisson assumption for its second
estimator. However, CGM’s second estimator is different from the present paper’s
λ̂. CGM’s second estimator has an advantage in that it is simpler to compute than
λ̂, but λ̂ has an advantage in being statistically optimal.

CGM present a version of their first estimator for the case of irregular (though
deterministic) sampling intervals. The analysis of the present paper does not cover
that case. However, in practice the sampling would typically be done via shell
scripts which arrange to vist the site at regular intervals.

The present paper develops methodology for performing statistical inference, i.e.
confidence intervals and hypothesis tests, using the estimators, an aspect not treated
by CGM.

The most important differences between the two papers involve their coverage of
cases in which the assumptions do not hold:

—Theoretical Depth. CGM do not include theoretical analyses for cases in which the
assumption of a time-homogeneous Poisson process is violated. The present paper
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Fig. 4. Kernel estimate of time-of-day density.

develops a theoretical analysis proving that λ̌ is valid in non-Poisson renewal
process settings if τ is small. The present paper also develops some theoretical
analysis of the robustness of the homogeneous Poisson-based estimators in the
nonhomogeneous Poisson case.

—Estimation Methodology for the Non-Poisson Case. CGM presents no estimators
aimed specifically at the non-Poisson case. The present paper proposes two such
estimators, though with some questions still to be answered.

—Empirical Analysis. Both papers perform investigations on real Web A/M data.
CGM finds that their first estimator (the only one investigated) produces a bias
of averaging about 15% on the various real data sets considered.
The present paper finds that on the real data the first estimator works well for
small τ , as predicted by the theory, and the second estimator works well for large
τ . Moreover, the present paper finds that the maximum of its first two estimators
works well, with a bias of around 10%.

—Overall Assessment of the Poisson Model. CGM cite references which suggest
that the Poisson model is a good one for Web modification rates, but do not
assess the model. The present paper finds that the model is not very good for
the access rate data it analyzes.
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Fig. 5. Estimates on UNIX data.

8. CONCLUSIONS AND DISCUSSION

Four solutions—two parametric and two nonparametric—are proposed here for a
problem which at first might seem to be fundamentally intractable, estimation of
an A/M rate based on last A/M times within intervals. Although the derivation
for the first two estimators, λ̌ and λ̂, is based on a Poisson assumption for the
data, theoretical analysis presented here shows that one of the estimators works
well for the small-τ case without the Poisson assumption. The other estimator is
statistically optimal under the Poisson assumption.

Tests on three sets of real, non-Poisson Web data presented here not only con-
firmed that λ̌ works well in the small-τ case without the Poisson assumption, but
also show that λ̂ works reasonably well on non-Poisson data in the case of large τ .
The combined estimator max(λ̌,λ̂) seems to work very well across the range of τ
studied.

The Poisson-based work done here sheds additional light on the work done in-
dependently by Cho and Garcia-Molina. The present paper goes much further in
the non-Poisson case than do Cho and Garcia-Molina. A theoretical analysis of
the behavior of λ̌ in the non-Poisson case for small τ is presented, in which it is
found that this estimator is robust to the Poisson assumption. Then two nonpara-
metric solutions are derived, based on a novel use of seemingly-unrelated statistical
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Fig. 6. Estimates on LATEX data.

methodology. They appear to have promise, but future work is needed to fully
develop their potential.

Another area of possible interest would be to investigate the case in which the
A/M rate has a (nonperiodic) trend in time.
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Fig. 7. Estimates on Chinese software data.
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