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e “Everyone has opinions.
e I'll present mine.

e Dissent is encouraged. :-)

Disclaimer
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Davis e 4 cores standard, 16 not too expensive
e GPUs
e Intel Xeon Phi, ~ 60 cores (!), coprocessor, as low as a
few hundred dollars
e Big Data

e Whatever that is.

Result: Users believe,

“I've got the hardware and I've got the data need —

so | should be all set to do parallel computation in R
on the data.”

But this “rule” is “honored in the breach,” as the Brits say.
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Not So Simple

e “Embarrassingly parallel” (EP) vs. non-EP algorithms.

e EP: Problem can be easily broken down in independent
tasks, with easy combining. Embarrassing is good — but
not common enough.

e Overhead issues:

Contention for memory/network.

Bandwidth limits — CPU/memory, CPU /network,
CPU/GPU.

Cache coherency problems (inconsistent caches in
multicore systems).

Contention for |/O ports.

OS/R limits on number of sockets (network connections).
Serialization.
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Wish List

e Ability to run on various types of hardware — from R.
e Ease of use for the non-cognoscenti.

e Parameters to tweak for the experts or the daring.
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e Overview of existing parallel computation options for R
users.

o Level in terms of abstraction, i.e. high-level constructs.
e Level in terms of tech sophistication needed.

“Help, I'm in over my head here!” — a prominent
R developer, entering the parallel comp. world.

e “Cinderellas”: Many users are being overlooked.
e Not enough automatic, tranparent parallelism.

e Not enough for quants, e.g. for time series methods.
e Well then, what can be done?
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’ software ‘ abstr. level

‘ handle non-EP ‘ sophis. level

C++/OpenMP low very good very high
C++/GPU low poor super high
RcppPar. pkg low good very high
parallel pkg medium medium medium
Rdsm pkg low good high
Spark/R pkgs medium poor high
Rmpi pkg low good high
foreach pkg medium poor medium
partools pkg medium good | high medium
future pkg medium medium | high medium

(OpenMP: standard library for

parallelizing on multicore)
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e R has an impressive array of parallel software tools
available. Better than Python!

e However, all of those tools require a fair amount of
programming sophistication to use.
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Speciality Packages with
Transparent Parallelism

e Using OpenMP, e.g. xgboost, recosystem.
e Using GPU, e.g. gmatrix (not active?).
e Even though transparent to the user in principle, may still

need expertise in hardware/systems to make it run well.
E.g. choice of number of threads, memory capacity issues.
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In Other Words...

We need to FACE FACTS.

The days in which data scientists could rely on “black
boxes” are GONE.

One needs to have at least some knowledge of the innards:

e Machine Learning tuning parameters — defaults underfit,
naive grid search selection overfits.

e For effective parallel computation, one must be adept at
coding and at software “tuning parameters,” e.g. number
of threads.

Little or no hope for good automatic parallelism.
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Now let's turn to time series. (Disclaimer: | am not an expert
in time series.)

Some parallel methods have been developed.

E.g., if large matrices are involved (say models with long
memory), one can use OpenMP to parallelize matrix
computations

In some cases one can find a clever way to parallelize a
specific algorithm (F. Belletti, arXiv, 2015).

But it's much harder than for i.i.d. models.
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Possible Obstacles

Matrix addition/multiplication is EP, but inversion is not.

Parallelization based on math structures difficult to show
asymptotic validity.

Breaking t.s. data into chunks might not be EP, due to
boundary effects. E.g. computing number of consecutive
periods in which value is above a threshold — could span
two chunks, or even more.

Hyndman's Rule: Any time series model eventually starts
to go bad after very long lengths.
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Our partools Package

On CRAN, but go to github.com/matloff for the latest
version.

Large variety (78+) of functions for parallel data
manipulation and computation.

Some functions do a lot, some just a little. The latter can
be combined into powerful tools, as with Unix/Linux/Mac
scripting.

Built on top of parallel pkg., plus our own MPI-like
internal system.
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Themes

“Leave It There” (LIT) theme: Keep data distributed as
long as possible throughout an analysis session, to avoid
costly communications delays. Borrows distrib. object
approach from Hadoop/Spark but much more flexible.

“Software Alchemy” — convert non-EP to stat. equivalent
EP, thus easy parallelization.
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Possible Obstacles

Can we extend partools to time series applications? Must
overcome:

e Boundary effects problems.
e SA predicated on i.i.d.
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Sample partools Session

Wikipedia page-access data, Kaggle, 145063 time series of
length 550.

Say we wish to run arma() for each page. Each is quick,
but 145K of them takes some time. Say we are interested
only in arl.

Afterward, we will perform various other operations.

By LIT Principle, first distribute the data to the workers,
then avoid collecting it back to the manager node if
possible.
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Serial Version

wd < as.matrix(read.csv('train_1l.csv'))
wdc < wd[complete. cases(wd),]
armac + function(x)
{z +< NA; try(z < arma(x)$coef[1]}; z)
system .time(z < apply(wdc,1,armac))
# 624.452 0.164 624.648
# find the ones with weak correlation
# for further analysis
wdlt05 < wdc[z < 0.5,]
# various further ops (not shown)
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Same But with partools

The plan:

e Distribute the data and LIT. Work on it solely in
distributed form as much as possible.

e Distrib. by calling partools:::distribsplit(), then later save
using partools:::filesave().
e The chunks all have the same name, in this case wdc.

The manager then issues commands via clusterEvalQ(),
the same command to each worker.

e At end of session, save to partools distributed file, so
don’t need to redistribute next time.



Parallel Version

(O @ (=»

«E»

Q>



Statistical
Cinderella:
Parallel
Computation
for the Rest of
Us

Norm Matloff

University of

California at
Davis

Parallel Version

cls « makeCluster(4) # ’parallel ’ cluster
setclsinfo(cls) # init ’partools’

distribsplit(cls, 'wdc’) # distrib. to workers

clusterEvalQ (cls ,library(tseries))
clusterExport(cls, "armac’)
system.time(clusterEvalQ (cls,

arl «+ apply(wdc,1,armac)))
# 0.024 0.000 180.653
clusterEvalQ (cls ,wdlt05 < wdc[arl < 0.5,])
# various further ops (not shown)
# now save, in wdc.l, wdc.2 ,...
filesave(cls, 'wdc’','wdc',1,",")

# LIT!
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Parallel Version

cls « makeCluster(4) # ’parallel ’ cluster
setclsinfo(cls) # init ’partools’
distribsplit(cls, 'wdc’) # distrib. to workers
clusterEvalQ (cls ,library(tseries))
clusterExport(cls, "armac’)
system . time(clusterEvalQ (cls,

arl «+ apply(wdc,1,armac)))
# 0.024 0.000 180.653
clusterEvalQ (cls ,wdlt05 + wdc[arl < 0.5,]) # LIT!
# various further ops (not shown)
# now save, in wdc.l, wdc.2 ,...
filesave(cls, 'wdc’','wdc',1,",")

The one-time overhead of distributing the data will continue
to pay off in further analyses.
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More LIT Helpers

Can distribute the file directly, using partools:::filesplit().
The functions fileread() and filesave() automatically add
a suffix to the name for chunk number, e.g. wdc.1.

If do need to “undistribute,” distribcat() will do so,
adding the proper header.

Functions such as dwhich.min() treat a distributed data
frame as a virtual single d.f., returning row number within
chunk number.

Etc.
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Software Alchemy: Parallel
Computation for the Masses

e | call this approach Software Alchemy (SA) (Matloff, JSS,
2016). Method independently proposed by several authors

e Very simple idea:
e Break the data into disjoint chunks.

* Apply the estimator to each chunk, getting é\, for chunk /.
o Average the 6; to get overall 6.

e For ML classification algs, “vote” among chunks.

e Converts non-EP to stat. equivalent EP. Thus easy
parallelization, possibly even superlinear speedup.

e The partools package has a number of SA ops available.
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e Not i.i.d. but stationarity and finite memory should be
enough to prove that it works.

e Should work for ARMA, ARIMA, GARCH, etc.

o All this should be considered preliminary.
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Example

library (TSA)

z < garch.sim(alpha=c(.01,0.9),n=5000000)
system . time(print(garch(z)))

# Coefficient (s):

# a0 al bl

# 1.001e—02 8.980e—01 3.775e—12

# 13.088 0.140 13.228

cls « makeCluster(2)

setclsinfo(cls)

distribsplit(cls,'z")

system . time(zc2 + clusterEvalQ (cls, garch(z)$coef))
# 0.000 0.000 5.925

Reduce('+',zc2) / 2

# a0 al bl
# 1.004293e—-02 8.910964e—-01 3.120723e—-05
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SA version pretty good, 2X speed with coeffs close. But a
4-worker run gave 0.83 for al, a bit further off.
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Example

library (TSA)

z < garch.sim(alpha=c(.01,0.9),n=5000000)
system . time(print(garch(z)))

# Coefficient (s):

# a0 al bl

# 1.001e—02 8.980e—01 3.775e—12

# 13.088 0.140 13.228

cls « makeCluster(2)

setclsinfo(cls)

distribsplit(cls,'z")

system .time(zc2 + clusterEvalQ(cls, garch(z)$coef))
# 0.000 0.000 5.925

Reduce('+',zc2) / 2

# a0 al bl
# 1.004293e—-02 8.910964e—-01 3.120723e—-05

SA version pretty good, 2X speed with coeffs close. But a
4-worker run gave 0.83 for al, a bit further off.
More study needed!
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No “silver bullet.” But the following should go a long way
toward your need for parallel computation.

e “Leave it there” and distributed objects/files.

e SA, previously shown to work well on i.i.d. shows promise
time series.

e The partools package adds a lot of convenience.

Ready for the dissent. :-)

And sorry if | have omitted your favorite software. Just let me
know. :-)



