
Name:

Directions: Work only on this sheet (on both sides, if needed); do not turn in any supplementary sheets of paper.
There is actually plenty of room for your answers, as long as you organize yourself BEFORE starting writing.

1. Consider the variable e.events.

(a) (5) Suppose in executing a SimPy program, the first three invocations of yield hold had hold time (i.e. the
third operand for yield) of 0.52, 0.18 and 0.98, all executed at time 0.0. Show the current value of e.events,
making sure to use the correct Python syntax.

(b) (10) Suppose SimPy were to be changed to use a calendar queue instead of is current approach, which essentially
involves a linear linked list. State the numbers of all lines in the function e. post() in Simulation.py which
would be need to be changed. The structure e.events will not change.

2. Consider the program MachRep4.py in our PLN unit on advanced SimPy.

(a) (10) For each of the class variables UpRate and K in MachineClass, state the effect of increasing the value
of that variable (while holding the other constant) on the long-run proportion of up time. In each case, answer
either (i) increase, (ii) decrease or (iii) could either increase or decrease.

(b) (10) There is an error in main(). Identify it.

(c) (5) Suppose we were to have another error in main(), in the form of inclusion of a yield statement, say inserted
after the call to initialize(). Give a complete list of the numbers of the lines which would execute.

3. (10) Consider the program Bus5.py in our PLN unit on analysis of simulation output. Suppose that in addition
to estimating E(W) and P(W > 6.2), we wish to also estimate P(W > 10 | W > 6.2). Show what code to add in
order to compute and print out this estimate and a margin of error for it. Be very clear as to where your new
code is to be inserted.

4. Write two functions for random number generation, both using the inverse transformation method. Assume they
will be added to the Python random module.

(a) (10) A function rand05(self), for generating variates from the density 0.5t−0.5 on (0,1).

(b) (10) A function randpois(self,mu), for generating variates from a Poisson distribution with mean µ.

5. (10) Consider the program QoS.py in our PLN unit on advanced SimPy. Suppose a line

G.Mon = Monitor()

is added to main(), with a corresponding line in G. Add code which uses the monitor to collect data so that we will
later be able to form a confidence interval for the mean number of video packets in the queue for the channel, via
the regenerative method. Be very clear as to where your new code is to be inserted.

6. (10) Write a function regen(self) to be added to the Monitor class, for use in computing regenerative confidence
intervals. It will return a tuple (cntr,rad), consisting of the center and radius of the confidence interval. It is assumed
that the function observe() is called at regeneration points.

7. (10) Suppose we are simulating an M/M/1 queue. This means there is a single server, and that service and
interarrival times have the distributions U(0,1) and U(c-0.5,c+0.5), respectively. The question at hand is whether
to scan the event list from the front or the back. Give precise conditions on c under which it is better to start
from the back. (If you cannot give precise conditions, then give vague ones.) Hint: You may find our formula
V ar(R) = E(R2)− [E(R)[2 useful.

Solutions:

1.a

{0.52:[iterator address], 0.18:[iterator address], {0.98:[iterator address]}

1

1.b The data structure e.timestamps will no longer be a simple linked list. Thus line 200 must be changed. No
other changes are necessary.

2.a If UpRate is increased, the machine goes down faster, hence decreased up time. If K is increased, the repair-
person is summoned earlier, thus increased up time.

2.b In line 73, 2 should be MachineClass.R.

2.c Having a yield in main() makes the latter a generator. Thus calling it returns an iterator rather than resulting
in the function executing. The only line to execute would be

if __name__ == ’__main__’: main()

3.a After line 21, insert

gt70 = 0

Replace line 26 by

if wait > 6.2:

gt62 += 1

if wait > 7:

gt70 += 1

At the end of main(), insert

p7062 = gt70/float(gt62)

print ’the estimated value of P(W > 7.0 | W > 6.2) is’, p7062

me = 1.96*sqrt(p7062*(1-p7062)/gt62)

print ’its margin of error is’, me

Note in particular that one divides by gt62 instead of by nreps.

4.a Let H denote the corresponding cdf, which by integration we see is t0.5 on (0,1). Then its inverse is G(u) = u2

on (0,1). Thus our function is

def rand05(self):

u = self.uniform(0,1)

return u*u

4.b Use the material in the section titled “The Inverse Transformation Method” in the section titled “Generating
Random Numbers from Discrete Distributions” in our PLN on random number generators.

from math import exp

def randpois(self,mu):

lamb = 1.0/mu

u = self.uniform(0,1)

q = exp(-lamb)

k = 0

while True:

if u <= q: return k

k += 1

q *= lamb/k

5. We cannot use PerSmp here, as it is entirely unsuited for the regenerative method.

First we must choose a set of regeneration points. The simplest set would consist of the times at which the queue
length becomes zero. Doing the same thing for a queue length of one would not work, due to the nonexponential
nature of the data packet lengths, though it would work if we imposed the additional condition that there is currently
no data packet in the system. Then, during each regeneration cycle we would have code to keep track of the time-
integrated queue length, TimeInt. Up hitting a regeneration point, we would call

G.Mon.observe(TimeInt)

2

6. The monitor will consist of a list of two-element lists [a, b], where a is the simulated time at which observe() is
called and b is the argument in that call. Then

• the ith value of b is Ci

• the difference between the ith and (i-1)st values of a is Di

• n is len(self)

Thus the code is

from math import sqrt

def regen(self):

csum = 0

csum2 = 0

dsum = 0

dsum2 = 0

cdsum = 0

n = len(self)

for i in range(n):

si = self[i]

ci = si[1] # C_i

csum += ci

csum2 += ci**2

D_i

if i == 0: di = si[0]

else: di = si[0] - self[i-1][0]

dsum += di

dsum2 += di**2

cdsum += ci * di

cbar = csum/n

dbar = dsum/n

gammahat = cbar/dbar

sx = csum2/n - cbar**2

sx += gammahat**2*(dsum2/n - dbar**2)

sx -= 2*gammahat*(cdsum/n - cbar*dbar)

return (gammahat, 1.96*sqrt(sx/n)/dbar)

7. Since there will be as many services as arrivals, the distribution of hold time H is a mixture of two uniforms with
range 1, one with mean 1 and the other with mean c, with 0.5 weighting on each. So,

For the service times S, we have

E(S2) = V ar(S) + [E(S)]2 =
1
12

+ 0.52 =
1
3

(1)

Similarly, for the interarrival times I, we have E(I2) = 1
12 + c2.

V ar(H) = E(H2)− [E(H)]2 (2)

= 0.5
(

1
3

)
+ 0.5(

1
12

+ c2)− [0.5(0.5) + 0.5(c)]2 (3)

=
1
6

+
1
24

+ 0.5c2 − 0.25(0.5 + c)2 (4)

=
10
48

− 1
16

− 0.25c + 0.25c2 (5)

=
7
48

− 1
4
· c +

1
4
· c2 (6)

Thus the cutoff point is found by setting this to 1 and solving for c. We get

c =
12 +

√
2112

24
≈ 2.42 (7)

3

In other words, start at the back if c > 2.42.

Some people got partial credit for giving reasoned, intuitive explanations as to why if c is “very large,” we should
start at the back.

4

