Tutorial on Python Iterators and Generators

Norman Matloff
University of California, Davis
(©2005-2009, N. Matloff

May 11, 2009

Contents
[I_Tterators| 3
1.1~ What Are Iterators? Why Use Them? 3
(1.2 Example: Fibonacci Numbers| 4
1.3 The1ter() Function| 5
[1.4 Applications to Situations with an Indefinite Number of Iterations| 6
[1.4.1 Client/Server Example], 6
[1.4.2 “Circular” Array Example] oo oo 7
[1.5 Overwriting the next() Function: File Subclass Example| 8
(1.6 Iterator Functions| 10
[L6.T General Functionsl i 10
[1.62 TheitertoolsModulel 10
2__Generators| 11
21 _General Structuresl 11
2.2 Example: Fibonacci Numbers| 12
2.3 Example: Word Fetcher]. 13
[2.4 Mutple Iterators from the Same Generator{. 14
[2.5 The os.path.walk() Function| 14
2.6 Don’t Put yield in a Subfunction| L 14
R7 Coroutines|. L 14
271 MythrdClass|. 15

[2.7.2 'The StmPy Discrete Event Simulation Library|

1 Iterators

1.1 What Are Iterators? Why Use Them?

Let’s start with an example we know from our unit on Python file and directory programming (http:
//heather.cs.ucdavis.edu/-matloff/Python/PyFileDir.pdf). Say we open a file and
assign the result to f, e.g.

f = open(’'x")

Suppose we wish to print out the lengths of the lines of the file.

for 1 in f.readlines():
print len(l)

But the same result can be obtained with

for 1 in f:
print len(l)

The second method has two advantages:

(a) it’s simpler and more elegant
(b) aline of the file is not read until it is actually needed

For point (b), note that typically this becomes a major issue if we are reading a huge file, one that either
might not fit into even virtual memory space, or is big enough to cause performance issues, €.g. excessive

paging.

Point (a) becomes even clearer if we take the functional programming approach. The code

print map(len, f.readlines())

1s not as nice as

print map(len, f)

Point (b) would be of major importance if the file were really large. The first method above would have the
entire file in memory, very undesirable. Here we read just one line of the file at a time. Of course, we also
could do this by calling readline() instead of readlines(), but not as simply and elegantly, i.e. we could not
use map().

In our second method, f is serving as an iterator. Let’s look at the concept more generally.

Recall that a Python sequence is roughly like an array in most languages, and takes on two forms—Iists and
tuplesE] Sequence operations in Python are much more flexible than in a language like C or C++. One can
have a function return a sequence; one can slice sequences; one can concatenate sequences; etc.

In this context, an iterator looks like a sequence when you use it, but with some major differences:

IRecall also that strings are tuples, but with extra properties.

http://heather.cs.ucdavis.edu/~matloff/Python/PyFileDir.pdf
http://heather.cs.ucdavis.edu/~matloff/Python/PyFileDir.pdf

O B N U AW N -

© X NN AW -

S

(a) you usually must write a function which actually constructs that sequence-like object
(b) an element of the “sequence” is not actually produced until you need it

(c) unlike real sequences, an iterator “sequence” can be infinitely long

1.2 Example: Fibonacci Numbers

For simplicity, let’s start with everyone’s favorite computer science example, Fibonacci numbers, as defined
by the recursion,

1, ifn=1,2

=t s itns M

It’s easy to write a loop to compute these numbers. But let’s try it as an iterator:

iterator example; uses Fibonacci numbers, so common in computer
science examples: f_n = f_{n-1} + f_{n-2}, with £ 0 = f_ 1 =1

class fibnum:

def _ init_ (self):
self.fn2 =1 # "f_{n-2}"
self.fnl =1 # "f_{n-1}"

def next (self): # next () is the heart of any iterator
note the use of the following tuple to not only save lines of
code but also to insure that only the old values of self.fnl and
self.fn2 are used in assigning the new values
(self.fnl,self.fn2,01dfn2) = (self.fnl+self.fn2,self.fnl,self.fn2)
return oldfn2

def _ _iter_ (self):
return self

Now here is how we would use the iterator, e.g. to loop with it:

from fib import =

def main () :
f = fibnum()
for i in f:
print i
if i > 20: break

if name == '_main__':

main ()

By including the method __iter__() in our fibnum class, we informed the Python interpreter that we wish to
use this class as an iterator.

We also had to include the method next(), which as its name implies, is the mechanism by which the
“sequence” is formed. This enabled us to simply place an instance of the class in the for loop above.
Knowing that f is an iterator, the Python interpreter will repeatedly call f.next(), assigning the values returned
by that function to i. When there are no items left in the iterator, a call to next produces the StopIteration

exception.

It returns itself (in this common but not exhaustive form), which is used for iteration in for loops.

4

P T Y T

1.3 The iter() Function

Some Python structures already have built-in iterator capabilities. For example,

>>> dir([])

["_add__'", '__class_ ', '__contains_ ', ’'__delattr_ ', ’_ delitem_ ',
! __delslice_ ', '_doc__', '_eq ', '_ge_ ', '__getattribute_ ’,

' _getitem__ ', ’__getslice__ ', ' gt_ ", '_hash__ ', ’__iadd__',
f_dimul__ ', '__init_ ', '_iter ', '_le_ ', '_len_ ', '__1t_ ',

' _mul_ ', '_ne_ ', ' _new ', ’'__reduce_ ', '__ _reduce_ex_ ',

' _repr_ ', '_reversed_ ', '_rmul_ ', ’__setattr_ ', ’'__setitem_ ',
! __setslice_ ', '__str__’, ’"append’, ’'count’, ’'extend’, ’'index’,
"insert’, ’pop’, ’remove’, ’'reverse’, ’'sort’]

As you can see, the Python’s list class includes a member function __iter__(), so we can make an iterator out
of it. Python provides the function iter() for this purpose, e.g.:

>>> 1 = iter (range(5))
>>> i.next ()
0

>>> i.next ()
1

Though the next() function didn’t show up in the listing above, it is in fact present:

>>> i.next
<method-wrapper ’'next’ of listiterator object at Oxb765f52c>

You can now understand what is happening internally in this innocent-looking for loop:

for i in range(8): print i

Internally, it’s doing

itr = iter(range(8))
while True:
try:
i = itr.next ()
print i
except:
raise Stoplteration

Of course it is doing the same thing for iterators that we construct from our own classes.

You can apply iter() to any sequence, e.g.:

>>> s = iter ('UC Davis’)
>>> s.next ()

!UI

>>> s.next ()

!CI

and even to dictionaries, where the iterator returns the keys.

You can also use iter() on any callable object.

R T - Y T NI SR

1.4 Applications to Situations with an Indefinite Number of Iterations

As stated above, the iterator approach often makes for more elegant code. But again, note the importance
of not having to compute the entire sequence at once. Having the entire sequence in memory would waste
memory and would be impossible in the case of an infinite sequence, as we have here. Our for loop above is
iterating through an infinite number of iterations—and would do so, if we didn’t stop it as we did. But each
element of the “sequence” is computed only at the time it is needed.

Moreover, this may be necessary, not just a luxury, even in the finite case. Consider this simple client/server
pair in the next section.

1.4.1 Client/Server Example

x.py, server
import socket, sys,os

def main() :
ls = socket.socket (socket.AF_INET, socket.SOCK_STREAM) ;
port = int(sys.argv[1l]
ls.bind((’", port))
ls.listen (1)
(conn, addr) = ls.accept()
while 1:
1 = raw_input ()
conn.send (1)
if _ name_ == '_ main__ ':
main ()

w.py, client
import socket,sys

def main():
s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
host = sys.argv[l]
port = int(sys.argv([2])
s.connect ((host,port))
flo = s.makefile('r’,0) # file-like object, thus iterable

for 1 in flo:
print 1

if name == '__main :
main ()

(If you do not know the makefile() function, see our Python network tutorial, at http://heather.cs.
ucdavis.edu/~matloff/Python/PyNet.pdf.)

The server reads lines from the keyboard. It sends each line to the client as soon as the line is typed.
However, if on the client side we had written

for 1 in flo.readlines:
print 1

instead of

http://heather.cs.ucdavis.edu/~matloff/Python/PyNet.pdf
http://heather.cs.ucdavis.edu/~matloff/Python/PyNet.pdf

T - Y I NI SR

S

[= R N

for 1 in flo:
print 1

then the client would print out nothing until all of flo is received, meaning that the user on the server end
typed ctrl-d to end the keyboard input, thus closing the connection.

Rather than being thought of as an “accident,” one can use exceptions as an elegant way to end a loop
involving an iterator, using the built-in exception type StoplIteration. For example:

class fibnum20:

def _ _init_ (self):
self.fn2 =1 # "f_{n-2}"
self.fnl =1 # "f_{n-1}"

def next (self):
(self.fnl,self.fn2,0l1dfn2) = (self.fnl+self.fn2,self.fnl,self.fn2)
if o0ldfn2 > 20: raise Stoplteration
return oldfn2

def _ _iter_ (self):
return self

>>> from fib20 import =
>>> g = fibnum20 ()
>>> for i in g:

i

=00 U W N

What happens is that iterating in the loop

>>> for i in g:

catches the exception StopIteration, which makes the looping terminate, and our “sequence” is finite.

1.4.2 “Circular” Array Example

Here’s an example of using iterators to make a “circular” array. In our tutorial on Python network pro-
gramming, http://heather.cs.ucdavis.edu/-matloff/Python/PyNet.pdf, we needed
to continually cycle through a list cs of client sockets

while (1):
get next client, with effect of a circular queue
clnt = cs.pop(0)

cs.append(clnt)

2 am slightly modifying it here, by assuming a constant number of clients.

http://heather.cs.ucdavis.edu/~matloff/Python/PyNet.pdf

R T N N N

E N T

Here’s how to make an iterator out of itE]

circular queue
class cq: # the argument g is a list
def __init__ (self,q):
self.g = g
def __iter_ (self):
return self
def next (self):
self.q = self.q[l:] + [self.qg[0]]
return self.q[-1]

Let’s test it:

>>> from cg import =*
>>> x = cq([1,2,3])
>>> x.next ()

>>> x.next ()

>>> x.next ()

>>> x.next ()

>>> x.next ()

With this, our while loop in the network program above would look like this:

cit = cqgl(cs)
for clnt in cit:
code using clnt

The code would iterate indefinitely.

Of course, we had to do a bit of work to set this up. But now that we have, we can reuse this code in lots of
different applications in the future, and the nice, clear form such as that above,

for clnt in cs:

adds to ease of programming and readability of code.

1.5 Overwriting the next() Function: File Subclass Example
As mentioned, one can use a file as an iterator. The file class does have member functions __iter__() and
next(). The latter is what is called by readline() and readlines(), and can be overriden.

Suppose we often deal with text files whose only elements are "0’ and ’1°, with the same number of elements
per line. We can form a class file01 as a subclass of file, and add some error checking:

3T’ve also made the code more compact, independent of the change to an iterator.

import sys

class fileOl(file):

def _ _init_ (self,name,mode,ni) :
file._ init_ (self,name,mode)
self.ni = ni

def next (self):
line = file.next (self)
items = line.split ()
if len(items) != self.ni:

print ’‘wrong number of items’
print line
raise Stoplteration
for itm in items:
if itm != '1’ and itm != ’0':
print ‘non-0/1 item:’, itm
raise StopIteration
return line

def main () :

f = fileOl(sys.argv([1l],’r’,int (sys.argv[2]))

for 1 in f: print 1[:-1]

if name == '_main__’: main{()

Here are some simple examples:

o

cat u

01

11

python fileOl.py u 3
01

11

python fileOl.py u 2
wrong number of items
101

o

o

O

o\

o

cat v

1b

01

python fileOl.py v 3
non-0/1 item: b

= e

o

One point to note here that you can open any file (not just of this new special kind) by simply creating an
instance of the file class. For example, this would open a file x for reading and print its lines:

f = file('x’",’x")
for 1 in f: print 1

I’ve used that fact in main() above.

Note also that in overriding file.next(), we still need to call it, in order to to read a line:

line = file.next (self)

1.6 Iterator Functions
1.6.1 General Functions

You can also make a real sequence out of an iterator’s “output” by using the list() function, though you of
course do have to make sure the iterator produces finite output. For example:

>>> from fib20 import =

>>> g = fibnum20 ()

>>> g

<fib20.fibnum20 instance at Oxb7e6c50c>
>>> list (g)

[, 1, 2, 3, 5, 8, 131

The functions sum(), max() and min() are built-ins for iterators, e.g.

>>> from fib20 import =
>>> g = fibnum20 ()

>>> sum(g)

33

1.6.2 The itertools Module
Here you can really treat an infinite iterator like a “sequence,” using various tools in this module.
For instance, iterators.islice() is handy:

>>> from itertools import =*

>>> g = fibnum/()

>>> list (islice (g, 6)) # slice out the first 6 elements
L, 1, 2, 3, 5, 8]

The general form of islice() is

itertools.islice(iteratorname, [start], stop, [stepl)

Here we get elements start, start + step, and so on, but ending before element sfop.

For instance:

>>> list (islice(g,3,9,2))
[3, 8, 21]

There are also analogs of the map() and filter() functions which operate on real sequences. The call

itertools.imap (f, iterl, iter2, ...)

returns the stream f(iter1[0],iter2[0],...), which one can then apply list() to.
The call

itertools.ifilter (boolean expression, iter)

applies the boolean test to each elment of the iterator stream.

10

2 Generators

2.1 General Structures

Generators are entities which generate iterators! Hence the name.

There are two main goals:

e Generators provide a cleaner, clearer, more convenient ways to create iterators.

e Generators can be used to create coroutines, which are quite useful in certain applications, notably
discrete-event simulation.

Roughtly speaking, a generator is a function that we wish to call repeatedly, but which is unlike an ordinary
function in that successive calls to a generator function don’t start execution at the beginning of the function.
Instead, the current call to a generator function will resume execution right after the spot in the code at which
the last call exited, i.e. we “pick up where we left off.”

The way this occurs is as follows. One calls the generator itself just once. That returns an iterator. This is a
real iterator, with __iter()__ and next() methods. The latter is essentially the function which implements our
“pick up where we left off” goal. We can either call next() directly, or use the iterator in a loop.

Note that difference in approach:

o In the case of iterators, a class is recognized by the Python interpreter as an iterator by the presence
of the __iter()__ and next() methods.

e By contrast, with a generator we don’t even need to set up a class. We simply write a plain function,
with its only distinguishing feature for recognition by the Python interpreter being that we use yield
instead of return.

Note, though, that yield and return work quite differently from each other. When a yield is executed, the
Python interpreter records the line number of that statement (there may be several yield lines within the
same generator). Then, the next time we call the .next() function of this same iterator that we generated
from the generator function, the function will resume execution at the line following the yield. Depending
on your application, the net effect may be very different from the iterators we’ve seen so far, in a much more
flexible way.

Here are the key points:
e A yield causes an exit from the function, but the next time the function is called, we start “where we
left off,” i.e. at the line following the yield rather than at the beginning of the function.

e All the values of the local variables which existed at the time of the yield action are now still intact
when we resume.

e There may be several yield lines in the same generator.

e We can also have return statements, but execution of any such statement will result in a StopIteration
exception being raised if the next() method is called again.

11

O % N U AW N -

© X NN AW -

S

© X NN AW -

e The yield operation has one operand (or none), which is the return value. That one operand can be a
tuple, though. As usual, if there is no ambiguity, you do not have to enclose the tuple in parentheses.

Read the following example carefully, keeping all of the above points in mind:

yleldex.py example of yield, return in generator functions

def gy ():
X = 2
y =3
yield x,y,x+ty
z = 12
yield z/x
print z/y
return

def main() :

g =g9y()
print g.next () # prints x,y,x+y
print g.next () # prints z/x

print g.next ()

if _ name_ == '_ _main__ ’:
main ()

% python yieldex.py

(2, 3, 95)

6

4

Traceback (most recent call last):
File "yieldex.py", line 19, in ?
main ()
File "yieldex.py", line 16, in main
print g.next ()
StopIteration

Note that execution of the actual code in the function gy(), i.e. the lines

does not occur until the first g.next() is executed.

2.2 Example: Fibonacci Numbers
As another simple illustration, let’s look at the good ol’ Fibonacci numbers again:

fibg,py, generator example; Fibonacci numbers
fn=f {n-1} + £_{n-2}

def fib():
fn2 =1 # "f_{n-2}"
fnl =1 # "f {n-1}"
while True:
(fnl, fn2,01dfn2) = (fnl+fn2, fnl, fn2)
yield oldfn2

12

O % N U AW N -

S O ® NN AW -

[Y R N I

>>> from fibg import =«
>>> g = fib()
>>> g.next ()

>>> g.next ()
>>> g.next ()
>>> g.next ()
>>> g.next ()

>>> g.next ()

Note that we do need to resume execution of the function “in the middle,” rather than “at the top.” We
certainly don’t want to execute

fnz2 =1

again, for instance. Indeed, a key point is that the local variables fnl and fn2 retain their values between
calls. This is what allowed us to get away with using just a function instead of a class. This is simpler and
cleaner than the class-based approach. For instance, in the code here we refer to fnl instead of self.fnl as
we did in our class-based version in Section In more complicated functions, all these simplifications
would add up to a major improvement in readability.

This property of retaining locals between calls is like that of locals declared as static in C. Note, though,
that in Python we might set up several instances of a given generator, each instance maintaining different
values for the locals. To do this in C, we need to have arrays of the locals, indexed by the instance number.
It would be easier in C++, by using instance variables in a class.

2.3 Example: Word Fetcher

The following is a producer/consumer example. The producer, getword(), gets words from a text file,
feeding them one at a time to the consumerE] In the test here, the consumer is testgw.py.

getword.py

the function getword() reads from the text file fl, returning one word
at a time; will not return a word until an entire line has been read

def getword(fl):
for line in f1l:
for word in line.split():
yield word
return

testgw.py, test of getword; counts words and computes average length
of words

usage: python testgw.py [filename]
(stdin) is assumed if no file is specified)

*1 thank C. Osterwisch for this much improved version of the code I had here originally.

13

from getword import =

def main() :
import sys
determine which file we’ll evaluate
try:
f = open(sys.argv[l]
except:
f = sys.stdin
generate the iterator
w = getword(f)
wcount = 0
wltot = 0
for wrd in w:
wcount += 1
wltot += len (wrd)
print "%d words, average length %f" % (wcount,wltot/float (wcount))

if name == '_main__ ':

main ()

2.4 Mutiple Iterators from the Same Generator

Note our phrasing earlier (emphasis added):

...the next time this generator function is called with this same iterator, the function will resume
execution at the line following the yield

Suppose for instance that we have two sorted text files, one word per line, and we wish to merge them into
a combined sorted file. We could use our getword() function above, setting up two iterators, one for each
file. Note that we might reach the end of one file before the other. We would then continue with the other
file by itself. To deal with this, we would have to test for the StopIteration exception to sense when we’ve
come to the end of a file.

2.5 The os.path.walk() Function

The function os.path.walk() inhttp://heather.cs.ucdavis.edu/~matloff/Python/PyFileDir.
pdf is a generator.

2.6 Don’t Put yield in a Subfunction

If you have a generator g(), and it in turn calls a function h(), don’t put a yield statement in the latter, as the
Python interpreter won’t know how to deal with it.

2.7 Coroutines

So far, our presentation on generators has concentrated on their ability to create iterators. Another usage for
generators is the construction of coroutines.

14

http://heather.cs.ucdavis.edu/~matloff/Python/PyFileDir.pdf
http://heather.cs.ucdavis.edu/~matloff/Python/PyFileDir.pdf

This is a general computer science term, not restricted to Python, that refers to subroutines that alternate in
execution. Subroutine A will run for a while, then subroutine B will run for a while, then A again, and so
on. Each a subroutine runs, it will resume execution right where it left off before. That behavior of course
is just like Python generators, which is why one can use Python generators for that purpose.

Basically coroutines are threads, but of the nonpreemptive type. In other words, a coroutine will continue
executing until it voluntarily relinquishes the CPU. (Of course, this doesn’t count timesharing with other un-
related programs. We are only discussing flow of control among the threads of one program.) In “ordinary”
threads, the timing of the passing of control from one thread to another is to various degrees random.

The major advantage of using nonpreemptive threads is that you do not need locks, due to the fact that you
are guaranteed that a thread runs until it itself relinquishes control of the CPU. This makes your code a lot
simpler and cleaner, and much easier to debug. (The randomness alone makes ordinary threads really tough
to debug.)

The disadvantage of nonpreemptive threads is precisely its advantage: Because only one thread runs at a
time, one cannot use nonpreemptive threads for parallel computation on a multiprocessor machine.

Some major applications of nonpreemptive threads are:

e servers
e GUI programs

e discrete-event simulation

In this section, we will see examples of both of these types of applications. And we will see the innards of a
Python class I wrote, thrd, which serves as a nonpreemptive threads library. The second example is SimPy,
a well-known Python discrete-event simulation library written by Klaus Muller and Tony Vignaux.

2.7.1 My thrd Class

Though most threading systems are preemptive, there are some prominent exceptions. The GNU PTH
library, for instance, is nonpreemptive and supports C/C++.

Generators make it easy to develop a nonpreemptive threads package in Python. The yield construct is
a natural way to relinquish the CPU, while “saving one’s place” in order to resume later. One writes the
threads manager to give a thread a turn by simply calling i.next(), where i is the iterator for the thread.
That’s what I’ve done here.

As an example of use of thrd, we’ll take the “string build” example presented in our units on networks and
threading, available athttp://heather.cs.ucdavis.edu/~matloff/Python/PyNet .pdf|and
http://heather.cs.ucdavis.edu/~-matloff/Python/PyThreads.pdf. Clients send char-
acters one at a time to a server, which accumulates them in a string, which it echoes back to the clients.

There are two major issues in the example. First, we must deal with the fact that we have asynchronous I/O;
the server doesn’t know which client it will hear from next. Second, we must make sure that the accumulated
string is always updated atomically.

Here we will use nonblocking I/0 to address the issue of asynchroneity. But atomicity will be no problem
at all. Again, since threads are never interrupted, we do not need locks. Here is the code for the server:

15

http://heather.cs.ucdavis.edu/~matloff/Python/PyNet.pdf
http://heather.cs.ucdavis.edu/~matloff/Python/PyThreads.pdf

O o N U AW N =

4=

HH o H

#

simple illustration of thrd module

multiple clients connect to server; each client repeatedly sends a
letter k, which the server adds to a global string v and echos back
to the client; k = '’ means the client is dropping out; when all
clients are gone, server prints final value of v

this is the server

import socket
import sys
from pth import =

class glbs: # globals

v = '’ # the string we are building up from the clients

class serveclient (thrd) :

def _ _init_ (self,id,c):
thrd.__init__ (self,id) # like Threading class, we subclass thrd

self.c = c[0] # socket for this client
self.c.send(’c’) # confirm connection
def run(self):
while 1:
receive letter or EOF signal from c
try:
k = self.c.recv(l)
if k == '’: break

concatenate v with k, but do NOT need a lock
glbs.v += k
self.c.send(glbs.v)

except:

pass
here comes the main difference; we use yield to relinquish
our turn; yield allows one argument, in this case the tuple
('clnt loop’,’pause’); the first element, ’'clnt loop’ is for
documentation and debugging purposes, but the second,
’'pause’, tells the threads manager what state we want this

thread to be in, in this case Run
yield ’"clnt loop’, ’'pause’
self.c.close()

def main() :

lstn = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
port = int(sys.argv[l]) # server port number
lstn.bind((’’, port))

lstn.listen(5)

initialize concatenated string, v

glbs.v = "7’
number of clients
nclnt = 2

accept calls from the clients
for i in range (nclnt):
(clnt,ap) = lstn.accept ()
clnt.setblocking (0) # set client socket to be nonblocking
start thread for this client, with the first argument being a

string ID I choose for this thread, and the second argument begin

(a tuple consisting of) the socket

t = serveclient ('client ’"+str (i), (clnt,))
shut down the server socket, since it’s not needed anymore
lstn.close ()
start the threads; the call will block until all threads are done

thrd.tmgr ()
print ’“the final value of v is’, glbs.v
if __name_ == '__main__ ’': main{()

Here is the client (which of course is not threaded):

16

O o N U AW N =

4=

simple illustration of thrd module

two clients connect to server; each client repeatedly sends a letter,
stored in the variable k, which the server appends to a global string
v, and reports v to the client; k = '’ means the client is dropping
out; when all clients are gone, server prints the final string v

HH o H

this is the client; usage is
python clnt.py server_address port_number

import socket
import sys

s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
host = sys.argv[l] # server address

port = int(sys.argv([2]) # server port
s.connect ((host, port))

confirm = s.recv(1l)
print confirm

while (1) :
get letter
k = raw_input ('enter a letter:’)

s.send (k) # send k to server
1f stop signal, then leave loop
if k == '’: break
v = s.recv(1024) # receive v from server (up to 1024 bytes)
print v
s.close() # close socket

Note that as with the Python threading module, the user must write a function named run which will
override the one built in to the thrd class. As before, that function describes the action of the thread. The
difference here, though, is that now this function is a generator, as you (and the Python interpreter) can tell
from the presence of the yield statement.

There is a separate thread for each client. The thread for a given client will repeatedly execute the following
cycle:

e Try to read a character from the client.
e Process the character if there is one.

e Yield, allowing the thread for another client to run.

Again, since a thread will run until it hits a yield, we don’t need locks.

Just as is the case with Python’s ordinary threads, thrd is good mainly for I/O-bound applications. While
one I/O action is being done in one thread, we can start another one in another thread. A common example
would be a Web server. But those applications would be too huge to deal with in this tutorial, so we have
that very simple toy example above.

Below is another toy example, even more contrived, but again presented here because it is simple, and
because it illustrates the set/wait constructs not included in the last example. There is really no way to
describe the actions it takes, except to say that it is designed to exercise most of the possible thrd operations.
Just look at the output shown below, and then see how the code works to produce that output.

17

O o N U AW N =

=T = N R N e

al starts

al x: 6

al pauses

a2 starts

a2 x: 17

a2 pauses

b starts

b pauses

cl starts

cl waits for
c2 starts
c2 waits
al z: 19
al waits
az z: 21
a2 waits
b.v: 8

b sets b-ev

al z: 19

al sets al-ev for all
cl quits

events:

b-ev: a2

al-ev:

c2 quits

events:

b-ev: a2

al-ev:

b sets b-ev but stays
b quits

az z: 21

a2 quits

al quits

al-ev
for al-ev
for b-ev

for b-ev

Here is the code:

from pth import =

class a(thrd):
def _ _init_ (self,thrid):
thrd._ _init__ (self,thrid)
self.x = None

self.y = None
self.z = None
self.num = int (self.id[1]

def run(self):

print self.id, ’starts’
self.x = 5+self.num
self.y = 12+self.num
print self.id, ’'x:’,
print self.id,
yield 71’,’pause’
self.z = self.x + self.y

print self.id, ’'z:’, self.z
print self.id, ’waits for b-ev’

self.x
’pauses’

yield "2’,’wait’,’b-ev’ # enter
event

print self.id, ’'z:’, self.z

if self.id == ’al’:

print ’"al sets al-ev for all’
yield ’"2a’,’set_all’,’al-ev’

print self.id,
yield 73’,’quit’

"quits’
thread exits

class b (thrd):

state in Run state

Sleep state,
named ’b-ev’

waiting for the

wake up all threads waiting for
the event ’al-ev’

18

31
32
33
34

36
37
38
39
40
41
42
43
44
45
46
47
48

50
51
52
53
54
55
56
57
58
59

61
62
63
64
65
66
67
68
69

© 0 NN AW N —

def _ _init_ (self,thrid):
thrd._ _init__ (self,thrid)
self.u = None
self.v = None
def run(self):
print 'b starts’
self.u = 5
print ’b pauses’
yield "11’,’pause’ # stay in Run state
self.v = 8
print "b.v:’, self.v
print 'b sets b-ev’
yield "127,’set’,’b-ev’ # wake just one thread waiting for ’b-ev’
print b sets b-ev but stays’
yield "uv’,’set_but_stay’,’'b-ev’ # wake a thread but do NOT pause
print 'b quits’
yield 'our last one’,’quit’ # exit

class c(thrd):
def __init_ (self,thrid):
thrd.__init__ (self,thrid)
def run(self):
print self.id, ’starts’
print self.id, 'waits for al-ev’
yield ’"cwait’,’wait’,’al-ev’ # wate for ’"al-ev’
print self.id, ’"quits’
thrd.prevs (
yield ‘cquit’,’quit’ # exit
def main () :
the next few lines create a bunch of threads
tal = a(’al’)
ta2 = a(’a2’")
tbh = b('b")
tcl = c('cl’)
tc2 = c('c2")
thrd.tmgr () # start the threads manager, so threads begin

if name == '_main__’': main()

Now, how is all this done? Below is the code for the thrd library.

First read the comments at the top of the file, and then the __init()__ code. Then glance at the code for the
threads manager . The latter repeatedly does the following:

e get the first thread in the runnable list, thr

e have it run until it hits a yield, by calling thr.itr.next()

e take whatever action (pause, wait, set, etc.) that the thread requested when it yielded

Then you should be able to follow the thrd member functions fairly easily.

pth.py: non-preemptive threads for Python; inspired by the GNU PTH

package for C/C++

typical application will have one class for each type of thread; its

main() will set up the threads as instances of the classes, and lastly

will call thrd.tmgr ()

each thread type is a subclass of the class thrd; in that subclass,
the user must override thrd.run(), with the code consisting of the

19

B

HH

HH = H HH = H HH o H

4=

actions the thread will take

threads actions are triggered by the Python yield construct, in the
following format:

vield yieldID, action_string [, arguments]
the yieldID is for application code debugging purposes
possible actions:

yield yieldID, ’pause’:
thread relinquishes this turn, rejoins runnable list at the end

yvield yieldID, ’'wait’, eventID:
thread changes state to ‘waiting’, joins end of queue for
the given event

yield yieldID, ’'set’, eventID:
thread sets the given event, rejoins runnable list at the end;
the thread, if any, at head of queue for this event is inserted
at the head of the runnable list

yield yieldID, ’set_but_stay’, eventID:
thread sets the given event, but remains at head of runnable list;
thread, if any, at head of queue for the event is inserted in
runnable list following the head

yield yieldID, ’'set_all’, eventID:
thread sets the given event, rejoins runnable list at the end;
all threads in queue for the event are inserted at the head of
the runnable list, in the same order they had in the queue

yield yieldID, ’'quit’:
thread exits

class thrd:

runlst = [] # runnable thread list

evnts = {} # a key is an event ID, a string; value is a list of
threads waiting for that event

waitlst = [] # waiting thread list

didyield = None # thread that last performed a yield op; for
application code debugging purposes

def _ _init_ (self,id):
self.id = id # user-supplied string

self.state = 'runnable’ # the other possible state is 'waiting’
self.yieldact = '’ # action at last yield; for application code
debugging purposes
self.waitevnt = '’ # what event this thread is waiting for, if any;
for application code debugging purposes
self.itr = self.run() # this thread’s iterator

thrd.runlst.append(self)

def run(self): # stub, must override
pass

triggered by: vyield yieldID, ’pause’
def do_pause (self,yv):
del thrd.runlst[0]
thrd.runlst.append(self)

triggered by: vyield yieldID, ’wait’, eventID
def do_wait (self,yv):

del thrd.runlst[0]

self.state = "waiting’

self.waitevnt = yv[2]

20

78 # check to see if this is a new event

79 if yv[2] not in thrd.evnts.keys():

80 thrd.evnts[yv[2]] = [self]

81 else:

82 thrd.evnts[yv[2]].append(self)

83 thrd.waitlst.append(self)

84

85 # reactivate first thread waiting for this event, and place it at
86 # position pos of runlst

87 def react (ev,pos):

88 thr = thrd.evnts[ev].pop(0)

89 thr.state = ’runnable’

90 thr.waitevnt = "’/

91 thrd.waitlst.remove (thr)

92 thrd.runlst.insert (pos, thr)

93 react = staticmethod (react)

94

95 # triggered by: vyield yieldID, ’set’, eventID
96 def do_set (thr,yv):

97 del thrd.runlst[O0]

98 thrd.runlst.append (thr)

99 thrd.react (yv([2],0)

100 do_set = staticmethod (do_set)

101

102 # triggered by: vyield yieldID, ’set_but_stay’
103 def do_set_but_stay (thr,yv):

104 thrd.react (yv[2],1)

105 do_set_but_stay = staticmethod(do_set_but_stay)
106

107 # triggered by: vyield yieldID, ’set_all’, eventID
108 def do_set_all(self,yv):

109 del thrd.runlst[0]

110 ev = yv[2]

111 for i in range(len(thrd.evnts[ev])):

112 thrd.react (ev, i)

113 thrd.runlst.append(self)

114

115 # triggered by: yield yieldID, ’quit’

116 def do_quit (self,yv):

117 del thrd.runlst[0]

118

119 # for application code debugging

120 # prints info about a thread

121 def prthr(self):

122 print ’ID: %s, state: %s, ev: %s, yldact: $s’ % \
123 (self.id, self.state, self.waitevnt, self.yieldact)
124

125 # for application code debugging

126 # print info on all threads

127 def prthrs():

128 print ’runlst:’

129 for t in thrd.runlst:

130 t.prthr()

131 print 'waiting list:’

132 for t in thrd.waitlst:

133 thrd.prthr (t)

134 prthrs = staticmethod(prthrs)

135

136 # for application code debugging

137 # printf info on all events

138 def prevs():

139 print ’events:’

140 for eid in thrd.evnts.keys () :

141 print ’%s:’ % eid,

142 for thr in thrd.evnts[eid]:

143 print thr.id,

144 print

145 prevs = staticmethod (prevs)

21

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

© 0 N AW N —

threads manager
def tmgr():
while still have runnable threads, cycle repeatedly through them
while (thrd.runlst):
get next thread
thr = thrd.runlst[0]
call it
yieldvalue = thr.itr.next ()
the above call to next () runs the thread until a yield, with
the latter returning yieldvalue
thr.yieldID = yieldvalue[O0]
thrd.didyield = thr
call the function requested in the yield
yvl = yieldvalue[l] # requested action
thr.yieldact = yvl
actftn = eval ('thrd.do_’+yvl)
actftn (thr,yieldvalue)
tmgr = staticmethod (tmgr)

2.7.2 The SimPy Discrete Event Simulation Library

In discrete event simulation (DES), we are modeling discontinuous changes in the system state. We may
be simulating a queuing system, for example, and since the number of jobs in the queue is an integer, the
number will be incremented by an integer value, typically 1 or -1 E| By contrast, if we are modeling a weather
system, variables such as temperature change continuously.

SimPy is a widely used open-source Python library for DES. Following is an example of its use:

#!/usr/bin/env python

MachRep.py

SimPy example: Two machines, but sometimes break down. Up time is

exponentially distributed with mean 1.0, and repair time is

exponentially distributed with mean 0.5. 1In this example, there is

only one repairperson, so the two machines cannot be repaired

simultaneously if they are down at the same time.

In addition to finding the long-run proportion of up time, let’s also
find the long-run proportion of the time that a given machine does not
have immediate access to the repairperson when the machine breaks

down. Output values should be about 0.6 and 0.67.

from SimPy.Simulation import =
from random import Random, expovariate,uniform

class G: # globals
Rnd = Random (12345)
create the repairperson
RepairPerson = Resource (1)

class MachineClass (Process) :
TotalUpTime = 0.0 # total up time for all machines
NRep = 0 # number of times the machines have broken down
NImmedRep = 0 # number of breakdowns in which the machine
started repair service right away
UpRate = 1/1.0 # breakdown rate
RepairRate = 1/0.5 # repair rate
the following two variables are not actually used, but are useful
for debugging purposes

Batch queues may take several jobs at a time, but the increment is still integer-valued.

22

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

60
61
62
63
64
65
66
67
68
69
70
71

NextID = 0 # next available ID number for MachineClass objects

NUp = 0 # number of machines currently up
def _ init_ (self):
Process.__init__ (self)

self.StartUpTime = 0.0 # time the current up period stated
self.ID = MachineClass.NextID # ID for this MachineClass object
MachineClass.NextID += 1
MachineClass.NUp += 1 # machines start in the up mode
def Run(self):
while 1:
self.StartUpTime = now ()
yield hold, self,G.Rnd.expovariate (MachineClass.UpRate)
MachineClass.TotalUpTime += now() - self.StartUpTime
update number of breakdowns
MachineClass.NRep += 1
check whether we get repair service immediately
if G.RepairPerson.n ==
MachineClass.NImmedRep += 1
need to request, and possibly queue for, the repairperson
yield request,self,G.RepairPerson
OK, we’ve obtained access to the repairperson; now
hold for repair time
yield hold, self,G.Rnd.expovariate (MachineClass.RepairRate)
release the repairperson
yield release,self,G.RepairPerson
def main () :
initialize ()
set up the two machine processes
for I in range(2):
M = MachineClass ()
activate (M,M.Run())
MaxSimtime = 10000.0
simulate (until=MaxSimtime)
print ’proportion of up time:’, MachineClass.TotalUpTime/ (2xMaxSimtime)
print ‘proportion of times repair was immediate:’, \
float (MachineClass.NImmedRep) /MachineClass.NRep

if name == '_main__': main()

There is a lot here, but basically it is similar to the thrd class we saw above. If you were to look at the
SimPy internal code, SimPy.Simulation.py, you would see that a large amount of it looks like the code in
thrd. In fact, the SimPy library could be rewritten on top of thrd, reducing the size of the library. That
would make future changes to the library easier, and would even make it easier to convert SimPy to some
other language, say Ruby.

Read the comments in the first few lines of the code to see what kind of system this program is modeling
before going further.

Now, let’s see the details.

SimPy’s thread class is Process. The application programmer writes one or more subclasses of this one to
serve as thread classes. Similar to the case for the thrd and threading classes, the subclasses of Process
must include a method Run(), which describes the actions of the thread. The SimPy method activate() is
used to add a thread to the run list.

The main new ingredient here is the notion of simulated time. The current simulated time is stored in the
variable Simulation._t. Each time an event is created, via execution of a statement like

yield hold, self, holdtime

23

SimPy schedules the event to occur holdtime time units from now, i.e. at time _t+holdtime. What I mean
by “schedule” here is that SimPy maintains an internal data structure which stores all future events, ordered
by their occurrence times. Let’s call this the scheduled events structure, SES. Note that the elements in SES
are threads, i.e. instances of the class Process. A new event will be inserted into the SES at the proper place
in terms of time ordering.

The main loop in SimPy repeatedly cycles through the following:

Remove the earliest event, say v, from SES.

Advance the simulated time clock Simulation._t to the occurrence time of v.

Call the iterator for v, i.e. the iterator for the Run() generator of that thread.

After Run() does a yield, act on whatever operation it requests, such as hold.

Note that this is similar to, though different from, an ordinary threads manager, due to the time element. In
ordinary threads programming, there is no predicting as to which thread will run next. Here, we know which
one it will be (as long as there are no tied event times, which in most applications do not occur).

In simulation programming, we often need to have one entity wait for some event to occur. In our example
here, if one machine goes down while the other is being repaired, the newly-broken machine will need to
wait for the repairperson to become available. Clearly this is like the condition variables construct in most
threads packages, including the wait and set operations in thrd, albeit at a somewhat higher level.

Specifically, SimPy includes a Resource class. In our case here, the resource is the repairperson. When a
line like

yield request,self,G.RepairPerson

is executed, SimPy will look at the internal data structure in which SimPy stores the queue for the repairper-
son. If it is empty, the thread that made the request will acquire access to the repairperson, and control will
return to the statement following yield request. If there are threads in the queue (here, there would be at
most one), then the thread which made the request will be added to the queue. Later, when a statement like

yield release,self,G.RepairPerson

is executed by the thread currently accessing the repairperson, SimPy will check its queue, and if the queue
is nonempty, SimPy will remove the first thread from the queue, and have it resume execution where it left
oft[f]

Since the simulated time variable Simulation._t is in a separate module, we cannot access it directly. Thus
SimPy includes a “getter” function, now(), which returns the value of Simulation._t.

Most discrete event simulation applications are stochastic in nature, such as we see here with the random
up and repair times for the machines. Thus most SimPy programs import the Python random module, as in
this example.

SThis will not happen immediately. The thread that triggered the release of the resource will be allowed to resume execution
right after the yield release statement. But SimPy will place an artificial event in the SES, with event time equal to the current time,
i.e. the time at which the release occurred. So, as soon as the current thread finishes, the awakened thread will get a chance to run
again.

24

	Iterators
	What Are Iterators? Why Use Them?
	Example: Fibonacci Numbers
	The iter() Function
	Applications to Situations with an Indefinite Number of Iterations
	Client/Server Example
	``Circular'' Array Example

	Overwriting the next() Function: File Subclass Example
	Iterator Functions
	General Functions
	The itertools Module

	Generators
	General Structures
	Example: Fibonacci Numbers
	Example: Word Fetcher
	Mutiple Iterators from the Same Generator
	The os.path.walk() Function
	Don't Put yield in a Subfunction
	Coroutines
	My thrd Class
	The SimPy Discrete Event Simulation Library

