
An introduction to TEX and friends

Gavin Maltby

November 1992

Contents

1 Getting acquainted with TEX 1
1.1 The spirit of TEX . 1

1.1.1 TEX is a typesetter, not a word-processor 2
1.1.2 Typical TEX interfaces 4

2 Getting started with LATEX 7
2.1 Why start with LATEX? . 7
2.2 LATEX formats, and we compose 9
2.3 Document styles . 9
2.4 Preparing a non-mathematical document 10

2.4.1 Sentences and paragraphs 11
2.4.2 Punctuation . 13
2.4.3 Ties . 16
2.4.4 Specially reserved symbols 17
2.4.5 So what are control symbols and words? 18
2.4.6 Commands to change appearance 21
2.4.7 Accents . 23
2.4.8 Over-ruling some of TEX’s choices 24
2.4.9 Commenting your document 25
2.4.10 Footnotes . 25
2.4.11 Topmatter . 26
2.4.12 Sectioning commands 26
2.4.13 LATEX environments . 28
2.4.14 em environment . 28
2.4.15 quote and quotation environments 29
2.4.16 verse environment . 31
2.4.17 center environment 31

i

2.4.18 flushright and flushleft environments 32
2.4.19 verbatim environment 33
2.4.20 itemize, enumerate, description environments . . . 35
2.4.21 tabbing environment 37
2.4.22 tabular environment 39
2.4.23 figure and table environments 41
2.4.24 The letter document style 43
2.4.25 Common pitfalls; Error messages 43

2.5 Summary . 47

3 Mathematical typesetting with LATEX 49
3.1 Introduction . 49
3.2 Displaying a formula . 53
3.3 Using mathematical symbols 55

3.3.1 Symbols available from the keyboard 55
3.3.2 Greek letters . 56
3.3.3 Calligraphic uppercase letters 56
3.3.4 Binary operators . 57
3.3.5 Binary relations . 58
3.3.6 Miscellaneous symbols 58
3.3.7 Arrow symbols . 59
3.3.8 Expression delimiters 59

3.3.9 Operators like
∫

and
∑

. 60

3.3.10 Accents . 61
3.4 Some common mathematical structures 61

3.4.1 Subscripts and superscripts 61
3.4.2 Primes . 64
3.4.3 Fractions . 64
3.4.4 Roots . 65
3.4.5 Ellipsis . 65
3.4.6 Text within an expression 66
3.4.7 Log-like functions . 66
3.4.8 Over- and Underlining and bracing 67
3.4.9 Stacking symbols . 68
3.4.10 Operators; Sums, Integrals, etc. 68
3.4.11 Arrays . 69

ii

3.4.12 Changes to spacing . 70
3.5 Alignment . 71
3.6 Theorems, Propositions, Lemmas, 72
3.7 Where to from here? . 73
3.8 AMS-LATEX . 74

iii

List of Tables

2.1 Commands for selecting type styles 21
2.2 LATEX size-changing commands. 22
2.3 Control sequences for accents 23
2.4 LATEX sectioning commands 26

3.1 Lowercase Greek letters . 56
3.2 Uppercase Greek letters . 56
3.3 Binary Operation Symbols . 57
3.4 Binary relations . 58
3.5 Miscellaneous symbols . 59
3.6 Arrow symbols . 59
3.7 Delimiters . 60
3.8 Variable-sized symbols . 61
3.9 Math accents . 61
3.10 Log-like functions . 67

iv

Chapter 1

Getting acquainted with TEX

TEX is well known to be the typesetting package, and a vast cult of TEX
lovers has evolved. But to the beginning TEX user, or to someone wondering
if they should bother changing to TEX, it is often not clear what all the fuss
is about. After all, are not both WordPerfect and Ventura Publisher capable
of high quality output? Newcomers have often already seen what TEX is
capable of (many books, journals, letters are now prepared with TEX) and so
expect to find a tremendously powerful and friendly package. In fact they do,
but that fact is well hidden in one’s initial TEX experiences. In this chapter
we describe a little of what makes TEX great, and why other packages cannot
even begin to compete. Be warned that a little patience is required—TEX’s
virtues are rather subtle to begin with. But when the penny drops, you will
wonder how you ever put up with anything different.

1.1 The spirit of TEX

In order to really appreciate TEX one needs to get a feel for what I call
the “spirit” of TEX. When TEX appears to be making me work overtime to
achieve something that I think ought to be perfectly straightforward, consul-
tation with the TEX spirit shows me the error of my ways.

1

1.1.1 TEX is a typesetter, not a word-processor

TEX was designed with no limiting application in mind. It was intended
to be able to prepare practically any document—from a single page all-text
letter to a full blown book with huge numbers of formulae, tables, figures
etc. The size and the complexity of a TEXable document is limited only by
hardware considerations. Furthermore, TEX seeks to achieve all this whilst
setting typesetting standards of the highest order for itself. The expertise
of generations of professional printers has been captured in TEX, and it has
been taught all the tricks of the trade.

Historically, printers prepared a document by placing metal characters in
a large tray and arranging and binding them to form a page. This was very
precisely done, but the ultimate precision was limited because of the mechan-
ical nature of things and by time considerations. TEX prepares a page in an
analogous manner (putting your characters and formulae into “boxes” which
are then “glued” together to form the page), but has the advantage of enor-
mous precision because placement calculations are performed by computer.
Indeed, TEX’s internal unit (the “scaled point”) is about one-hundredth of
the wavelength of natural light!

“But conventional word processors run on computers , too”, you object.
Yes, but their fundamental limitation is that they try to “keep up” with you
and “typeset” your document as you type. This means that it can only make
decisions at a local level (eg, it decides where to break a line just as you type
the end of the line). TEX’s secret is that it waits until you have typed the
whole document before it typesets a single thing! This means that TEX can
make decisions of a global nature in order to optimise the aesthetic appeal
of your document. It has been taught what looks good and what looks bad
(having been given a measure of the “badness” of various possibilities) and
makes choices for your document that are designed to make it “minimally
bad”.

But TEX’s virtues run much deeper than that, which is just as well because
it is possible to get satisfactory, though imperfect, results from some word
processors. One of TEX’s strongest points is its ability to typeset complicated
formulae with ease. Not only does TEX make hundreds of special symbols
easily accessible, it will lay them out for you in your formulae. It has been
taught all the spacing, size, font, . . . conventions that printers have decided
look best in typeset formulae. Although, of course, it doesn’t understand

2

any mathematics it knows the grammar of mathematics—it recognises binary
relations, binary operators, unary operators, etc. and has been taught how
these parts should be set. It is consequently rather difficult to get an equation
to look bad in TEX.

Another advantage of compiling a document after it is typed is that cross-
referencing can be done. You can label and refer back to chapters, sections,
tables etc. by name rather than absolute number, and TEX will number and
cross-reference these for you. Similarly, it will compile a table of contents,
glossary, index and bibliography for you.

Essential to the spirit of TEX is that it formats the document whilst you
just take care of the content, making for increased productivity. The cross-
referencing just mentioned is just part of this. Many more labour-saving
mechanisms are provided for through style files. These are generic descrip-
tions of classes of documents, teaching TEX just how each class likes to be
formatted. This is taught in terms of font preferences, default page sizes,
placement of title, author, date, etc. For instance, a paper style file could
teach TEX that when typesetting a theorem it should embolden the part that
states the theorem number and typeset the text of the theorem statement in
slanted Roman typeface (as in many journals). The typist simply provides
and indication that a theorem is being stated, and then types the text of the
theorem without bothering to choose any fonts or do any formatting—all that
is done by the style file. Style files exist for all manner of document—letters,
articles, papers, books, proceedings, review articles, and so on.

In addition to style files, there are macro packages. A macro is just a
definition of a new TEX command in terms of existing ones. Don’t think
small when you think of macros! When typing a document that has a lot of
repetition in it, say the same expression is used again and again in different
different equations, you can define a macro in your document to abbrevi-
ate that expression. But macros can teach TEX how to typeset all sorts of
complicated structures, not just parts of an equation. Many macro packages
(files that are just collections of definitions) have been written to teach TEX
all sorts of applications. There are specialist maths packages (AMS-TEX,
AMS-LATEX), general purpose packages (LATEX), packages for setting tree
diagrams, Feynmann diagrams, languages like Chinese, Arabic and Ancient
Greek, orchestral scores, and many, many more. All these are freely available,
a spin-off of the giant TEX cult.

Another facet of the design of TEX allows it to use practically any output

3

device. In fact, TEX doesn’t talk to any printers, screens, phototypesetters
at all! Instead, when a document is compiled a device independent (.dvi) is
produced—TEX does not compile with any particular output device in mind.
Printer drivers are then invoked on this .dvi file and, in consultation with
the font data for that printer, produce output suitable for the particular
device. You can choose an HP Laserjet driver, or an Apple LaserWriter
driver, or a dot matrix driver etc. All use the same .dvi file as input (and
remember the material in there is set to enormous accuracy) and attempt to
image that file on the particular device as faithfully as possible. If you are
using a top of the line laser printer or phototypesetter, then TEX’s massive
internal precision will not be wasted. Alternatively, a dot matrix printer will
give a coarse approximation of the ideal image that is suitable only for proof-
reading. In addition to portability, these .dvi files help ensure that there
are very few printing surprises when you move from one device to another:
how many times has your favourite word-processor made you reformat a
document when you wish to change printers?

There are many other motivations one could cite for the superiority of
TEX. But it is time that we started to get our hands dirty. One last comment:
TEX was not designed to supplant secretaries and professional printers—it
was designed to aid them in their work and, in the words of the TEX designer
Donald Knuth, allow them to “go forward and create masterpieces of the
publishing art”.It also allows those who generate the material to be typeset—
mathematicians, physicists, computer scientists, etc—to prepare their own
documents in a language that is intimately linked to the language we use for
writing such material.

The novice reader will still have no idea of what a TEX source file looks
like. Indeed, why do we keep referring to it as a source file? The fact of the
matter is that TEX is essentially a programming language. Just as in any
compiled language (e.g., Pascal, C) one prepares a source file and submits
it to the compiler which attempts to produce an object file (.dvi file in the
TEX case). To learn TEX is to learn the command syntax of the commands
that can be used in the source file.

1.1.2 Typical TEX interfaces

TEX was designed to run on a multitude of computers. It is therefore the case
that the documentation for TEX and its “friends” LATEX, AMS-TEX, etc. is

4

not computer specific. Only command syntax is described—i.e., the content
of your source file—but few details of how to get from there to a printout
are given. Those details are left to site-specific documents.

The average user loses little in using TEX on, say, a PC rather than
on a bigger machine. Indeed, compilation times on the new PCs begin to
rival those on a Sun Sparc Station 2 (no slouch). Running on top of DOS
can cause memory problems when very large documents are being prepared.
That aside, the quality of the document is not affected because of the careful
design of TEX—whether you work on a a machine with massive floating
point precision or a modest XT the .dvi files produced on compilation will
be identical; and when those files are submitted to printer equivalent printer
drivers (say for an HP LaserJet III attached to a Sun in one case and a PC
in the other) the output will be identical because the font information they
draw on is identical.

By the nature of TEX most time is spent editing the source document
(before submitting it for compilation). No special interface is necessary here,
you just use your favourite text editor (perhaps customising it to enhance
TEXnical typing. Thus TEX user interfaces are usually small and simple,
often even missing. One frequently uses TEX at command line level, just
running the editor, compiler etc. as you need them. Sometimes a TEXshell
program is present, which runs these for you when you choose various menu
options.

Whatever the interface, there are just a few basic steps to preparing a
document:

1. Choose a document style to base your document on (e.g., letter, article).

2. Glance through the material you have to type, and decide what defi-
nitions might be made to save you a lot of time. Also, decide on the
overall structure of the prospective document (e.g., will the largest sec-
tional unit be a chapter or a part?). If you are going to compose as
you type, then pause a moment to think ahead and plan the structure
of your document. The importance of this step cannot be overstressed,
for it makes clear in your mind what you want from TEX.

3. Prepare your input file, specifying only the content and the logical
structure (parts, sections, theorems,...) thereof and forgetting about
formatting details.

5

4. Submit your input, or source, file to the TEX compiler for compilation
of a .dvi file.

5. If the compiler finds anything in your source file strongly objectionable,
say incorrect command syntax, then return to editing.

6. Run a previewer to preview your compiled document on the screen.
Resolution is only limited by your screen, and can be very good indeed
on some modern monitors.

7. Go back to editing your document until glaring errors have been taken
care of.

8. Make a printout of your compiled document, and check for those errors
that you failed to notice on the screen.

Performing these steps may be effected through typing at the system prompt
(barebones technique) or through choosing menu options in a TEXshell pro-
gram. The latter will probably provide some conveniences to make your life
easier.

If you think this sounds like a lot of work, it is time that you consult with
the TEX spirit! Sure your first couple of tries may be hesitant, but before
long you’ll find that you can take less time to prepare a document on TEX
than on any other package.

6

Chapter 2

Getting started with LATEX

2.1 Why start with LATEX?

To answer this question we must say a little more about some of the macro
packages we mentioned earlier.

The TEX typesetting system was designed by the eminent Stanford com-
puter scientist Donald Knuth, on commission from the American Mathemat-
ical Society. It was designed with enormous care, to be ultimately powerful
and maximally flexible. The enormous success of Knuth’s design is apparent
from the vast number of diverse applications TEX has found. In reading the
following you must keep one thing clearly in mind: there is only TEX lan-
guage, and all the other packages whose names end in the suffix -TEX simply
harness it’s power via a whole lot of complicated macro definitions.

TEX proper is a collection of around 300 so called primitive typesetting
commands. These work at the very lowest level, affording enormous power.
But to make this raw power manageable, some macros must be defined to
tame raw TEX somewhat. The standard set of macros is called Plain TEX,
and consists of about 600 macro definitions. It is clear that these definitions
must be made in terms of TEX primitives, or in terms of previously made
definitions. Plain TEX, however, is still no place for the timid. A strong
working knowledge of TEX is still required to understand the ins and outs of
Plain TEX.

In the few years after the initial TEX release (1982), the macro packages

AMS-TEX and LATEX were born. AMS-TEX was written by Michael Spi-

7

vak, also on commission from the AMS. This package was designed to facili-
tate the preparation of the numerous books, journals, and review indices that
fall under the auspices of the AMS and its affiliates. Married to the macro
package was a style file—the AMS preprint style. This was distributed along
with the macro package, so that authors submitting to journals could use it
in the preparation of their articles. The given style was based on the style
used by the Journal of the American Mathematical Society, i.e., it conformed
to their page sizes and typographical conventions. This meant that people
around the world produced papers that were all based on the same style. The
clever part is this: when a source file is submitted to a journal other than
the Journal of the AMS, the journal staff simply substitute their style file for
the AMS preprint style and the paper will appear completely different with
no other changes to the source code! To create their style file, a journal just
needed to tweak the standard AMS prepint style: for instance, the original
preprint style places author addresses at the very end of a paper; If a journal
wishes this to appear on the first page then they just modify their in-house
version of the style file, and the change will be effected without having to
change the file submitted by the author.

LATEX was written for more general usage. It lacks some of the mathe-
matical finesse inherited by AMS-TEX from the vast experience of the AMS
technical staff, but more than makes up for this in its ability to enhance the
typesetting of letters, books, poetry, etc. LATEX also scores high points for
its enhanced command syntax.

WithAMS-TEX and LATEX being released at around the same time (1984–
1985), there were born many AMS-TEX literate but LATEX illiterate users,
and conversely. LATEX was easier to learn because of its more friendly syn-
tax, and also provided powerful cross-referencing commands that AMS-TEX
did not. So the AMS commissioned another project to furnish LATEX users
with the additional power of AMS-TEX while not compromising the LATEX
command syntax or cross-referencing commands. This resulted in the AMS-
LATEX macro package and associated style file for submission to journals.

That is why we will kick off our TEX careers with LATEX! It is easier to
learn and provides many conveniences, and the user who requires additional
mathematical typesetting prowess can easily move on to AMS-LATEX. Much
of what we say will be true for TEX itself, but we shall regard LATEX as the
lowest common-denominator. By far the majority of LATEX and AMS-LATEX
users will never have to learn “raw” TEX, for they will be shielded from direct

8

exposure by the numerous powerful macro packages. In the rare case that
something way out of the ordinary is required, the local TEX guru can be
consulted.

2.2 LATEX formats, and we compose

The free form nature of the input file is essential to the spirit of TEX. As we
type, we do not concern ourselves with linebreaks and pagebreaks so much as
the content of what we are typing. In fact, we’ll see that TEX will choose nice
line breaks even for bizarre looking input. This is just part of the concept
of only having to describe the logical structure of the document to LATEX,
and not worry about nuisance-value formatting details. We inform LATEX
of the logical structure of our document by telling it when to begin a new
paragraph, subsection, section, chapter, theorem, definition, remark, poem,
list etc. When typing a particular element of the logical structure, we need
pay little attention to how we lay our source file out.

A consequence of this is that we have to go to a bit of effort to mess
things up. Starting a new line, for instance, entails more than just pressing
Return because LATEX will just regard the next word you type as exactly
that—the next word in the paragraph. You have to specifically ask for a
line to be terminated. Things like this may seem to be a bit of a nuisance,
but it is a small price to pay for the automatic formatting that necessitated
it. Further, such small inconveniences have been localised to rare events.
I have, for instance, not once forced a new line up until this point in the
present document.

2.3 Document styles

We have explained the concept of a document style during our discussion of
the virtues of TEX and the discussion of AMS-TEX. It remains to name a
few, and indicate where they would be used. One always has to choose a
document style when preparing a document with LATEX.

The basic document styles in LATEX are letter, article, report, and
book. Many more are available, but these few cover the majority of straight-
forward applications. This is because styles are not rigid—you can impose

9

your own parameter choices if you want. So one chooses the style that most
closely approximates the document you have in mind, and performs some
minor tweaks here and there. The article style is used for documents that
are to have the appearance of a journal or magazine article. The report

style is usually used for larger documents than the article style. These
styles really only differ in their choice of default page size, font, placement of
title and author, sectional units, etc. and on how they format certain LATEX
constructs. You use the same LATEX commands in each. Since the examples
here will be small, we will choose to use the article document style.

There are a number of possible options with each document style. The
syntax for choosing a document style follows. Don’t worry if this leaves
you with no idea of how to choose a document style, for we will soon
be seeing some examples. Also, remember that an argument in square
brackets is optional, and can omitted altogether (including the brackets).

\documentstyle [options]{style} where style is the main document style

(eg report) and the optional argument options is a list of document style
options chosen from the following list:

11pt chooses 11-point as the default font size for the document, instead of
the default 10-point.

12pt chooses 12-point as the default font size.

twoside formats output as left and right pages, as in a book.

twocolumn produces two-column magazine like output.

titlepage applies to the article style only, causing the title and abstract to
appear on a page each.

In fact there are many, many more document style options but we won’t
mention any more here.

2.4 Preparing a non-mathematical document

We assume that you have read the local guides to TEX at your site and
have decided which system environment you want to work in. There you
have been shown how to perform the steps required to produce a printed
document from a LATEX source file.

10

2.4.1 Sentences and paragraphs

Let’s create our very first LATEX document, which will consist of just a few
paragraphs.

As mentioned above, paragraph input is free-form. You type the words
and separate them by spaces so that LATEX can distinguish between words.
For these purposes, pressing Return is equivalent to inserting a space—it does
not indicate the end of a line, but the end of a word. You tell LATEX that
a sentence has ended by typing a period followed by a space. LATEX ignores
extra spaces; typing three or three thousand will get you no more space
between the words that these spaces separate than typing just one space.
Finally, you tell LATEX that a paragraph has ended by leaving one or more
blank lines. In summary: LATEX concerns itself only with the logical concepts
end-of-word, end-of-sentence, and end-of-paragraph. Sounds complicated?
An example should clear things up:

\documentstyle{article}
\begin{document}
Words within a sentence are ended by spaces. One space
between words is equivalent to any number. We are only
interested in separating one word from the
next, not in formatting the space between them.
For these purposes, pressing Return
at the end of a line
and starting a new word on the next line
just serves to separate
words, not to cut a line short.
The end of a sentence is indicated by a period
followed by one or more spaces.

The end of a paragraph is indicated by leaving a blank line.
All this
means that we can type without too much regard for layout, and
the typesetter will sort things out for us.
\end{document}

produces the result

11

Words within a sentence are ended by spaces. One space between
words is equivalent to any number. We are only interested in separating
one word from the next, not in formatting the space between them. For
these purposes, pressing Return at the end of a line and starting a new
word on the next line just serves to separate words, not to cut a line
short. The end of a sentence is indicated by a period followed by one or
more spaces.

The end of a paragraph is indicated by leaving a blank line. All this
means that we can type without too much regard for layout, and the
typesetter will sort things out for us.

Perhaps you would like to try running LATEX on the above input. Consult
your local guide for details.

Note that we have learned more than just how LATEX recognises words,
sentences and paragraphs. We’ve also seen how to specify our choice of docu-
ment style and how to tell LATEX where our document begins and ends. Any
material that is to be printed must lie somewhere between the declaration
of \begin{document} and that of \end{document}. Definitions that are to
apply to the entire document can be made before the declaration of the doc-
ument beginning. The specification of document style must precede all other
material.

In future examples we won’t explicitly display the commands that select
document style and delimit the start and end of the document. But if you
wish to try any of the examples, don’t forget to include those commands.
The article document style will do for most of our examples. Of course,
the preceding example looks not at all like an article because it is so short
and because we specified no title or author information.

Most of what you need to know to type regular text is contained in the
example above. When you consider that by far the majority of any docu-
ment consists of straight text, it is obvious that LATEX makes this fabulously
straightforward. LATEX will do all the routine work of formatting, and we
simply get on with the business of composing.

LATEX does more than simply choose pleasing line breaks and provide
natural spacing when setting a paragraph. Remember we said that TEX has
inherited the knowledge of generations of professional printers—well part
of that knowledge includes being on the look-out for ligatures. These are
combinations of letters within words which should be typeset as a single
special symbol because they will “clash” with each if this is not done. Have
a look at these words

12

flight, flagstaff, chaff, fixation

and compare them with these

flight, flagstaff, chaff, fixation

See the difference? In the first set I let LATEX run as it usually does. In
the second I overruled it somewhat, and stopped it from creating ligatures.
Notice how the ‘fl’, ‘ff’, and ‘fi’ combinations are different in the two sets—in
the former they form a single symbol (a ligature) and in the latter they are
comprised of two disjoint symbols. There are other combinations that yields
ligatures, but we don’t have to bother remembering any of them because
LATEX will take care of these, too.

Notice, too, that LATEX has been taught how to hyphenate the majority
of words. It will hyphenate a word if it feels that the overall quality of
the paragraph will be improved. For long words it has been taught several
potential hyphenation positions.

LATEX also goes to a lot of trouble to try to choose pleasing page breaks.
It avoids “widows”, which are single lines of a paragraph occurring by them-
selves at either the bottom of a page (where it would have to be the first line
of a paragraph) or at the top of a page (where it would have to be the last).
It also “vertically justifies” your page so that all pages have exactly the same
height, no matter what appears on them. As testimony to the success of the
pagebreaking algorithm, I have (to this point) not once chosen a page break
in this document.

2.4.2 Punctuation

Typists have a convention whereby a single space is left after a mid-sentence
comma, and two spaces are left after a sentence-ending period. How do we
enforce this if LATEX treats a string of spaces just like a single one? The
answer, unsurprisingly, is that we don’t.

To have a comma followed by the appropriate space, we simply
type a comma follows by at least one space. To end a sentence
we type a period with at least one following space. No space will
be inserted if we type a comma or period followed straight away
by something other than a space, because there are times when
we won’t require any space, i.e., we do what comes narurally.

13

will produce
To have a comma followed by the appropriate space, we simply type

a comma follows by at least one space. To end a sentence we type a
period with at least one following space. No space will be inserted if we
type a comma or period followed straight away by something other than
a space, because there are times when we won’t require any space, i.e.,
we do what comes naturally.

LATEX will produce suitable space after commas, periods, semi-colons and
colons, exclamation marks, question marks etc. if they are followed by a
space. In stretching a line to justify to the right margin, it also knows
that space after a punctuation character should be more “stretchable” than
normal inter-word space and that space after a sentence-ending period should
be stretched more than space after a mid-sentence comma. TEX knows the
nature of punctuation if you stick to the simple rules outlined here. As we’ve
already said, those rules tell LATEX how to distinguish consecutive words,
sentences, phrases, etc.

Actually, there is more to ending sentences than mentioned above. Since
LATEX cannot speak English, it works on the assumption that a period followed
by a space ends a sentence unless the period follows a capital letter. This
works most of the time, but can fail. To get a normal inter-word space after
a period that doesn’t end a sentence, follow the period by a control space—a
\ (a \ character followed by a space or return). Very rarely, you will have to
force a sentence to end after a period that follows a capital letter (remember
that LATEX assumes this doesn’t end a sentence). This is done by preceding
the period with a \@ command (you can guess from the odd syntax that this
is rarely needed).

It’s time we saw some examples of this. After all, this is our first experi-
ence of control symbols (don’t worry, there are many more to come).

14

We must be careful not to confuse intra-sentence periods
with periods that end a sentence, i.e.\ we must remember
that our task is to describe the sentence structure. Periods
that the typesetter requires a little help with typically result
from abbreviations, as in etc.\ and others. We have to work
somewhat harder to break a sentence after a capital letter,
but that shouldn’t bother us to much if we keep up our intake
of vitamin E\@. All this goes for other sentence-ending
punctuation characters, so I could have said vitamin E\@!
Fortunately, these are rare occurrences.

results in
We must be careful not to confuse intra-sentence periods with pe-

riods that end a sentence, i.e. we must remember that our task is to
describe the sentence structure. Periods that the typesetter requires a
little help with typically result from abbreviations, as in etc. and oth-
ers. We have to work somewhat harder to break a sentence after a
capital letter, but that shouldn’t bother us to much if we keep up our
intake of vitamin E. All this goes for other sentence-ending punctuation
characters, so I could have said vitamin E! Fortunately, these are rare
occurrences.

Quotation marks is another area where LATEX will do some work for us.
Keyboards have the characters ‘, ‘, and " but we want to to have access to
each of ‘, ’, “, and ”. So we proceed like this:

‘\LaTeX’ is no conventional word-processor, and
to to get quotes, like ‘‘this’’, we type repeated
‘ and ’ characters. Note that modern
convention is that ‘‘punctuation comes after
the closing quote character’’.

which gives just what we want
‘LATEX’ is no conventional word-processor, and to to get quotes,

like “this”, we type repeated ‘ and ’ characters. Note that modern
convention is that “punctuation comes after the closing quote character”.

Very rarely, you have three quote characters together. Merely typing
those three quote characters one-after-the-other is ambiguous—how should
they be grouped? You tell LATEX how you want them grouped by inserting a
very small space called \,.

15

‘‘\,‘Green ham’ or ‘Eggs?’\,’’ is the question.

gives the desired result

“ ‘Green ham’ or ‘Eggs?’ ” is the question.

Since we have a typesetter at our disposal, we might as well use the correct
dashes where we need them. There are three types of dash: the hyphen, the
endash, and the emdash. A minus sign is not a dash.

Hyphens are typed as you’d hope, just by typing a - at the point in
the word that you want a hyphen. Don’t forget that LATEX takes care of
hyphenation that is required to produce pretty linebreaks. You only type
a hyphen when you explicitly want one to appear, as in a combination like
“inter-college”.

An endash is the correct dash to use in indicating number ranges, as in
“questions 1–3”. To specify an endash you type two consecutive dashes on
the keyboard, as in 1--3.

An emdash is a punctuation dash, used at the end of a sentence—I tend
to use them too much. To specify an emdash you type three consecutive
dashes on the keyboard, as in “. . . a sentence---I tend to. . . ”.

Theorems 1--3 concern the semi-completeness
of our new construct---in the case that it
satisfies the first axiom.

yields
Theorems 1–3 concern the semi-completeness of our new construct—

in the case that it satisfies the first axiom.

2.4.3 Ties

When you always remember to use ties , you know that you are becoming
TEXnically inclined. Ties are used to prevent LATEX from breaking lines at
certain places. LATEX will always choose line breaks that result in the most
aesthetically pleasing paragraph as judged by its stringent rules. But because
LATEX does not actually understand the material it is setting so beautifully,
it can make some poor choices.

A tie is the character ~. It behaves as a normal interword space in all
respects except that the line-breaking algorithm will never break a line at

16

that point. Thus

Dr. Seuss should be typed as Dr.~Seuss

for this makes sure that LATEX will never leave the ‘Dr’ at the end of one line
and put the ‘Seuss’ at the beginning of the next.

One should try to get in to the habit of typing ties first-time, not after
waiting to see if LATEX will make a poor choice This will allow you to make
all sorts of changes to your text without ever having to go back and insert
a tie at a point that has migrated to the end of a line from the middle of a
line as a result of those changes. Remember, of course, that the line-breaks

Here are some more examples of places where you should remember to
place ties.

Chapter~10 Donald~E. Knuth
Appendix~C width~2
Figure~1 function~f
Theorem~2 1,~2, or~3
Lemmas 3 and~4 equals~5

2.4.4 Specially reserved symbols

In the sequel we will see that the the ten characters
$ % & ~ _ ^ \ { }

are reserved for special use. Indeed, we have seen already that \ and ~ are
non-printing characters that perform special services (and we’ll have a lot
more to say about the use of \).

But what if we need one of these special symbols to appear in our doc-
ument? The answer for seven of the symbols is to precede them by a \

character, so forming another control symbol (remember that \ followed by
a space was also a control symbol).

It is not 100\% straightforward to typeset the
characters \$ \& \% _ \{ \}, but given the
enormous convenience of the use they are normally
reserved for this is a small price to pay.

17

produces
It is not 100% straightforward to typeset the characters $ & %

{ }, but given the enormous convenience of the use they are normally
reserved for this is a small price to pay.

2.4.5 So what are control symbols and words?

In typing a document, we can think of ourselves as being in one of two
distinct modes. We are either typing literal text (which will just be set into
neat paragraphs for us) or we are typing text that will be interpreted by
LATEX as an instruction to insert a special symbol or to perform some action.
Thus we are either typing material that will go straight into the document
(with some beautification), or we are giving commands to LATEX.

Some commands are implicit, in that we don’t have to do anything much
extra. For instance, we command LATEX to end the present sentence by
typing a period (that doesn’t follow a capital letter). These are no so much
commands as part of having to describe the logical structure of a document.

A control word is something of the form \commandname, where the com-
mand name is a word made up only of the letters a to z and A to Z. A control
symbol consists of a \ followed by single symbol that is not a letter.

Here are some examples:

• we have met the control space symbol \ before,

• the commands to set symbols like % and $ are control symbols

• \@ was a control symbol that told told LATEX that the very next period
did really end the sentence,

• \LaTeX is a control word that tell LATEX to insert its own name at the
current point,

• \clubsuit instructs that a ♣ be inserted,

• \pounds inserts a £ symbol,

• \S inserts a ¶ symbol,

• \em makes the ensuing text be emphasised,

18

These examples show that control sequences can be used to access symbols
not available from the keyboard, do some typesetting tricks like setting the
word LATEX the way it does, and change the appearance of whole chunks
of text as with \em. We’ll be meeting many more of these type of control
sequences.

Another enormously powerful class of control sequences is those that ac-
cept arguments. They tell LATEX to take the parts of text you supply and do
something with them—like make a fraction by setting the first argument over
the second and drawing a line of the appropriate length between them. These
are part of what makes LATEX so powerful, and here are some examples.

• \chapter{The beginning} causes LATEX to start a new chapter with
name “The Beginning”, number it in sequence, typeset the chapter
heading in a suitable font, and make an entry in the table of contents,

• \overline{words} causes words to be overlined,

• \frac{a+b}{c+d} sets the given two argument as a fraction, doing
most of the dirty work for us: a+b

c+d
,

• \sqrt[5]{a+b} typesets the fifth-root of a+b, like this: 5
√

a + b. The 5
is in square brackets instead of braces because it is an optional argument
and could be ommited all together (giving the default of square root),

Mandatory arguments are given enclosed by braces, and optional argu-
ments enclosed by square brackets. Each command knows how many argu-
ments to expect, so you don’t have to provide any indication of that.

We have actually jumped the gun a little. The above examples include
examples of mathematical typesetting, and we haven’t yet seen how to tell
LATEX that it is typesetting maths as opposed to some other random string
of symbols that it doesn’t understand either. We’ll come to mathematical
typesetting in good time.

We need to dwell on a TEXnicality for a moment. How does LATEX know
where the name of a control sequence ends? Will it accept both \pounds3

and \pounds 3 in order to set £3, and will \emWalrus and \em Walrus

both be acceptable in order to get Walrus? The answer is easy when you
remember that a control word consists only of alphabetic characters, and a
control symbol consists of exactly one nonalphabetic character.

19

So to determine which control sequence you typed, LATEX does the fol-
lowing:

1. when a \ character is encountered, LATEX knows that either a control
symbol or a control word will follow.

2. If the \ is followed by a nonalphabetic character, then LATEX knows
that it is a control symbol that you have typed. It then recognises
which one it was, typesets it, and goes on to read the character which
follows the symbol you typed.

3. If the \ is followed by an alphabetic character, then LATEX knows that
it is a control word that you have typed. But it has to work out where
the name of the control word ends and where the ensuing text takes
over again. Since only alphabetic characters are allowed, LATEX reads
everything up to just before that first nonalphabetic character as the
control sequence name. Since it is common to delimit the end of a
control word by a space, LATEX will ignore any space that follows a
control word, since you want that space treated as end-of-control-word
space rather than interword space.

This has one important consequence: The character in the input file
immediately after a control symbol will be “seen” by LATEX, but any space
following a control word will be discarded and never processed. This does not
affect one much if you adopt the convention of always typing a space after a
control sequence name.

There is a rare circumstance where this necessitates a little extra work
and thought, which we illustrate by example:

If we type a control word like \LaTeX in the running text
then we must be cautious, because the string of spaces that
come after it will be discarded by the \LaTeX\ system.

which produces the output
If we type a control word like LATEXin the running text then we

must be cautious, because the string of spaces that come after it will be
discarded by the LATEX system.

20

2.4.6 Commands to change appearance

We’ve seen a little of how to access various symbols using control sequences
and we mentioned the \em command to emphasise text, but we didn’t see
how to use them. We look here at commands that change the appearance of
the text.

Each of the control words here is a directive rather than a control sequence
that accepts an argument. This is because potential arguments consisting of
text that wants to be emboldened or emphasised are very large, and it would
be a nuisance to have to enclose such an argument in argument-enclosing
braces.

To delimit the area of text over which one of these commands has effect
(its scope) we make that text into what is called a group. Groups are used
extensively in LATEX to keep effects local to an area, rather than affecting
the whole document. Apart from enhancing usability, this also in a sense
protects distinct parts of a document from each other.

The LATEX commands for changing type style are given in table 2.1, and
those for changing type size are given in table 2.2. Commands for selecting
fonts other than these are not discussed here.

\rm Roman \it italic \sc Capitals
\em Emphasised \sl slanted \tt typewriter

\bf boldface \sf sans serif

Table 2.1: Commands for selecting type styles

Each of the type style selection commands selects the specified style but
does not change the size of font being used. The default type style is roman
(you are reading a roman style font now). To change type size you issue
one of the type size changing commands in table 2.2, which will select the
indicated size in the currently active style. The release of LATEX 3.0 (the
present version is 2.09) will see the New Font Selection Scheme in place as a
standard feature. This makes font matters much easier to deal with.

The point-size option referred to in table 2.2 is that specified in the
\documentstyle command issued at the beginning of the input file. Through
it you select that base (or default) font for your document to be 10, 11, or 12
point Roman. If no options are specified, the default is 10-point Roman.
The table shows, for instance, that if I issue a \large in this document for

21

size default (10pt) 11pt option 12pt option
\tiny 5pt 6pt 6pt
\scriptsize 7pt 8pt 8pt
\footnotesize 8pt 9pt 10pt
\small 9pt 10pt 11pt
\normalsize 10pt 11pt 12pt
\large 12pt 12pt 14pt
\Large 14pt 14pt 17pt
\LARGE 17pt 17pt 20pt
\huge 20pt 20pt 25pt
\Huge 25pt 25pt 25pt

Table 2.2: LATEX size-changing commands.

which I chose the 12pt document style option the result will be a 14-point
Roman typeface.

We mentioned that to restrict the scope of a type-changing command we
will set the text to be affected off in a group. Let’s look at an example of
this.

When we want to {\em emphasise\/} some text we
use the {\tt em} command, and use grouping to
restrict the scope. We can change font {\large sizes}
in much the same way. We can also obtain {\it italicised},
{\bf emboldened}, {\sc Capitals} and {\sf sans serif} styles.

When we want to emphasise some text we use the em command, and
use grouping to restrict the scope. We can change font sizes in much
the same way. We can also obtain italicised, emboldened, Capitals
and sans serif styles.

Notice how clever grouping allows us to do all that without once having
to use \rm or \normalsize.

One more thing slipped into that example—and italic correction \/. This
is a very small amount of additional space that we asked to be inserted to
allow for the change from sloping emphasised text to upright text, because
the interword space has been made to look less substantial from the terminal
sloping character. One has to keep an eye open for circumstances where
this is necessary. See the effect of omitting an italic correction after the

22

emphasised text earlier in this paragraph.
One might expect, by now, that LATEX would insert an italic correction

for us. But there are enough occasions when it is not wanted, and there is no
good rule for LATEX to use to decide just when to do it for us. So the italic
correction is always left up to the typist.

2.4.7 Accents

LATEX provides accents for just about all occasions. They are accessed
through a variety of control symbols and single-letter control worlds which
accept a single argument—the letter to be accented. These control sequences
are detailed in table 2.3.

\‘{o} ò (grave accent)
\’{o} ó (acute accent)
\^{o} ô (circumflex or “hat”)
\"{o} ö (umlaut or dieresis)
\~{o} õ (tilde or “squiggle”)
\={o} ō (macron or “bar”)
\.{o} ȯ (dot accent)
\u{o} ŏ (breve accent)
\v{o} ǒ (háček or “check”)
\H{o} ő (long Hungarian umlaut)
\t{oo} �oo (tie-after accent)
\c{o} o̧ (cedilla accent)
\d{o} o. (dot-under accent)
\b{o} o

¯
(bar-under accent)

Table 2.3: Control sequences for accents

Thus we can produce ó by typing \’{o}, ǎ by typing \v{a}, and Pál
Erdös by typing P\’{a}l Erd\"{o}s. Take special care when accenting an i
or a j, for they should lose their dots when accented. Use the control words
\i and \j to produce dotless versions of these letters. Thus the best way to
type to type ĕx̆ıgent is \u{e}x\u{\i}gent.

23

2.4.8 Over-ruling some of TEX’s choices

We’ve seen that ties can be used to stop linebreaks occurring between words.
But how can we stop LATEX from hyphenating a particular word? More
generally, how can we stop it from splitting any given group of characters
across two lines. The answer is to make that group of characters appears as
one solid box , through use of an \mbox command.

For instance, if we wanted to be sure that the word
{\em currentitem\/} is not split across lines
then we should type it as \mbox{\em currentitem}.

If for some reason we wish to break a line
in the middle of nowhere, preventing LATEX from justifying that line to the
prevailing right margin, the we use the \newline command. One can also
use the abbreviated form \\.

We start with a short line.\newline
And now we continue with the normal
text, remembering that where we press
Return in the input file probably won’t
correspond to a line break in the final
document. More short lines\\
are easy, too.

will produce the line breaks we want
We start with a short line.

And now we continue with the normal text, remembering that where we
press Return in the input file probably won’t correspond to a line break
in the final document. More short lines
are easy, too.

A warning is in order: \newline must only end part of a line that is “al-
ready set”. It cannot be used to add additional space between paragraphs,
nor to leave space for a picture you want to paste in. This is not to be awk-
ward, but is just part of LATEX holding up its end of the deal by making you
have to specially request additional vertical space. This prevents unwanted
extra space from entering your document.

Later we shall see how to impose our own choice of page size, paragraph
indentation, etc. For now we will continue to accept those declared for us in
the document style.

24

2.4.9 Commenting your document

It is handy to be able to make comments to yourself in the source file for a
document. Things like “I must rewrite this section” and “This is version 3
of the document” are likely. It would also be useful to be able to make the
compiler ignore certain parts of the document at times. For this purpose we
can use the % character, for all text on an input line that is after a % which
is not part of an occurrence of the control symbol \% is discarded by the
compiler. Here is an example:

There was a 100\% turnout today,
an all-time record. %perhaps I should check this claim!
%Indeed, there are lots of unsubstantiated claims here!
This made for an extremely productive session.

will yields
There was a 100% turnout today, an all-time record. This made for

an extremely productive session.

2.4.10 Footnotes

Inserting footnotes is easy—LATEX will position and number them for you.
You just indicate exactly where the footnote marker should go, and provide
the text of the footnote. The footnote text will be placed at the bottom of
the present page in a somewhat smaller font, and be separated from the main
text by a short horizontal rule1 to conform with convention. The footnote in
the last line was typed like this:

...rule\footnote{See for yourself! It’s easy ...work.} to conform

No space was typed between the rule and the \footnote, because we
want the footnote marker to appear right next to the last letter of the word.

Multiple footnotes2 are obtained just by using the \footnote command
again and again.

1See for yourself! It’s easy when you don’t have to do any work.
2Here is another footnote

25

2.4.11 Topmatter

We declare the title and author information using the \title and \author

commands, each of which accept a single argument. Multiple authors are all
listed in the argument of \title, separated by \and’s. The \date command
can be used to date a document. After we have declared each of these, we
issue a \maketitle command to have them typeset for us. In the book and
article document styles this will result in a separate page; in the article

style the “top matter” will be placed at the top of the first page. The style
files determine the placement and the choice of font.

\title{A Thought for the Day}
\author{Fred Basset \and Horace Hosepipe}
\date{November 1992}
\maketitle

will produce something along the lines of

A Thought for the Day
Fred Basset Horace Hosepipe

November 1992

This topmatter must appear after the \begin{document} and before any
other printing material.

2.4.12 Sectioning commands

As part of our task of describing the logical structure of the document, we
must indicate to LATEX where to start sectional units. To do this we make
use of the sectioning commands shown in table 2.4.

\part \subsection \paragraph

\chapter \subsubsection \subparagraph

\section

Table 2.4: LATEX sectioning commands

Each sectioning command accepts a single argument—the section heading
that is to be used. LATEX will provide the section numbering (and numbering

26

of subsections within sections, etc.) so there is no need to include any number
in the argument. LATEX will also take care of whatever spacing is required
to set the new logical unit off from the others, perhaps through a little extra
space and using a larger font. It will also start a new page in the case that
a new chapter is begun.

The \part command is used for major subdivisions of substantial docu-
ments. The \paragraph and \subparagraph commands are, unfortunately
confusing. They are used to section off a modest number of paragraphs of
text—they don’t start new paragraphs (remember that that was done by
leaving a blank line in our input file). The names were retained for historical
reasons.

It is always a good idea to plan the overall sectional structure of a doc-
ument in advance, or at least give it a little thought. Not that it would be
difficult to change your mind later (you could use the global replace feature
of an editor, for instance), but so that you have a good idea of the structure
that you have to describe to LATEX.

The sectioning command that began the present sectional unit of this
document was

\subsection{Sectioning commands}

and that was all that was required to get the numbered section name and
the table of contents entry.

There are occasions when you want a heading to have all the appearance
of a particular sectioning command, but shouldn’t be numbered as a section
in its own right or produce a table of contents entry. This can be achieved
through using the *-form of the command, as in \section*{...}. We’ll see
that many LATEX commands have such a *-form which modify their behaviour
slightly.

Not only will LATEX number your sectional units for you, it will compile a
table of contents too. Just include the command \tableofcontents after the
\begin{document} command and after the topmatter that should precede
it.

27

2.4.13 LATEX environments

Perhaps the most powerful and convenient concept in the LATEX syntax is that
of an environment. We will see most of the “heavy” typesetting problems we
will encounter can be best tackled by one or other of the LATEX environments.

Some environments are used to display a portion of text, i.e. to set it off
from the surrounding text by indenting it. The quote and verse environ-
ments are examples of these. The center environment allows us to centre
portions of text, while the flushright environment sets small portions of
text flush against the right margin.

But the true power of LATEX begins to show itself when we look at en-
vironments such as those that provide facilities for itemised or enumerated
lists, complex tabular arrangements, and for taking care of figure and table
positioning and captioning. What we learn here will also be applicable in
typesetting some complicated mathematical arrangements in the next chap-
ter.

All the environments are begun by a \begin{name} command and ended
by an \end{name}, where name is the environment name. These commands
also serve as begin-group and end-group3 markers, so that all commands
are local to the present environment—they cannot affect text outside the
environment.

We can also have environment embedded within environment within en-
vironment and so on, limited only by memory available on the computer. We
must, however, be careful to check that each of these nested environments is
indeed contained within the one just outside of it.

2.4.14 em environment

We start with a very simple environment, one which provides an alternative
to the \em command. Remember that \em does not accept an argument; it
applies to everything within its scope as dictated by the group within which
it is used. This can be tricky if we wish to emphasise a large amount of text,
for we may forget a group-delimiting brace and so upset the entire grouping
structure of our document. In cases where we fear this might happen, we
can proceed as follows.

3See section 2.4.6

28

\begin{em}
We must always be careful to match our group-delimiting
braces correctly. If the braces in a document are unevenly
matched then \LaTeX\ will become confused because we will
have, in effect, indicated different scopes than we
intended for commands.
\end{em}

which will give
We must always be careful to match our group-delimiting braces cor-

rectly. If the braces in a document are unevenly matched then LATEX will
become confused because we will have, in effect, indicated different scopes
than we intended for commands.

Although LATEX doesn’t care too much for how we format our source file,
it is obviously a good idea to lay it out logically and readably anyway. This
helps minimise errors as well as aids in finding them. For this reason I have
adopted the convention of always placing the environment \begin and \end

commands on lines by themselves.

2.4.15 quote and quotation environments

This environment can be used to display a part of a sentence or paragraph,
or even several paragraphs, in such a manner that the material stands out
from the rest of the text. This can be used to enhance readability, or to
simply emphasise something. Its syntax is simple:

29

Horace smiled and retaliated:
\begin{quote}
\em You can mock the non-WYSIWYG nature of \TeX\
all you like. You don’t understand that that is
precisely what makes \TeX\ enormously more powerful
than that lame excuse for a typesetter you use.
And I’ll bet that from start to finish of preparing
a document I’m quicker than you are, even if you
do type at twice the speed and have the so-called
advantage of WYSIWYG. In your case, what you see
is {\em all\/} you get!
\end{quote}
and then continued with composing his masterpiece of the
typesetting art.

produces the following typeset material:
Horace smiled and retaliated:

You can mock the non-WYSIWYG nature of TEX all you like. You don’t
understand that that is precisely what makes TEX enormously more powerful
than that lame excuse for a typesetter you use. And I’ll bet that from start
to finish of preparing a document I’m quicker than you are, even if you do
type at twice the speed and have the so-called advantage of WYSIWYG. In
your case, what you see is all you get!

and then continued with composing his masterpiece of the typesetting
art.

That is a much more readable manner of presenting Horace’s piece of mind
than embedding it within a regular paragraph. The quote environment was
responsible for the margins being indented on both sides during the quote.
This example has also been used to show how the commands that begin
and end an environment restrict the scope of commands issued within that
environment: The \em at the beginning of the quote did not affect the text
following the quote. We have also learned here that if we use \em within
already emphasised text, the result is roman type—and we don’t require an
italic correction here because the final letter of ‘all’ was not sloping to the
right.

The quotation environment is used in just the same way as the quote

environment above, but it is intended for setting long quotations of several
paragraphs. It would be suitable for quoting a few paragraphs from the text
of some speech, for instance. LATEX treats the given text just like normal

30

text that it has to set into paragraphs, except that it indents the margins a
little.

2.4.16 verse environment

This is provided to facilitate the setting of poetry. When within the verse

environment, we use \newline (or \\) to end a line; and what would normally
signify a new paragraph serves to indicate the start of a new stanza. Let’s
have a shot at some cheap poetry.

\begin{verse}
Roses are red\\
Violets are blue\\
I think \TeX\ is great\\
And so will you!

Roses are still red\\
Violets are still blue\\
I’m schizophrenic\\
And so am I.
\end{verse}

will produce the following stunningly-creative “poem”:

Roses are red
Violets are blue
I think TEX is great
And so will you!
Roses are still red
Violets are still blue
I’m schizophrenic
And so am I.

2.4.17 center environment

This environment allows the centring of consecutive lines of text, new lines
being indicated by a \\. If you don’t separate lines with the \\ command
then you’ll get a centred paragraph the width of the page, which won’t look
any different to normal. If only one line is to be centred, then no \\ is
necessary.

31

The {\tt center} environment takes care of the vertical
spacing before and after it, so we don’t need to leave any.
\begin{center}
If we leave no blank line after the\\
{\tt center} environment\\
then the ensuing text will not\\
be regarded as part of a new\\
paragraph, and so will not be indented.\\
\end{center}

In this case we left a blank line after the environment,
so the new text was regarded as starting a new paragraph.

gives the following text
The center environment takes care of the vertical spacing before

and after it, so we don’t need to leave any.

If we leave no blank line after the
center environment

then the ensuing text will not
be regarded as part of a new

paragraph, and so will not be indented.

In this case we left a blank line after the environment, so the new
text was regarded as starting a new paragraph.

2.4.18 flushright and flushleft environments

The flushright environment causes each line to be set with its last character
against the right margin, without trying to stretch the line to to current text
width. The flushleft environment is similar.

32

We can stop \LaTeX\ from justifying each line to both the
left and the right margins.
\begin{flushright}
The {\tt flushright} environment is\\
used for text with an even right margin\\
and a ragged left margin.
\end{flushright}
\begin{flushleft}
and the {\tt flushleft} environment is\\
used for text with an even left margin\\
and a ragged right margin.
\end{flushleft}

gives the desired display
We can stop LATEX from justifying each line to both the left and the

right margins.

The flushright environment is
used for text with an even right margin

and a ragged left margin.

and the flushleft environment is
used for text with an even left margin
and a ragged right margin.

One must be wary not to lapse into “word-processing” mode when using
these environments. Remember that pressing return at the end of a line in
the input file does not serve to end the current line there, but just to indicate
the end of another word. We have to use the \\ command to end a line.

2.4.19 verbatim environment

We can simulate typed text using the verbatim environment. The \tt (type-
writer text) type style can be used for simulating typed words, but runs into
trouble if one of the characters in the simulated typed text is a specially
reserved LATEX character. For instance, {\tt type \newline} would not
have the desired effect because LATEX would interpret the \newline is an
instruction to start a new line.

The verbatim environment allows the simulation of multiple typed lines.
Everything within the environment is typeset in typewriter font exactly as it

33

appears in our source file—obeying spaces and line breaks as in the source
file and not recognising the existence of any special symbols.

\begin{verbatim}
In the verbatim environment we can type anything
we like.
So we don’t need to look out for uses of %, $, & etc,
nor will control sequences like \newline have any
effect.
\end{verbatim}

will produce the simulated input text

In the verbatim environment we can type anything
we like.
So we don’t need to look out for uses of %, $, & etc,
nor will control sequences like \newline have any
effect.

The only thing that cannot be typed in the verbatim environment is
the sequence \end{verbatim}. You might notice that I still managed to
simulate that control sequence above. One can always get what you want in
TEX, perhaps with a little creativity.

If we want only to simulate a few typed words, such as when I say to
use \newline to start a new line, then the \verb command is used. This
command has a slightly odd syntax, pressed upon it by the use for which
it was intended. It cannot accept an argument, because we may want to
simulate typed text that is enclosed by {braces}. What one does is to choose
any character that is not in the text to be simulated, and use a pair of these
characters as “argument delimiters”. I usually use the @ or " charachters, as
I rarely have any other uses for them. Thus

use % to obtain a % sign

is typed as

use \verb"\%" to obtain a \% sign

34

2.4.20 itemize, enumerate, description environments

LATEX provides three predefined list-making environment, and a “primitive”
list environment for designing new list environments of your own. We shall
just describe the predefined ones here.

There is delightfully little to learn in order to be able to create lists.
The only new command is \item which indicates the beginning of a new
list item (and the end of the last one if this is not the first item). This
command accepts an optional argument (which means you’d enclose it in
square brackets) that can be used to provide an item label. If no optional
argument is given, then LATEX will provide the item label for you; in an
itemize list it will bullet the items, in an enumerate list it will number the
items, and in a list of descriptions the default is to have no label (which
would look a bit odd, so you’re expected to use the optional argument there).

Remember that \item is used to separate list items; it does not accept
the list item as an argument.

\begin{itemize}
\item an item is begun with \verb@\item@
\item if we don’t specify labels, then

\LaTeX\ will bullet the items for us
\item I indent lines after the first in the

input file, but that is just to keep things
readable. As always, \LaTeX\ ignores additional
spaces.

\item a blank line between items is ignored, for
\LaTeX\ is responsible for spacing items.

\item \LaTeX\ is in paragraph-setting mode when
it reads the text of an item, and so will
perform all the usual functions

\end{itemize}

produces the following itemised list:

35

• an item is begun with \item

• if we don’t specify labels, then LATEX will bullet the items for us

• I indent lines after the first in the input file, but that is just to keep things readable.
As always, LATEX ignores additional spaces.

• a blank line between items is ignored, for LATEX is responsible for spacing items.

• LATEX is in paragraph-setting mode when it reads the text of an item, and so will
perform all the usual functions

Lists can also be embedded within one another, for they are just environ-
ments and we said that environments have this property. Remember that we
must nest them in the correct order. We demonstrate with the following list,
which also shows how to use the enumerate environment.

\noindent I still have to do the following things:
\begin{enumerate}
\item Sort out LAN accounts for people on the course

\begin{itemize}
\item Have new accounts created for those not already

registered on the LAN
\item Make sure all users have a personal directory

on the data drive
\item Give read and scan rights to users in the \TeX\

directories
\item Add users to the appropriate LAN print queues
\end{itemize}

\item Have a \TeX\ batch file added to a directory that
is on a public search path

\item Finish typing these course notes and proof-read them
\item Photocopy and bind the finished notes
\end{enumerate}

will give the following list

36

I still have to do the following things:

1. Sort out LAN accounts for people on the course

• Have new accounts created for those not already registered on the LAN

• Make sure all users have a personal directory on the data drive

• Give read and scan rights to users in the TEX directories

• Add users to the appropriate LAN print queues

2. Have a TEX batch file added to a directory that is on a public search path

3. Finish typing these course notes and proof-read them

4. Photocopy and bind the finished notes

See how I lay the source file out in a readable fashion. This is to assist
myself, not LATEX.

The description environment is, unsurprisingly, for making lists of de-
scriptions.

\begin{description}
\item[\tt itemize] an environment for setting itemised lists.
\item[\tt enumerate] an environment for setting numbered lists.
\item[\tt description] an environment for listing descriptions.
\end{description}

will typeset the following descriptions:

itemize an environment for setting itemised lists.

enumerate an environment for setting numbered lists.

description an environment for listing descriptions.

Note that the scope of the \tt commands used in the item labels was
restricted to the labels.

2.4.21 tabbing environment

This environment simulates tabbing on typewriters. There one chose the tab
stops in advance (analysing the material to be typed for the longest item in
each column) and typed entries consecutively, hitting the tab key to move to
the next tab stop and return to move to the next line.

37

In the tabbing environment, we proceed similarly. We look for the worst-
case line (that which will determine the desired tab stops) and use it to set
the tabs by inserting \= control symbols at the points where we want tab
stops. We then discard that line using \kill, since the worst-case line might
not be the first line in the material we have to type. We then type each line,
using \> to move to the next tab stop and \\ to end a line.

\begin{tabbing}
Cheddar cheese \= Recommended \= \$2.00 \kill
Green Ham \> Recommended \> \$2.00
Eggs \> 1 a week \> \$1.50
Cheddar cheese \> Hmmm \> \$0.80
Yak cheese \> Avoid \> \$0.05
\end{tabbing}

gives the following uniformly-tabbed table

Green Ham Recommended $2.00
Eggs 1 a week $1.50
Cheddar cheese Hmmm $0.80
Yak cheese Avoid $0.05

In the format line I chose the longest entry from each of the prospective
columns. I lined some of the \> commands up in the source just to keep
things readable.

Remember that excess spaces are ignored. LATEX sets the \killed line
normally and sees where the tab stops requested will be needed in the typeset
text. Note also that commands given within the tabbing environment are
local to the current item.

Actually, we use the above approach in the case that we require uniformly
tabbed columns. The format line is not compulsory, and we can define tab
stops dynamically. See if you can make sense of the following.

38

\begin{tabbing}
Entry in position 1,1 \= Entry 1,2 \= Entry 1,3\\
Entry in position 2,1 \> Entry 2,2 \> Entry 2,3\\
Entry 3,1 \= Entry 3,2 \> Entry 3,3\\
Entry 4,1 \> Entry 4,2 \> Entry 4,3
\end{tabbing}

which produces

Entry in position 1,1 Entry 1,2 Entry 1,3
Entry in position 2,1 Entry 2,2 Entry 2,3
Entry 3,1 Entry 3,2 Entry 3,3
Entry 4,1 Entry 4,2 Entry 4,3

The are additional commands that can be used within the tabbing envi-
ronment to achieve special effects, but we won’t be discussing them here.

2.4.22 tabular environment

The tabular environment is used to produce tables of items, particularly
when the table is predominantly rectangular and when line drawing is re-
quired. LATEX will make most decisions for us; for instance it will align
everything for us without having to be told which are the longest entries in
each column.

This environment is the first of many that use the TEX “tabbing char-
acter” &. This character is used to separate consecutive entries in a row of
a table, array, etc. The end of a row is indicated in the usual manner, by
using \\. In this way the individual cells of the table, or array, are clearly
described to LATEX, and it can analyse them to make typesetting decisions.
Commands issued within a cell so defined are, again, local to that cell.

The tabular environment is also our first example of an environment
with arguments. The arguments are given, in braces as usual, just after the
closing brace after the environments name. In the case of tabular there is
a single mandatory argument giving the justification of the entries in each
column: l for left justified, r for right justified, and c for centred. There
must be an entry for each column of the table, and there is no default. Let’s
start with a simple table.

39

\begin{tabular}{llrrl}
\bf Student name & \bf Number & \bf Test 1 & \bf Test 2 & \bf Comment\\
F. Basset & 865432 & 78 & 85 & Pleasing\\
H. Hosepipe & 829134 & 5 & 10 & Improving\\
I.N. Middle & 853931 & 48 & 47 & Can make it
\end{tabular}

will produce the following no-frills table
Student name Number Test 1 Test 2 Comment
F. Basset 865432 78 85 Pleasing
H. Hosepipe 829134 5 10 Improving
I.N. Middle 853931 48 47 Can make it

Note that a \\ was not necessary at the end of the last row. Also note
that, once again, the alignment of the & characters was for human readability.
It is conventional to set columns of numbers with right justification. The \bf
directives apply only the entries in which they are given.

A | typed in the tabular environment’s argument causes a vertical line
to be drawn at the indicated position and extending for the height of the
entire table. An \hline given in the environment draws a horizontal line
extending the width of the table to be drawn at the vertical position at
which the command is given. A \cline{i-j} draws a line spanning columns
i to j, at the vertical position at which the command is given. A repeated
line-drawing command causes a double line to be drawn. We illustrate line
drawing in tables by putting some lines into our first table. We will type this
example in a somewhat expanded form, trying to make it clear why the lines
appear where they do.

\begin{tabular}{|l|l|r|r|l|}
\hline
\bf Student name & \bf Number & \bf Test 1 & \bf Test 2 & \bf Comment\\
\hline
F. Basset & 865432 & 78 & 85 & Pleasing\\
\hline
H. Hosepipe & 829134 & 5 & 10 & Improving\\
\hline
I.N. Middle & 853931 & 48 & 47 & Can make it\\
\hline
\end{tabular}

which will give

40

Student name Number Test 1 Test 2 Comment
F. Basset 865432 78 85 Pleasing
H. Hosepipe 829134 5 10 Improving
I.N. Middle 853931 48 47 Can make it

That way of laying out the source file makes it clear where the lines will
go. As we (by now) well know, the returns that we pressed after the \\s in
typing this table might as well have been spaces as far as LATEX is concerned.
Thus it is common to have the \hline commands following the \\s on the
input lines. We will do this in future examples.

The \multicolumn column can be used to overrule the overall format of
the table for a few columns. The syntax of this command is

\multicolumn {n}{pos}{item}
where n is the number of columns of the original format that item is to span,
and pos specifies the justification of the new argument.

\begin{tabular}{||l|c|c|c||} \hline
\multicolumn{4}{|c|}{\LaTeX\ size changing commands}\\ \hline
Style option & 10pt (default) & \tt 11pt & \tt 12pt\\ \hline
\tt\bs footnotesize & 8pt & 9pt & 10pt\\ \hline
\tt\bs small & 9pt & 10pt & 11pt\\ \hline
\tt\bs large & 12pt & 12pt & 14pt\\ \hline
\end{tabular}

produces the following table:

LATEX size changing commands
Style option 10pt (default) 11pt 12pt
\footnotesize 8pt 9pt 10pt
\small 9pt 10pt 11pt
\large 12pt 12pt 14pt

2.4.23 figure and table environments

Figures (diagrams, pictures, etc.) and tables (perhaps created with the tabular
environment) cannot be split across pages. So LATEX provides a mechanism
for “floating” them to a nearby place where there is room for them. This may
mean that your figure or table may appear a little later in the document than
its declaration in the source file might suggest. You can suggest to LATEX
that it try to place the figure or table at the present position if there is room

41

or, failing that, at the top or bottom of the present or following page. You
can also ask for it to be presented by itself on a “page of floats”.

You suggest these options to LATEX through an optional argument to the
environment. One lists a combination of the letters h, t, b, and p where

h means that the object should be placed here if there is room, so that things
will appear in the same order as in the source file,

t means that the object can be placed at the top of the of a text page, but
no earlier than the present page.

b means that the object can be placed at the bottom of a text page, but no
earlier than the present page.

p means that the object should be set on a page of floats that consists only
of tables and figures.

A combination of these indicates decreasing order of preference. The
default is tbp. In this document I have tended to use htbp.

LATEX will also number and caption a figure or table for you, and com-
pile a list of tables and a list of figures. Just include \listoffigures and
\listoftables next to your \tableofcontents command at the beginning
of the document. To caption a table of figure, include \caption{caption text}
just before the \end{table} or \end{figure} command. Here’s a sample
source file.

\begin{table}[htbp]
\begin{tabular}{lrll}
...
\end{tabular}

\caption{Mark analysis}
\end{table}

To leave space for a figure that will inserted by some other means at a
later date, we can use the \vspace command:

\begin{figure}[htbp]
\vspace{9.5cm}
\caption{An artists impression}
\end{figure}

42

Including graphics files prepared with drawing packages is possible, but
beyond the scope of this introduction.

2.4.24 The letter document style

All this and we still don’t know how to prepare a simple letter! Actually,
there is very little to it.

Figure 2.1 shows a sample letter. We declare our own address and sig-
nature before entering the letter environment because we can use repeated
letter environments to prepare multiple letters from the same source file.
The address of the intended recipient of a particular letter is given as an
argument to the letter environment.

2.4.25 Common pitfalls; Error messages

By now it should be clear that we have to work quite accurately when prepar-
ing a document. Typing errors in the running text can be absorbed, but
messing up a control sequence name will halt the compiler with an error
message. Before we look at some common errors and some ways to avoid
them, let’s have a look at a sample error message.

You’ll have noticed by now that when you run LATEX on a source file,
the transcript of the compiler session is written on a log file. When errors
have accumulated to the point that LATEX is hopelessly confused, it is time
to debug your source file. The log file contains a reference to the line, or
lines, of your source file that generated the error together with a description
of the error.

TEX and LATEX error messages appear frightening at first sight, to say
the least. They are actually very informative, but they can take some get-
ting used to. Mistyped control sequences cause little pain, but a missing
\end{environment} can cause a good deal of confusion because it has the
effect of making LATEX try to set material into that environment that was
never intended/designed to fit in such a place. Also, ommiting a mandatory
argument can cause great confusion.

Suppose we type \bold instead of \bf in the following line:

this is going to be {\bold very} messy.

43

\documentstyle[12pt]{letter}
\begin{document}
\address{(Underneath) Lion Bridge\\
Midway down Commercial Road\\
Pietermaritzburg\\
3200}

\signature{F. Basset\\
Public nuisance}

\begin{Letter}{Director of Public Parks\\
Pietermaritzburg Municipality\\
Pietermaritzburg}

\opening{Kind Sir/Madam}

I wish to complain about the shocking practice of
fencing off the base of trees. I notice with grave
concern that this has occurred in the park bordering
my stately residence.

This has already caused me great inconvenience
and public embarrassment, as you can imagine it would
for a hound of my social standing. I demand that
you take these obscene obstructions away without
delay.

\closing{Yours anxiously}
\end{letter}
\end{document}

Figure 2.1: A sample letter

44

This produces the following error message:

! Undefined control sequence.
1.683 this is going to be {\bold

very} messy.
?

That not so bad! The line beginning with ! tells us that we have tried to
used a control sequence that was not known to LATEX; the 1.683 tells us that
the error occurred on line 683 of the source file; and the error message is split
over two lines with the break occurring at the point where LATEX detected a
problem.

But suppose we try the following

\begin{tabular}{llrrl}
Student name & Number & Test 1 & Test 2 & Comment\\
F. Basset & 865432 & 78 & 85 & Pleasing\\
H. Hosepipe & 829134 & 5 & 10 & Improving\\
I.N. Middle & 853931 & 48 & 47 & Can make it

This shows that H.~Hosepipe’s newfound concentration has...

i.e., we omit to provide the \end{tabular} that delimits the end of the
environment. Not having been told that the environment is supposed to be
concluded, LATEX will try to set the text of the next paragraph as a table
item—and will scream blue murder when it finds that it doesn’t conform to
the syntax demanded.

45

LaTeX error. See LaTeX manual for explanation.
Type H <return> for immediate help.

! \begin{tabular} ended by \end{document}.
\@latexerr ...diate help.}\errmessage {#1}

\@checkend ...urrenvir \else \@badend {#1}
\fi

\enddocument ->\@checkend {document}
\clearpage \begingroup \if@filesw...

\end #1->\csname end#1\endcsname
\@checkend {#1}\expandafter \endgrou...

l.58 \end{document}

?

Now that’s informative! Actually it is if we agree to ignore all but the
the error indication line (the one beginning with the !) and the line telling
us where LATEX noticed that all was not well (the one beginning 1.58 in this
case). The rest of the error message you can regard as being for your local
TEX wizard to sort your problem out if you are unable to after consulting the
manuals. Tough as it looks, we can decipher this message straight away: the
error indicator line tell us that a tabular environment was ended incorrectly
(in this case by an \end{document}).

TEX error messages aren’t all that bad once you’ve made enough errors
to get used to a few! Most can be avoided through careful preparation of
the source file. Typing accurately and knowledge of the command syntax is
a good start, but there are some other precautions that make good sense:

1. Even if LATEX is happy with free-form input, try to lay your input
file out as regularly and logically as possible. See our examples of
environments for formats to adopt.

2. It is important that all group delimiters be properly matched, i.e.,
braces and \begin{}. . . \end{} must come in pairs. A good habit to
fall in to is to always type such things in pairs and then move the cursor
back between them and type the intervening material.

3. Don’t forget command arguments when they are mandatory. Always
ask yourself what a particular commands needs from you in order to
make the decisions that are required of it.

46

4. Remember the 10 characters that are specially reserved for comment-
ing, table item separation, etc.

5. When we look at mathematical typesetting in the next chapter, we will
see that the same principles apply there.

6. Try to use a text editor that has a TEX mode, or at least one that will
match brackets for you.

2.5 Summary

We have learned pretty much all we need to know in order to prepare non-
mathematical documents. There has been quite a lot of material, all told, but
we’re fortunate that the average document requires only a fraction of what
we’ve listed here. Furthermore, we’ll find that what we’ve learned equips us
with a good deal of the framework needed for mathematical typesetting.

The important thing to extract from this chapter is some feel for what
I termed the “spirit of TEX” at the chapter beginning. I cannot emphasise
enough the importance of getting your mind out of “word processing” mode
and into “typesetting” mode. Always keep uppermost in your mind the task
at hand: you are to describe the logical content of the document to LATEX, so
furnishing it with enough information to perform all the formatting for you.

Many of the earlier sections of this chapter will become trivially easy to
you after just a little experimentation with LATEX. The best way to learn the
syntax of the more complicated environments is to use them—try typesetting
the examples, for instance. It is important that you come to terms with the
tabular environment, for its syntax is typical of many of the mathematical
constructs that we will use.

If you have not already done so, then now is the time to try preparing some
documents of your own. Try including all the material from this chapter, for
that is the best way to remember it all. When the initial lack of familiarity
wears off, you’ll find that LATEX is really a whole lot friendlier and easier to
use than you expected.

We must also recognise that there is a lot more to some of the command
than detailed here. Some accept optional argumnets that were not men-
tioned, others have more options than we considered. And even once we
have a full description of each command, there is still much to be learned

47

for there is much that can be achieved through creative use of some of the
environments.

48

Chapter 3

Mathematical typesetting with
LATEX

The last chapter taught us a good deal of what we need to know in order
to prepare quite complicated non-mathematical documents. There are still a
number of useful topics that we have not covered (such as cross-referencing),
but we’ll defer discussion of those until a later chapter. In the present chapter,
we’ll learn how LATEX typesets mathematics. It should come as no surprise
that LATEX does most of the work for us.

3.1 Introduction

In text-only documents we saw that our task was to describe the logical
components of each sentence, paragraph, section, table, etc. When we tell
LATEX to go into mathematical mode, we have to describe the logical parts
of a formula, matrix, operator, special symbol, etc. TEX has been taught to
recognize a binary operation, a binary relation, a variable, an operator that
expects limits, and so on. We just need to supply the parts that make up
each of these, and TEX will take care of the rest. It will leave appropriate
space around operators, italicise variables, set an operator name in roman
type, leave the correct space after colons, place sub- and superscripts in the
correct positions (based on what it is you’re working with), choose the correct
typesizes, . . . the list of things it has been taught is enormous. When you
want to revert to setting normal text again, you tell LATEX too leave maths

49

mode and go back into the mode it was in (paragraphing mode).
LATEX cannot be expected to perform these mode shifts itself, for it is not

always clear just when it is mathematics that has been typed. For example,
should an isolated letter a in the input file be regarded as a word (as in the
definite article) or a mathematical variable (as in the variable a). There are
no reliable rules for LATEX to make such decisions by, so the begin-math and
end-math mode switching is left entirely to you.

The symbol $ is specially reserved1 by LATEX as the “math shift” symbol.
When LATEX starts setting a document it is in paragraphing mode, ready to
set lines of the input file into paragraphs. It remains in this mode until it
encounters a $ symbol, which shifts LATEX into mathematical mode. It now
knows to be on the look-out for the components of a mathematical expression,
rather than for words and paragraphs. It reads everything up to the next $
sign in this mathemtical mode, and then shifts back to paragraphing mode
(i.e. the mode it was in before we took it in to maths mode).

You must be careful to balance your begin-math and end-math symbols.
It is often a good idea to type two $ symbols and then move back between
them and type the mathematical expression. If the math-shift symbols in a
document are not matched, then LATEX will become confused because it will
be trying to set non-mathematical material as mathematics.

For those who find having the same symbol for both math-begin and
math-end confusing or dangerous, there are two control symbols that perform
the same operations: the control symbol \(is a begin-math instruction, and
the control symbol \) is an end-math instruction. Since it is easy to “lose”
a $ sign when typing a long formula, a math environment is provided for
such occasions: you can use \begin{math} and \end{math} as the math-
shift instructions. Of course, you could just decide to use $ and take your
chances.

Let’s have a look at some mathematics.

1See section 2.4.4

50

\LaTeX\ is normally in paragraphing mode, where
it expects to find the usual paragraph material. Including
a mathematical expression, like $2x+3y - 4z= -1$, in the
paragraph text is easy. \TeX\ has been taught to recognize
the basic elements of an expression, and typeset them appropriately,
choosing spacing, positioning, fonts, and so on.
Typing the above expression without entering maths
mode produces the incorrect result: 2x+3y - 4z= -1

will produce the following paragraph
LATEX is normally in paragraphing mode, where it expects to find

the usual paragraph material. Including a mathematical expression, like
2x+ 3y − 4z = −1, in the paragraph text is easy. TEX has been taught
to recognize the basic elements of an expression, and typeset them ap-
propriately, choosing spacing, positioning, fonts, and so on. Typing the
above expression without entering maths mode produces the incorrect
result: 2x+3y - 4z= -1

Notice that LATEX sets space around the binary relation = and space
around the binary operators + and − on the left hand side of the equation,
ignoring the spacing we typed in the input. It was also able to recognize that
the −1 on the right hand side of the equation was a unary minus—negating
the 1 rather than being used to indicate subtraction—and so did not put
space around it. It also italicised the variables x, y, and z. However, it did
not italicise the number 1.

In typing a mathematical expression we must remember to keep the fol-
lowing in mind:

1. All letters that are not part of an argument to some control sequence
will be italicised. Arguments to control sequences will be set according
to the definition of the command used. So typing $f(x)>0 for x > 1$

will produce
f(x) > 0forx > 1

instead of the expression

f(x) > 0 for x > 1

that we intended. Numerals and punctuation marks are set in normal
roman type but LATEX will take care of the spacing around punctuation
symbols, as in

51

$f(x,y) \geq 0$

which produces
f(x, y) ≥ 0 .

2. Even a single letter can constitute a formula, as in “the constant a”.
To type this you enter a in your source file. If you do not go in to
maths mode to type the symbol, you’ll get things like “the constant a”.

3. Some symbols have a different meaning when typed in maths mode.
Not only do ordinary letters become variables, but symbols such as -

and + are now interpreted as mathematical symbols. Thus in maths
mode - is no longer considered a hyphen, but as a minus sign.

4. LATEX ignores all spaces and carriage returns when in maths mode,
without exception. So typing something like the constant$ a$ will
produce “the constanta”. You should have typed the constant a.
LATEX is responsible for all spacing when in maths mode, and (as in
paragraphing mode) you have to specially ask to have spacing changed.
Even if LATEX does ignore all spaces when in maths mode you should
(as always in TEX) still employ spaces to keep your source file readable.

The above means that, at least for most material, a typist need not
understand the mathematics in order to typeset it correctly. And even if
one does understand the mathematics, LATEX is there to make sure that you
adhere to accepted typesetting conventions (whether you were aware of their
existence or not).

So one could type either

$f(x, y) = 2 (x+ y)y/(5xy - 3)$

or

$f(x,y) = 2(x+y)y / (5xy-3)$

and you’d still get the correct result

f(x, y) = 2(x + y)y/(5xy − 3) .

52

There are some places where this can go wrong. For instance, if we wish
to speak of the x-y plane then one has to know that it is an endash that
is supposed to be placed between the x and the y, not a minus sign (as
$x-y$ would produce). But typing $x--y$ will produce x − −y since both
dashes are interpreted as minus signs. To avoid speaking of the x− y plane
or the x − −y plane, we should type it as the x--y plane. We are
fortunate that LATEX can recognise and cope with by far the majority of our
mathematical typesetting needs.

Another thing to look out for is the use of braces in an expression. Typing

${x : f(x)>0}$

will not produce any braces. This is because, as we well know, braces are
reserved for delimiting groups in the input file. Looking back to section 2.4.4,
we see how it should be done:

$ \{ x: f(x)>0 \} $

Math shift commands also behave as scope delimiters, so that commands
issued in an expression cannot affect anything else in a document.

3.2 Displaying a formula

LATEX considers an expression $... $ to be word-like in the sense that it
considers it to be eligible for splitting across lines of a paragraph (but without
hyphenation, of course). LATEX assigns quite a high penalty to doing this,
thus trying to avoid it (remember that LATEX tries to minimize the “badness”
of a paragraph). When there is no other way, it will split the expression at a
suitable place. But there are some expressions which are just too long to fit
into the running text without looking awkward. These are best “displayed”
on a line by themselves. Also, some expressions are sufficiently important
that they should be made to stand out. These, too, should be displayed on
a line of their own.

The mechanism for displaying an expression is the display math mode,
which is begun by typing $$ and ended by typing the same sequence (which
again means that we’d better be sure to type them in pairs). Corresponding
to the alternatives \(and \) that we had for the math shift character $, we

53

may use \[and \] as the display-math shift sequences. One can also use the
environment

\begin{displaymath} ... \end{displaymath}

which is equivalent to $$... $$ and is suitable for use with long displayed
expressions. If you wish LATEX to number your equations for you you can use
the environment

\begin{equation} ... \end{equation}

which is the same as the displaymath environment, except that an equation
number will be generated.

It is poor style to have a displayed expression either begin a paragraph
or be a paragraph by itself. This can be avoided if you agree to never leave
a blank line in your input file before a math display.

We will see later how to typeset an expression that is to span multiple
lines. For now, let’s look at an example of displaying an expression:

For each a for which the Lebesgue-set $L_a(f) \neq \emptyset$ we define
$$ % We could have used \begin{displaymath} here
{\cal B}_a(f) = \{ L_{a+r}(f) : r > 0 \},
$$ % and \end{displaymath} here
and these are easily seen to be completely regular.

which produces
For each a for which the Lebesgue-set La(f) 6= ∅ we define

Ba(f) = {La+r(f) : r > 0},

and these are easily seen to be completely regular.

That illustrates how to display an expression, but also shows that we’ve
got a lot more to learn about mathematical typesetting. Before we have
a look at how to arrange symbols all over the show (e.g. the subscripting
above) we must learn how to access the multitude of symbols that are used
in mathematical texts.

54

3.3 Using mathematical symbols

LATEX puts all the esoteric symbols of mathematics at our fingertips. They are
all referenced by name, with the naming system being perfectly logical and
systematic. None of the control words that access these symbols accepts an
argument, but we’ll soon see that some of them prepare LATEX for something
that might follow. For instance, when you ask for the symbol ‘

∑
’ LATEX

is warned that any sub- or superscripts that follow should be positioned
appropriately as limits to a summation. In keeping with the TEX spirit,
none of this requires any additional work on your part.

We’ll also see that some of the symbols behave differently depending on
where they are used. For instance, when I ask for

∑n
i=1 ai within the running

text, the limits are places differently to when I ask for that expression to be
displayed:

n∑
i=1

ai .

Again, I typed nothing different here—just asked for display math mode.
It is important to note that almost all of the special maths symbols are

unavailable in ordinary paragraphing mode. If you need to use one there,
then use an in-line math expression $...$.

3.3.1 Symbols available from the keyboard

A small percentage of the available symbols can be obtained from just a
single key press. They are + − = < > | / () [] and ∗. Note that these must
be typed within maths mode to be interpreted as math symbols.

Of course, all of a–z, A–Z, the numerals 0, 1, 2, . . . , 9 and the punctuation
characters , ; and : are available directly from the keyboard. Alphabetic
letters will be assumed to be variables that are to be italicised, unless told
otherwise2. The numerals receive no special attention, appearing precisely
as in normal paragraphing mode. The punctuation symbols are still set in
standard roman type when read in maths mode, but a little space is left
after them so that expressions like {xi : i = 1, 2, . . . , 10} look like they
should. Note that this means that normal sentence punctuation should not
migrate into an expression.

2See section 3.4.6

55

3.3.2 Greek letters

Tables 3.1 and 3.2 show the control sequences that produce the letters of the
Greek alphabet. We see that a lowercase Greek letter is simply is accessed by
typing the control word of the same name as the symbol, using all lowercase
letters. To obtain an uppercase Greek letter, simply capitalise the first letter
of its name.

Just as $mistake$ produces mistake because the letters are interpreted as
variables, so too will $\tai \epsilon \chi$ produce the incorrectly spaced
τεχ if you try to type greek words like this. TEX can be taught to set Greek,
but this is not the way. τεχ, incidentally, is the Greek word for “art” and it
is from the initials of the Greek letters constituting this word that the name
TEX was derived. TEX is “the art of typesetting”.

α \alpha β \beta γ \gamma δ \delta
ε \epsilon ε \varepsilon ζ \zeta η \eta
θ \theta ϑ \vartheta ι \iota κ \kappa
λ \lambda µ \mu ν \nu ξ \xi
π \pi $ \varpi ρ \rho % \varrho
σ \sigma ς \varsigma τ \tau υ \upsilon
φ \phi ϕ \varphi χ \chi ψ \psi
ω \omega

Table 3.1: Lowercase Greek letters

Γ \Gamma ∆ \Delta Θ \Theta Λ \Lambda
Ξ \Xi Π \Pi Σ \Sigma Υ \Upsilon
Φ \Phi Ψ \Psi Ω \Omega

Table 3.2: Uppercase Greek letters

3.3.3 Calligraphic uppercase letters

The lettersA, . . . ,Z are available through use of the style changing command
\cal. This command behaves like the other style changing commands \em,
\it, etc. so its scope must be delimited as with them. Thus we can type

... for the filter $\cal F$ we have $\varphi({\cal F}) = \cal G$.

56

± \pm ∩ \cap � \diamond ⊕ \oplus
∓ \mp ∪ \cup 4 \bigtriangleup 	 \ominus
× \times] \uplus 5 \bigtriangledown ⊗ \otimes
÷ \div u \sqcap / \triangleleft � \oslash
∗ \ast t \sqcup . \triangleright � \odot
? \star ∨ \vee ∧ \wedge © \bigcirc
† \dagger \ \setminus q \amalg ◦ \circ
‡ \ddagger · \cdot o \wr • \bullet

Table 3.3: Binary Operation Symbols

to obtain

for the filter F we have ϕ(F) = G.

There is no need to tabulate all the calligraphic letters, since they are all
obtained by just a type style changing command. We will just list them so
that we can see, for reference purposes, what they all look like. Here they
are:

ABCDEFGHIJKLMNOPQRST UVWXYZ

3.3.4 Binary operators

LATEX has been taught to recognise binary operators and set the appropriate
space either side of one—i.e., it sets the first argument followed by a little
space, then the operator followed by the same little space and finally the
second argument. Table 3.3 shows the binary operators that are available
via LATEX control words (recall that the binary operators +, −, and ∗ can be
typed from the keyboard). Here are some examples of their use:

Type To produce

$a+b$ a+ b

$(a+b) \ otimes c$ (a+ b)⊗ c
$(a \vee b) \wedge c$ (a ∨ b) ∧ c
$X - (A \cap B) = (X-A) \cup (X-B)$ X − (A ∩B) = (X −A) ∪ (X −B)

57

3.3.5 Binary relations

LATEX has been taught to recognize the use of binary relations, too. Table 3.4
shows those available via LATEX control words. There are a few that you can
obtain directly from the keyboard: <, >, =, and |.

To negate a symbol you can precede the control word that gives the
symbol by a \not. Some symbols come with ready-made negations, which
should be used above the \not’ing method because the slope of the negating
line is just slightly changed to look more pleasing. Thus \notin should be
used above \not\in, and \neq should be used above \not =.

If negating a symbol produces a slash whose horizontal positioning is
not to your liking, then use the math spacing characters described in sec-
tion 3.4.12 to adjust it.

≤ \leq ≥ \geq ≡ \equiv |= \models
≺ \prec � \succ ∼ \sim ⊥ \perp
� \preceq � \succeq ' \simeq | \mid
� \ll � \gg � \asymp ‖ \parallel
⊂ \subset ⊃ \supset ≈ \approx ./ \bowtie
⊆ \subseteq ⊇ \supseteq ∼= \cong ./ \Join
< \sqsubset = \sqsupset 6= \neq ^ \smile
v \sqsubseteq w \sqsupseteq

.= \doteq _ \frown
∈ \in 3 \ni ∝ \propto
` \vdash a \dashv

Table 3.4: Binary relations

3.3.6 Miscellaneous symbols

Table 3.5 shows a number of general-purpose symbols. Remember that these
are only available in maths mode. Note that \imath and \jmath should be
used when you need to accent an i or a j in maths mode3—you cannot use \i
or \j that were available in paragraphing mode. To get a prime symbol, you
can use \prime or you can just type ’ when in maths mode, as in $f’’(x)=x$

which produces f ′′(x) = x.

3See section 3.3.10

58

ℵ \aleph ′ \prime ∀ \forall ∞ \infty
h̄ \hbar ∅ \emptyset ∃ \exists 2 \Box
ı \imath ∇ \nabla ¬ \neg 4 \triangle
 \jmath

√
\surd [\flat 4 \triangle

` \ell > \top \ \natural ♣ \clubsuit
℘ \wp ⊥ \bot] \sharp ♦ \diamondsuit
< \Re ‖ \| \ \backslash ♥ \heartsuit
= \Im 6 \angle ∂ \partial ♠ \spadesuit
0 \mho

Table 3.5: Miscellaneous symbols

3.3.7 Arrow symbols

LATEX has a multitude of arrow symbols, which it will set the correct space
around. Note that vertical arrows can all be used as delimiters—see sec-
tion 3.3.8. The available symbols are listed in table 3.6.

← \leftarrow ←− \longleftarrow ↑ \uparrow
⇐ \Leftarrow ⇐= \Longleftarrow ⇑ \Uparrow
→ \rightarrow −→ \longrightarrow ↓ \downarrow
⇒ \Rightarrow =⇒ \Longrightarrow ⇓ \Downarrow
↔ \leftrightarrow ←→ \longleftrightarrow l \updownarrow
⇔ \Leftrightarrow ⇐⇒ \Longleftrightarrow m \Updownarrow
7→ \mapsto 7−→ \longmapsto ↗ \nearrow
←↩ \hookleftarrow ↪→ \hookrightarrow ↘ \searrow
↼ \leftharpoonup ⇀ \rightharpoonup ↙ \swarrow
↽ \leftharpoondown ⇁ \rightharpoondown ↖ \nwarrow
⇀↽ \rightleftharpoons ; \leadsto

Table 3.6: Arrow symbols

3.3.8 Expression delimiters

A pair of delimters often enclose an expression, as in[
a11 a12

a21 a22

]
and f(x) =

{
x if x < 1
x2 if x ≥ 1

.

LATEX will scale delimiters to the correct size (determined by what they en-
close) for you, if you ask it to. There are times when you don’t want a
delimiter to be scaled, so it is left up to you to ask for scaling.

59

To ask that a delimter be scaleable, you precede it by \left or \right

according as it is the left or right member of the pair. Scaled delimiters must
be balanced correctly. It sometimes occurs, as in the right-hand example
above, that only one member of a delimiting pair is to be visible. For this
purpose, use the commands \left. and \right. which will produce no
visible delimiter but can be used to correctly balance the delimiters in an
expression. For examples of the use of delimiters, see section 3.4.11 where
we learn about arrays.

Table 3.7 shows the symbols that LATEX will recognise as delimiters, i.e.
symbols that may follow a \left or a \right. Note that you have to use
\left\{ and \right\} in order to get scaled braces.

(()) ↑ \uparrow
[]]] ↓ \downarrow
{ \{ } \} l \updownarrow
b \lfloor c \rfloor ⇑ \Uparrow
d \lceil e \rceil ⇓ \Downarrow
〈 \langle 〉 \rangle m \Updownarrow
/ / \ \backslash
| — ‖ \|

Table 3.7: Delimiters

3.3.9 Operators like
∫

and
∑

These behave differently when used in display-math mode as compared with
in-text math mode. When used in text, they will appear in their small form
and any limits provided will be set so as to reduce the overall height of the
operator, as in

∑N
i=1 fi. When used in display-math mode, LATEX will choose

to use the larger form and will not try to reduce the height of the operator,
as in

N∑
i=1

fi .

Table 3.8 describes what variable-size symbols are available, showing both
the small (in text) and the large (displayed) form of each. In section 3.4.1
we will learn how to place limits on these operators.

60

∑ ∑
\sum

⋂ ⋂
\bigcap

⊙ ⊙
\bigodot∏ ∏

\prod
⋃ ⋃

\bigcup
⊗ ⊗

\bigotimes∐ ∐
\coprod

⊔ ⊔
\bigsqcup

⊕ ⊕
\bigoplus∫ ∫

\int
∨ ∨

\bigvee
⊎ ⊎

\biguplus∮ ∮
\oint

∧ ∧
\bigwedge

Table 3.8: Variable-sized symbols

3.3.10 Accents

The accenting commands that we learned for paragraphing mode do not
apply in maths mode. Consult table 3.9 to see how to accent a symbol in
maths mode (all the examples there accent the symbol u, but they work with
any letter). Remember that i and j should lose their dots when accented, so
\imath and \jmath should be used.

There also exist commands that give a “wide hat” or a “wide tilde” to
their argument, \widehat and \widetilde.

û \hat{u} ú \acute{u} ū \bar{u} u̇ \dot{u}
ǔ \check{u} ù \grave{u} ~u \vec{u} ü \ddot{u}
ŭ \breve{u} ũ \tilde{u}

Table 3.9: Math accents

3.4 Some common mathematical structures

In this section we shall begin to learn how to manipulate all the symbols
listed in section 3.3. Indeed, by the end of this section we’ll be able to typeset
some quite large expressions. In the section following this we will learn how
use various alignment environments that allow us to prepare material like
multi-line expressions and arrays.

3.4.1 Subscripts and superscripts

Specifying a sub- or superscript is as easy as you’d hope—you just give
an indication that you want a sub- or superscript to the last expression

61

and provide the material to be placed there, and LATEX will position things
correctly. So sub- and superscripting a single symbol, an operator, or a big
array all involve the same input, and LATEX places the material according to
what the expression is that is being sub- or superscripted:

x2 ,
N∏

i=1

Xi ,

 a11 a12 a13

a21 a22 a23

a31 a32 a33

2

.

To tell LATEX that you want a single character set as a superscript to
the last expression, you just type a ^ before it. The “last expression” is the
preceding group or, if there is no preceding group, the single character or
symbol that the ^ follows:

Type To produce

x^2 x2

a^b ab

Y^X Y X

γ^2 γ2

$(A+B)^2$ (A+B)2

$\left[\frac{x^2+1}{x^2 + y^2} \right]^n$
[

x2+1
x2+y2

]n

Subscripts of a single character are equally easy—you just use the under-
score character _ where you used ^ for superscripting:

Type To produce

x_2 x2

x_i xi

$\Gamma_1(x)$ Γ1(x)

Now let’s see how to set a sub- or superscript that consists of more than
just one character. This is no more difficult than before if we remember the
following rule: _ and ^ set the group that follows them as a sub- and super-
scripts to the group that precedes the sub- and superscript symbols. We see
now now that our initial examples worked by considering a single character
to be a group by itself. Here are some examples:

62

Type To produce

a^2b^3 a2b3

2^{21} 221

2^21 221

a^{x+1} ax+1

a^{x^2+1} ax2+1

$(x+1)^3$ (x+ 1)3

$\Gamma_{\alpha\beta\gamma}$ Γαβγ

${}_1A_2$ 1A2

In the very last example we see a case of setting a subscript to an empty
group, which resulted in a kind of “pre-subscript”. With some imagination
this can be put to all sorts of uses.

In all of the above examples the sub- and superscripts were set to single-
character groups. Nowhere did we group an expression before sub- or super-
scripting it. Even in setting the expression (x + 1)3, the superscript 3 was
really only set to the character). If we had wanted to group the (x + 1) be-
fore setting the superscript, we would have typed ${(x+1)}^3$ which gives
(x + 1)3, with the superscript slightly raised. One has to go to this trouble
because, to most people, something like (xa)b is just as acceptable and as
readable as (xa)b. It also has the advantage of aligning the base lines in
expressions such as

(ab)−2 = [(ab)−1]2 = [b−1a−1]2 = b−1a−1b−1a−1

which looks more pleasing than if we use additional grouping to force

(ab)−2 = [(ab)−1]
2

= [b−1a−1]
2

= b−1a−1b−1a−1 ,

and the latter has rather more braces in it that require balancing.
Here are some more examples, showing how LATEX will set things just as

we want without any further work on our part:

Type To produce

x^{y^z} xyz

$2^{(2^2)}$ 2(22)

$2^{2^{2^{\aleph_0}}}$ 222ℵ0

$\Gamma^{z_c^d}$ Γzd
c

63

We can also make use of empty groups in order to stagger sub- and
superscripts to an expression, as in

$\Gamma_{\alpha\beta}{}^{\gamma}{}_\delta$

which will yield

Γαβ
γ

δ

One can specify the sub- and superscripts to a group in any order, but it is
best to be consistent. The most natural order seems to be to have subscripts
first, but you may think otherwise. It is also a good idea to always include
your sub- and superscripts in braces (i.e. make them a group), whether they
consist of just a single character or not. This enhances readability and also
helps avoid the unfortunate case where you believe that a particular control
word gives a single symbol yet it really is defined in terms of several.

3.4.2 Primes

LATEX provides the control word \prime (′) for priming symbols. Note that
it is not automatically at the superscript height, so that to get f ′ you would
have to type

f^\prime .

To make lighter work of this, LATEX will interpret a right-quote character as
a prime if used in maths mode. Thus we can type

$f’(g(x)) g’(x) h’’(x)$

in order to get

f ′(g(x))g′(x)h′′(x) .

3.4.3 Fractions

LATEX provides the \frac command that accepts two arguments: the numer-
ator and the denominator (in that order). Before we look at examples of its
use, let us just note that many simple in-text fractions are often better writ-

64

ten in the form num/den, as with 3/8 which can be typed as $3/8$. This is
also often the better form for a fraction that occurs within some expression.

Type To produce

$\frac{x+1}{x+2}$
x+ 1
x+ 2

$\frac{1}{x^2+1}$
1

x2 + 1

$\frac{1+x^2}{x^2+y^2} + x^2 y$
1 + x2

x2 + y2
+ x2y

$\frac{1}{1 + \frac{x}{2}}$
1

1 + x
2

$\frac{1}{1+x/2}$
1

1 + x/2

3.4.4 Roots

The \sqrt command accepts two arguments. The first, and optional, argu-
ment specifies what order of root you desire if it is anything other than the
square root. The second, and mandatory, argument specifies the expression
that the root sign should enclose:

Type To produce

$\sqrt{a+b}$
√
a+ b

$\sqrt[5]{a+b}$ 5
√
a+ b

$\sqrt[n]{\frac{1+x}{1+x^2}}$ n

√
1 + x

1 + x2

$\frac{\sqrt{x+1}} {\sqrt[3]{x^3+1}}$

√
x+ 1

3
√
x3 + 1

3.4.5 Ellipsis

Simply typing three periods in a row will not give the correct spacing of the
periods if it is an ellipsis that is desired. So LATEX provides the commands
\ldots and \cdots. Centered ellipsis should be used between symbols like
+, −, ∗, ×, and =. Here are some examples:

65

Type To produce

$a_1+ \cdots + a_n$ a1 + · · ·+ an

$x_1 \times x_2 \times \cdots \times x_n$ x1 × x2 × · · · × xn

$v_1 = v_2 = \cdots = v_n = 0$ v1 = v2 = · · · = vn = 0

$f(x_1,\ldots,x_n) = 0$ f(x1, . . . , xn) = 0

3.4.6 Text within an expression

One can use the \mbox command to insert normal text into an expression.
This command forces LATEX temporarily out of maths mode, so that its ar-
gument will be treated as normal text. It’s use is simple, but we must be
wary on one count: remember that LATEX ignores all space characters when
in maths mode; so to surround words in an expression that were placed by an
\mbox command by space you must include the space in the \mbox argument.

Type To produce

$f_i(x) \leq 0 \mbox{ for } x \in I$ fi(x) ≤ 0 for x ∈ I
$\Gamma(n)=(n-1)! \mbox{ when n is an integer}$ Γ(n) = (n− 1)! when n is an integer

In section 3.4.12 we’ll learn of some special spacing commands that can
be used in math mode. These are often very useful in positioning text within
an expression, enhancing readability and logical layout.

3.4.7 Log-like functions

There are a number of function names and operation symbols that should be
set in normal (roman) type in an expression, such as in

f(θ) = sin θ + log(θ + 1)− sinh(θ2 + 1)

and

lim
h→0

sin h

h
= 1 .

We know that simply typing $log\theta$ would produce the incorrect
result

logθ

66

\arccos \cos \csc \exp \ker \limsup \min \sinh
\arcsin \cosh \deg \gcd \lg \ln \Pr \sup
\arctan \cot \det \hom \lim \log \sec \tan
\arg \coth \dim \inf \liminf \max \sin \tanh

Table 3.10: Log-like functions

and that using $\mbox{log}\theta$ would leave us having to insert a little
extra space between the log and the θ

logθ .

So LATEX provides a collection of “log-like functions” defined as control se-
quences. Table 3.10 shows those that are available. Here are some examples
of their use:

Type To produce

$f(x)=\sin x + \log(x^2)$ f(x) = sinx+ log(x2)

$\delta = \min \{ \delta_1, \delta_2 \}$ δ = min{δ1, δ2}
$\chi(X) = \sup_{x\in X} \chi(x)$ χ(X) = supx∈X χ(x)

$\lim_{n \rightarrow \infty} S_n = \gamma$ limn→∞ Sn = γ

Notice how LATEX does more than just set an operation like sup in roman
type. It also knew where a subscript to that operator should go.

3.4.8 Over- and Underlining and bracing

The \underline command will place an unbroken line under its argument,
and the \overline command will place an unbroken line over its argument.
These two commands can also be used in normal paragraphing mode (but be
careful: LATEX will not break the line within an under- or overlined phrase,
so don’t go operating on large phrases).

You can place horizontal braces above or below an expression by making
that expression the argument of \overbrace or \underbrace. You can place
a label on an overbrace (resp. underbrace) by superscripting (resp. subscript-
ing the group defined by the bracing command.

67

Type To produce

$\overline{a+bi} = a- bi$ a+ bi = a− bi
$\overline{\overline{a+bi}} = a+bi$ a+ bi = a+ bi

And some examples of horizontal bracing:

$A^n=\overbrace{A \times A \times \ldots \times A}^{\mbox{n terms}}$

$\forall x \underbrace{\exists y (y \succ x)}_{\mbox{scope of \forall}}$

will produce

An =

n terms︷ ︸︸ ︷
A× A× . . .× A

and
∀x ∃y(y � x)︸ ︷︷ ︸

scope of ∀

3.4.9 Stacking symbols

LATEX allows you to set one symbol above another through the \stackrel

command. This command accepts two arguments, and sets the first centrally
above the second.

Type To produce

$X \stackrel{f^*}{\rightarrow}Y$ X
f∗→ Y

$f(x) \stackrel{\triangle}{=} x^2 + 1$ f(x)
4
= x2 + 1

3.4.10 Operators; Sums, Integrals, etc.

Each of the operation symbols in table 3.8 can occur with limits. They are
specified as sub- and superscripts to the operator, and LATEX will position
them appropriately. In an in-text formula they will appear in more-or-less
the usual scripting positions; but in a displayed formula they will be set below
and above the symbol (which will also be a little larger). The following should
give you an idea of how to use them:

68

Type To produce

$\sum_{i=1}^{N} a_i$
∑N

i=1 ai

$\int_a^b f$
∫ b

a
f

$\oint_{\cal C}f(x)\,dx$
∮
C f(x) dx

$\prod_{\alpha \in A} X_\alpha$
∏

α∈AXα

$\lim_{N\rightarrow\infty}\sum_{i=1}^{N}f(x_i)\Delta x_i$ limN→∞
∑N

i=1 f(xi)∆xi

We’ll have more to say about the use of \, in section 3.4.12. Let’s have
a look at each of those expressions when displayed:

N∑
i=1

ai ,
∫ b

a
f ,

∮
C
f(x) dx ,

∏
α∈A

Xα , lim
N→∞

N∑
i=1

f(xi)∆xi

3.4.11 Arrays

The array environment is provided for typesetting arrays and array-like ma-
terial. It accepts two arguments, one optional and one mandatory. The
optional argument specifies the vertical alignment of the array—use t, b, or
c to align the top, bottom, or centre of the array with the centreline of the
line it occurs on (the default being c). The second argument is as for the
tabular environment: a series of l, r, and c’s that specify the number of
columns and the justification of these columns. The body of the array en-
vironment uses the same syntax as the tabular environment to specify the
individual entries of the array.

For instance the input

... let $A = \begin{array}{rrr}
12 & 3 & 4\\
-2 & 1 & 0\\
3 & 7 & 9
\end{array}$...

will produce the output

let A =

 12 3 4
−2 1 0

3 7 9

69

Note that we had to choose and supply the enclosing brackets ourselves
(they are not placed for us so that we can use the array environment for
array-like material; also, we get to choose what type of brackets we want this
way). As in the tabular environment, the scope of a command given inside
a matrix entry is restricted to that entry.

We can use ellipsis within arrays as in the following example:

\det A = \left| \begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1n}\\
a_{21} & a_{22} & \cdots & a_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{array} \right|

which produces

detA =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

∣∣∣∣∣∣∣∣∣
The array environment is often used to typeset material that is not,

strictly speaking, an array:

f(x) = \left\{ \begin{array}{ll}
x & \mbox{for $x<1$}\\

x^2 & \mbox{for $x \geq 1$}
\end{array} \right.

which will yield

f(x) =
{
x for x < 1
x2 for x ≥ 1

3.4.12 Changes to spacing

Sometimes LATEX needs a little help in spacing an expression, or perhaps you
think that the default spacing needs adjusting. For these purposes we have
the following spacing commands:

\, thin space \: medium space
\! negative thin space \; thick space
\quad a quad of space \qquad two quads of space

70

The spacing commands \,, \quad, and \qquad can be used in paragraph-
ing mode, too. Here are some examples of these spacing commands used to
make subtle modifications to some expressions.

Type To produce

$\sqrt{2} \, x$
√

2x

$\int_a^b f(x)\,dx$
∫ b

a
f(x) dx

$\Gamma_{\!2}$ Γ2

$\int_a^b \! \int_c^d f(x,y)\,dx\,dy$
∫ b

a

∫ d

c
f(x, y) dx dy

$x / \! \sin x$ x/sinx

$\sqrt{\,\sin x}$
√

sinx

3.5 Alignment

Recall that the $equation$ environment can be used to display and auto-
matically number a single- line equation4. The eqnarray environment is
used for displaying and automatically numbering either a single expression
that spreads over several lines or multiple expressions, while taking care of
alignment for us. The syntax is similar to that of the tabular and array

environments, except that no argument is necessary to declare the number
and justification of columns. The eqnarray* environment does this without
numbering any equations.

\begin{eqnarray}
(a+b)(a+b) & = & a^2 + 2ab + b^2\\
(a+b)(a-b) & = & a^2 - b^2
\end{eqnarray}

will give

(a + b)(a + b) = a2 + 2ab + b2 (3.1)

(a + b)(a− b) = a2 − b2 (3.2)

4See section 3.2

71

See how we identify the columns so as to line the = signs up. We can
also leave entries empty, to obtain effect like the following:

\begin{eqnarray*}
\frac{d}{dx} \sin x & = & \lim_{h\rightarrow0}\frac{\sin(x+h)-\sin x}{h}\\
& = & \lim_{h\rightarrow0}\frac{\sin x\cos h + \cos x\sinh - \sin x}{h}\\
& = & \lim_{h\rightarrow0}\frac{\sin x(\cos h-1)}{h} + \cos x\frac{\sin h}{h}\\
& = & \cos x

\end{eqnarray*}

which produces

d

dx
sin x = lim

h→0

sin(x + h)− sin x

h

= lim
h→0

sin x cos h + cos x sinh− sin x

h

= lim
h→0

{
sin x(cos h− 1)

h
+ cos x

sin h

h

}
= cos x

3.6 Theorems, Propositions, Lemmas, . . .

Suppose you document contains four kinds of theorem-like structures: “the-
orems”, “propositions”, “conjectures”, and “wild guesses”. Then near the
beginning of the document you should have something like the following:

\newtheorem{thm}{Theorem}
\newtheorem{prop}{Proposition}
\newtheorm{conjec}{Conjecture}
\newtheorem{wildshot}{Hypothesis} % make it sound good!

The first argument to \newtheorem defines a new theorem-like environ-
ment name of your own choosing. The second argument contains the text
that you want inserted when your theorem is proclaimed:

72

\begin{thm} X is normal if, and only if, each pair of disjoint
closed sets in X is completely separated.
\end{thm}

\begin{wildshot} % remember, we chose the name ’wildshot’
The property of Moore extends to all objects of the class Σ.
\end{wildshot}

which will produce the following:

Theorem 1 X is normal if, and only if, each pair of disjoint closed sets in
X is completely separated.

Hypothesis 1 The property of Moore extends to all objects of the class Σ.

Notice that LATEX italicises the theorem statement, and that you still
have to shift in to maths mode when you want to set symbols and expression.
Typically, it is the style file that determines what a theorem will appear like—
so don’t go changing this if you are preparing for submission for publication
(because the journal staff want to substitute their production style for your
document style choice, and not be over-ridden by other commands).

3.7 Where to from here?

We have covered a good deal of LATEX’s mathematical abilities, albeit rather
superficial coverage here and there. There is much that has been impressive,
but there is clearly a lot more to TEXnical typesetting than we have covered
here—it is not difficult to think of an expression that we don’t yet know how
to typeset. Also, there are places where LATEX is a little weak and it leaves
us to do somewhat more work than the spirit of TEX would suggest.

Of course, we cannot criticise LATEX until we know its full capability.
So the first place to go from here is the LATEX User’s Guide & Reference
Manual. Particularly, the command reference guide in Appendix C of that
book is an invaluable source of LATEX information that few can afford to do
without. With good knowledge of the LATEX environments and their options
(and we’ve left out many here) one can accomplish a good deal of most
typesetting problems. A little imagination (say putting an environment to

73

a slightly non-standard use) can often solve more difficult problems. Lastly,
of course, much of raw TEX still sits underneath LATEX and so it is true to
say that you can do anything with LATEX—but you may need some divine
inspiration from time to time (ask your local TEX guru).

In the next chapter we will look, very briefly, at a number of LATEX com-
mands that we have not yet considered. Nothing exciting on the mathemat-
ical front, but there is some other important material (e.g. cross-referencing
and page-sizing). For now, let’s look at the “way forward” with respect to
mathematical typesetting.

3.8 AMS-LATEX

Back in the introduction we said that AMS-LATEX was just a big macro
package, the result of a marriage of LATEX and AMS-TEX designed to endow
the powerful general-purpose LATEX package with the mathematical prowess
of AMS-TEX without compromising the LATEX syntax. Most of that is true,
except thatAMS-LATEX is really just a document-style option (like 12pt) that
can be used within a “tweaked LATEX”. The most visible part of this tweak is
the new font selection scheme of Mittelbach and Schöpf, discussed more fully
in the next chapter. Almost every LATEX command and environment survived
the transition toAMS-LATEX, the exceptions being those that were considered
redundant or under-used (space is at a premium with such a big package).
The tweaked LATEX package is therefore able to deal with practically every
existing LATEX document, giving just a few (often pleasant) surprises.

With the amstex style option, one can just start a LATEX document with

\documentstyle[amstex]{article} % or report, book, etc

to gain access to the TEXnical excellence of the AMS technical staff. It is
not necessary to have read The Joy of TEX (the AMS-TEX reference guide)
to be able to use the amstex option, for AMS-LATEX comes with its own ref-
erence guide. Even so, The Joy of TeX is still highly recommended reading.
The syntax of AMS-TEX has been changed to that of LATEX, but one can
perform that transformation as you read “Joy” and still learn much of the
art of technical typesetting. Nowhere else will you find so comprehensive a
coverage of the conventions and pitfalls of mathematical typesetting. In ad-

74

dition, Joy lists all the extra symbols that are available through the amstex

option (if you thought LATEX had a fair selection of esoteric symbols, just wait
’til you see those!) and provides in-depth accounts where the AMS-LATEX
documentation is brief.

Just as AMS-TEX comes with the AMS preprint style (amsppt), AMS-
LATEX comes with a specialist style file for preparation of articles with AMS-
LATEX for submission to journals: amsart. The AMS-LATEX User’s Guide is
quite short and very terse in its explanations (assuming you to be competent
in LATEX), but is supplemented by a large body of examples and a compre-
hensive sample article that is a showcase of the abilities of the amsart style.
You must read both these documents to really learn AMS-LATEX. The AMS
also distributes a guide to authors who wish to submit using AMS-LATEX,
and this is a must-read once you are familiar with some of AMS-LATEX.

75

