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Co-speech gestures are a vital ingredient in making virtual agents more human-like and engaging. Automatically generated ges-
tures based on speech-input often lack realistic and defined gesture form. We present a database-driven approach guaranteeing
defined gesture form. We built a large corpus of over 23,000 motion-captured co-speech gestures and select individual gestures
based on expressive gesture characteristics that can be estimated from speech audio. The expressive parameters are gesture
velocity and acceleration, gesture size, arm swivel, and finger extension. Individual, parameter-matched gestures are then com-
bined into animated sequences. We evaluate our gesture generation system in two perceptual studies. The first study compares
our method to the ground truth gestures as well as mismatched gestures. The second study compares our method to five cur-
rent generative machine learning models. Our method outperformed mismatched gesture selection in the first study and showed
competitive performance in the second.

1 | INTRODUCTION

Much previous research has explored methods for automatically generating gesture motion from speech or text input. Solely
relying on speech prosody is attractive as this is a readily obtainable and automatically analyzable input signal. Speech-based
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generative models attempt to capture the prosodic variation in the input speech and its relationship to the gesture motion. How-
ever, a common result is averaged motion lacking realistic and defined gesture form. One problem driving this may be the
modelling of gestures by means of exact joint positions or angles. Natural gesture behavior is variable, with many different ges-
ture motions co-occurring with the same or similar utterance(s) at different times or across speakers. Joint position or angle
representations of gesture impose a strong constraint for a generative model; even when a valid-looking, novel gesture is pro-
duced it may be penalized heavily during training if it is numerically far from the ground truth pose sequence. This can result
in lethargic motion close to the mean pose that lacks definition.

Instead of modelling an implicit relationship of exact, high—dimensional joint poses and the speech signal, we use a higher
level representation of the gesture motion through expressive parameters shown in previous work to be associated with the
speech signal as well as being perceptually important to the quality of the speech-gesture match'l. These gesture parameters are
gesture velocity, acceleration, size, arm swivel angle and extent of hand opening.

We propose a full end-to-end speech-to-motion pipeline. Our method uses a merged approach of machine learning and
database sampling to produce realistic gesture form, building on recent preliminary work by Ferstl et al.2. Offline, a machine
learned model first establishes the speech-gesture relationship by encoding the relationship between acoustic speech features and
expressive gesture parameters. Online, the speech signal is then used to automatically extract gesture timing; given the speech
signal and gesture timing as input, the model estimates gesture parameters that are then used to search a gesture database for the
gestures that best match the predicted expressive parameters. We evaluate the method with two perceptual studies, including a
comparison against the state-of-the-art machine learning approaches.

Our final contribution is making our dataset of 6 hours openly available, which we believe is the largest natural conversational
dataset of synchronized motion capture and speech recordings to be published open-source, as well as our gesture-by-gesture
segmentation of 10 hours (~23,700 gestures) of conversational data.

2 | RELATED WORK

Efforts in automatic gesture generation can largely be divided into three groups; rule based, statistical models, and generative
machine learning models. Rule based approaches use explicit phrase-to-gesture mappings="-, strongly limiting the amount of
gesture variety. Statistical models use estimated conditional probabilities of specific speech features co-occurring with a set of
motion features and can produce realistic gesture form as gesture sequences are built from parts of true motion data. For example,
Neff et al.® annotated video corpora with gestural lexemes and semantic tags, and generate new gesture sequences procedurally
generating the likely lexemes given a set of input semantics. Bergmann and Kopp” compute likelihoods of more detailed, hand-
coded gesture descriptors, such as handshape and movement direction. Fernandez-Baena et al.® annotate 6 minutes of performed
beat gestures (gestures without a specific meaning) to analyze speech-gesture correlations of synchrony and intensity. A motion
graph is used for gesture synthesis, searching for the gesture with the best transition, intensity, and timing match. Recent work
proposed a motion graph approach for dyadic conversation behavior. Yang et al.? annotate timings of 30 minutes of speech and
gesture. Gesture is synthesized by finding a path through the graph given a set of associated speech constraints. Motion graphs
have limited expressivity and require significant computational power for large state spaces.

Machine learning models for gesture generation, specifically neural networks, can model large datasets of unstructured data,
implicitly learning relationships between high-dimensional speech input and target motion output. While they can generate new,
previously unseen motion, in practice, the output motion is often a poor imitation of the variety of the training data. The standard
training paradigm using a mean squared error loss (as in''%"12) tends to produce overly smooth and averaged motion. Alternatives
have been proposed with generative adversarial networks!%14 as well as probabilistic generation through normalizing flows'>.

One problem for machine learning approaches is the nondeterministic relationship of speech and gesture; a plethora of valid
gestures can and do occur for a given utterance, hence modelling co-speech gestures as exact joint positions or angles may be
too constrictive to capture natural variety. Recent work instead proposes modelling the speech-gesture relation with higher-level
parameters; Ferstl et al.” propose a set expressive gesture parameters, namely velocity, initial acceleration, gesture size, arm
swivel, and hand opening, and show they can both be estimated from speech as well as perceptually impacting speech-gesture
match. In a preliminary study, replacing ground truth gestures with parameter-matched gestures of similar length was shown
to outperform unmatched gestures?. The approach, however, relied on extracting gesture timing and duration from the motion
signal, making it impractical for real applications. In this work, we extend this approach and remove this need for motion analysis
by designing a speech-based gesture phase extraction.
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FIGURE 1 Overview of our gesture generation system. (1) The system receives as input the speech audio for a gesture segment.
(2) Gesture timings are predicted by analyzing speech pitch peaks. (3) GeMAPS prosodic speech features are extracted auto-
matically. (4) The desired values for the 5 gesture parameters are estimated from the GeMAPS. (5) The database is searched for
the gesture with the closest matching parameter values. (6) The best matching gesture is inserted at the desired gesture position.
(7) Synthetic preparation and retraction phases are generated to link the gestures in the sequence.

Our proposed method relates to Levine et al.1®, who learn a hidden state representation of a small motion database based

on 6 kinematic parameters. A Conditional Random Field then maximizes the probability of the hidden state distribution given
prosodic input speech features. An animation sequence is generated by finding a lowest-cost path given the input signal. Similarly,
Stone et al.1” annotate both speech and motion features (such as points of speech prominence and gesture content) of a small
dataset and jointly synthesize both modalities by recombining speech and motion segments.

Our approach further relates to the Motion Matching method''®, which draws animations from a database based on a set of
specified motion properties, such positions of the end effectors, combining them with simple blending and inverse kinematics.
The method became popular with gaming studios due to its reliable motion quality and its suitability for real-time animation
through the use of efficient search algorithms. Memory usage for larger datasets can be a problem; by combining Motion Match-
ing with neural network controllers, including compression of motion data to a low-dimensional representation, memory usage
was reduced significantly by Holden et al.’%. A number of other works have proposed methods for motion database retrieval
based on sets of motion parameter keys (e.g.Z>2L),

Relating to both statistical and machine-learning models, our method aims to combine the power of neural networks to capture
the relationship of speech features with higher level motion features with the advantage of realistic gesture motion, sampled
from a large database.

3 | GESTURE MATCHING METHOD

Briefly, our method of gesture generation consists of four steps: (1) Determining gesture timings through prosodic processing,
(2) estimating gesture parameters from speech, (3) selecting appropriate gestures from the database, and (4) combining the
selected gestures into a coherent animation sequence. We detail step 1 in Sec. [3.2]below, followed by steps 2 and 3 in Sec.[3.3]
An illustrative overview is presented in Fig.

3.1 | Gesture database

At the heart of our gesture generation system is our database of over 23,000 individual gestures, automatically tagged with their
five respective expressive parameter values. The database represents gestures extracted from over 10 hours of motion captured
data, from two multimodal datasets of speech and gesture. Dataset A has previously been used in Ferstl et al.l# but has not
been released until now. Dataset B is the open-source Trinity Speech-Gesture dataset'”. Each dataset contains recordings of a
different male native English speaker, producing natural speech with spontaneous gesture motion. The two speakers exhibit a
distinctly different gesture style. Motion was captured with a 59 marker setup and 20 Vicon cameras at 120 Frames per Second
(fps) in dataset A, and at 59.94 fps in dataset B.

We segment motion data into individual stroke phases, the expressive phase of a gesture®2. 4 hours of dataset A have previously
been hand-annotated, the rest is automatically annotated using a classifier taking as input the motion data as well as the speech
pitch, a method presented in Ferstl et al.#. Stroke labelling results in close to 23,700 gesture strokes for our gesture database.



4 | Ferstl ET AL

Accompanying this work, we will release our full database of gestures, together with their values for the five expressive
parameters, and corresponding speechm We also release the 5 trained speech-to-parameter models for reproducibility (step 4 in
Fig. [T). We think this database will be a valuable resource for gesture research. The segmentation of continuous motion into
individual gesture strokes also allows for easier integration with a number of existing systems, such as Motion Matching. To our
knowledge, this will be the largest released dataset of synchronized motion capture and speech recordings; with this we hope to
make a key contribution to future gesture generation system development.

3.2 | Gesture timing from speech

To determine when to generate a gesture, we analyze the speech pitch. We first extract the pitch contour using Praat. From this,
we determine pitch peaks by setting the desired local prominenceﬂ (set to 0.5) and minimum peak distance (set to 1.1 seconds).
These values can be tuned for the desired gesture frequency. As we can determine the actual gesture frequency for the used
datasets through motion analysis, we set the pitch sensitivity to result in a similar gesture frequency. Both speakers (Dataset A
and B) presents a gesture frequency averaging approximately one gesture every 1.5 seconds. Using the true gesture frequency
allows for better comparison to ground truth gesture performance in this study. For other applications, this can be tuned as
desired, for example, a higher gesture frequency can be used to increase perceptions of extraversion for a robot=>,

Following the rule that gesture peaks either precede or coincide with the associated speech peak“®, we set gesture timing such
that gesture strokes are 55% complete at the pitch peak. We define the maximum time for a predicted stroke as twice the time
between this and the nearest other peak. This window defines the speech segment to be analyzed in the next step (Sec. [3.3) that
estimates gesture parameters. If a selected gesture is shorter than the time window, we re-align the gesture forward to again be
55% complete at the pitch peak. We choose this gesture timing approach for its simplicity and ease of reproducibility, however,
our system may be combined with any other method of determining stroke timing.

3.3 | Synthesizing a gesture sequence

The gesture timing (Sec. [3.2)) provides a sequence of empty motion slots with associated speech data, each to be filled with a
gesture stroke from the database. The first step in selecting a gesture computing a set of desired gesture parameters. Theoretically,
we can use any parameter automatically computable from a motion segment, but choose the five gesture parameters that were
shown previously to be associated with the speech signal as well as impacting perceptions of the quality of the speech-gesture
match": (1) Gesture velocity, (2) the mean acceleration to the first major velocity peak, (3) gesture size measured by the total
path length, (4) arm swivel (bringing the elbow closer or further from the body), and (5) hand opening (calculated as the mean
distance of the finger tips from the base of the hand). The 5 parameters are estimated from the GeMAPS prosodic speech
2l computed automatically using openSMILE?®, a process described in detail in Ferstl et al.’.

Given the gesture parameter values, the database is searched for the best match, as determined by a match rank. A gesture’s
match rank for one parameter is given by the relative similarity to the desired parameter value. For example, the gesture with the
most similar velocity receives velocity rank 1, and the gesture with the least similar velocity receives rank 23,700. Each gesture
receives 5 rank values, one for each parameter. Rank values are weighted based on the findings of Ferstl et al.ll of how well a
parameter can be predicted from speech and its perceptual importance for speech-gesture match. For example, gesture swivel and

features?

size are predicted well from speech, and acceleration is predicted better than velocity; hand shape has a strong perceptual impact
on the perceived gesture match’. We define the following parameter weights: weight e, = 0.6, weight = 0.8,
weight;,, = 1.1, weight,;, ., = 1.3, weight,,,, = 1. The 5 weighted ranks are combined into a total match rank.

The complete gesture synthesis process is visualized in Fig.[I] the gesture matching algorithm is given below in pseudo-code:

Offline, before first use:

for each gesture g in gesture_database:
for each parameter p in gesture_parameters:
calculate p(g)

acceleration

Online, to synthesize a new sequence:
for each gesture slot s in gesture_sequence:
return max(rowsum(W*(P(s)-P(G))) )

! Database release: https:/trinityspeechgesture.scss.tcd.ie/
2mathworks.com/help/signal/ug/prominence.html
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Where P(G) denotes the array containing all parameter values of all gestures G in the database, W is the array of the 5
parameter weights, and P(s) are the estimated parameters of a speech segment s. All parameter values are normalized to the
range of 0-1. The online computation component has a time complexity of O(s * (3np + n)), with s as the number of gesture
slots in an input speech segment, n the number of gestures in the database, and p the number of gesture parameters.

To improve the smoothness of gesture transitions, we return the top 10 gestures in the match rank algorithm and choose a
gesture that allows a reasonable transition by calculating the distances of candidates’ starting wrist positions from the previous
gesture’s end positions (O(s)). Taking into account the time available for transition, we select a gesture resulting in realistic
transition speed. We constrain gesture selection to gestures with a maximum duration of the speech window defined in the
previous Sec.[3.2] In our experiments, for 470 gesture slots (corresponding to about 12 minutes of speech), 455 unique gestures
were selected, indicating low repetitiveness, but if desired, gesture selection could be further restricted to unused gestures.

Selected gestures are combined using software based on the open-source animation environment DANCE<Z, taking as input
motion data and corresponding stroke labels and synthesizing preparations and retractions for the strokes using splines. The
preparation brings the hands into position for the stroke, and the retraction returns the hands to a rest position. Preparation and
retraction are proportionally matched to the stroke speed. If not enough time is available for a retraction before the next gesture,
a transitional preparation is synthesized instead. Fig. [2]illustrates such a synthesized sequence.

4 | EVALUATION

We evaluate the performance of our gesture generation method with two perceptual studies. In the first study, we compare our
method of gesture placement and selection to randomized gestures as well as to the ground truth placement and selection. In our
second study, we compare our method to state-of-the-art machine learning models, namely the five entries of the recent GENEA
gesture generation challenge®.

We rendered gesture sequences on the GENEA model using Unity3D. Participants first read the study instructions and com-
pleted training (detailed in the respective sections below). Following this, each experiment trial consisted of watching a 15
second video clip followed by the question, “How appropriate were the gestures for the speech?”, presented with a 7-point Likert
scale ranging from “Very bad match” (1) to “Very good match” (7). Phrasing of the rating question was taken from the GENEA
challenge.

Study completion time was approximately 15 minutes. Participants were recruited via Prolific; fluency in English was required.
Attention was assessed through content questions: At a random trial number within each quartile of the study, a multiple choice
question about what the speaker said was presented instead of the gesture rating question. 9 participants (out of a total of 64)
with less than 50% correct were rejected.

4.1 | Baseline evaluation

Baseline evaluation consisted of three gesture conditions: (1) Ground truth gesture strokes with synthesized preparations, retrac-
tions, and transitions, preserving gesture timing (GT-S), (2) random gesture selection with the same overall gesture frequency
but not timed to the speech, (3) our method of gesture placement and selection.

In addition to the arm gesture motion, the character displayed some idle torso body swaying and head movements.

FIGURE 2 Example of a generated gesture sequence. Between ges-
tures (1) and (3), the arms and hands are moved to/from a rest
position through spline interpolation (2). If not enough time is avail-
able between gestures for a rest pose, a trajectory is instead created
from a stroke end position (3) to the next stroke’s start position (4).




6 | Ferstl ET AL

Participants first completed a guided training. First, participants were informed that they will watch 2 examples of well-
matched speech and gesture, and they were instructed to rate these as such. They were then presented with two ground truth
training trials (one for each speaker). Next, participants were informed they would see 2 examples of badly matched speech and
gesture, and were instructed to rate these accordingly. They were then presented with two unmatched (random) training clips
(one for each speaker). Finally, participants were informed about attention checks and presented with one example.

There were 30 experiment trials (5 clips each for the 2 speakers, for the 3 conditions), presented in random order. Each clip
contained a different speech segment. For each participant and condition, the 5 clips for each speaker were selected randomly
from a pool of 10-15 clips in order to get a representative sample of gesture sequences while minimizing participant fatigue.

A total of 25 participants completed the experiment (12 females, aged 18-61 years, M = 29.9, SD = 10.1), all of whom
gave informed consent regarding their participation. Participants represented a wide population sample: 13 different residence
countries were reported.

All stimuli can be viewed at https://youtube.com/playlist?list=PLLrShDUC_FZx8bbo4SYiQW VsQqDylWt70

4.1.1 | Results

For statistical analysis of the results of the perceptual experiment, Likert rating scores were treated as ordinal data and a cumula-
tive link model was fitted using clm from the R ordinal package. A one-way repeated measures ANOVA of the estimated model
showed a main effect of condition (p < .001), with an effect size measured by Wald Chi Square y*> = 133.0. The ground truth
gesture condition was rated significantly higher than both other conditions (both p < .001), as expected with a mean rating score
of 5.20. Gesture sequences generated with our method were rated significantly higher than random gesture sequences (p < .01),
with a mean rating score of 3.94 (random: mean = 3.58). Ratings are visualized in Fig.

4.1.2 | Discussion
Our method showed better performance than the mismatched random condition. This is notable as such a baseline is notoriously
hard to beat for automatic gesture generation (see GENEAZS, as well as Sec. below).

While directly comparing our method to the random condition conflates effects of gesture selection and of timing, prelim-
inary work has compared two baselines, one preserving gesture timing but disregarding expressive parameter match, and one
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disregarding both timing and match. Preserving gesture timing showed no advantage, suggesting that timing alone is not enough
to outperform the random condition. We chose the animated character to match that of the large scale gesture evaluation study
GENEAZ and this character has a somewhat robotic appearance, however, the discussed preliminary work? has also evaluated
the proposed method on the more realistic Brad character of the VHTK toolkit2?.

4.2 | Comparative performance evaluation

The comparative performance evaluation consisted of 9 gesture conditions: (1) Ground truth motion-captured motion (GT),
(2) ground truth gesture strokes with synthesized preparations, retractions, and transitions (GT-S), (3) mismatched motion,
belonging to another speech segment (MM), (4-8) motion generated by the GENEA gesture generation challenge entries (SA-
SE) (9) our method. For conditions GT-S as well as for our method, the character displayed some idle torso body swaying and
head movements in addition to the arm gesture motions. All other conditions already contained motion data for these joints.

Participants completed a guided training before starting the experiment. First, they were informed they would see an example
of a very good speech and gesture match and instructed to rate it as such. They were then presented with a ground truth (GT)
example trial. Next, they were informed they would see an example of badly matching speech and gesture and were instructed
to rate it as such. An example of mismatched motion (MM) was presented. Participants were then informed that some motions
may appear more synthetic while still matching the speech well, followed by an example of ground truth gestures with synthetic
transitions (GT-S). Next, participants were informed that synthetic motions may show a very bad gesture-speech match, followed
by an example clip of mismatched gestures with synthetic transitions.

There were 36 experiment trials (4 clips each for the 9 conditions), presented in random order. For each participant and
condition, the 4 clips were selected randomly from a large pool of clips, ensuring adequate representation of the variation for each
condition while maintaining a reasonable experiment duration and hence minimizing participant fatigue. Within participant,
each clip contained a different speech segment. The GENEA challenge included only dataset B, so all experiment stimuli were
therefore restricted to speech from this dataset.

30 participants from 10 different residence countries completed the experiment (15 females, ages 18-43 years, M = 26.5, SD
= 6.9), all of whom gave informed consent regarding their participation.

All stimuli are at https://youtube.com/playlist?list=PLLrShDUC_FZyNS6-Wd7Yba- 1wTgRAbqCj

4.2.1 | Results

An one-way repeated measures ANOVA of the estimated model showed a main effect of condition (p < .001), with an effect
size measured by Wald Chi Square y?> = 234.8. Both GT and GT-S were rated significantly higher than all other conditions
(all p < .001), interestingly, there was no significant difference between the two. SA was rated significantly lower than all other
conditions (all p < .001, except p < .01 w.r.t. SB) and SC was rated significantly higher than SB (p < .05). This is comparable
to the results reported in the GENEA challenge®. No other differences were significant. Ratings are plotted in Fig.

4.2.2 | Discussion

The results of the second evaluation show that our method produces competitive results to state-of-the-art machine learning
models with respect to perceived appropriateness. Notably, while our method can be distinguished fairly easily from other gen-
erated motion through its procedural transitions between gestures, it was rated on-par or superior with the compared generative
approaches. Indeed, for ground truth gestures too, synthetic transitions were rated to match the speech equally well as the full
motion capture, indicating that matching individual gestures to the speech produces valid results even when this changes the
motion style of the speaker.

The speaker of dataset B, used in this evaluation, shows a very animated speaking style, engaging his whole body rather than
producing isolated arm gesture motion. Due to the our approach of focusing on generating arm gesture motion with only some
auxiliary idle animation for the torso and head, we produce motion closer matches to the speaking style in dataset A, in which
the speaker retains a fairly firm stance and produces more isolated arm gesture motion. We therefore think our method produced
particularly suitable results for speaker A. However, due to the fact that the GENEA models® were not trained on this dataset,
we cannot compare this performance.

While we did not compare these conditions directly, the MM condition in this evaluation appears to perform better than the
random condition in Sec. 4.1} Notably, these conditions differ in that MM represents mismatched full motion-capture, whereas
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the random condition uses synthetic transitions between gesture strokes. The continuous, fluid motion in MM may appear less
obviously mismatched to the speech.

S | DISCUSSION & FUTURE WORK

We propose a full end-to-end system for gesture generation from speech audio through a novel method guaranteeing realistic
gesture form. Previous works on machine learned models for gesture generation from speech often produce motion smoother
than natural with poorly defined gesture form, as well as relying on an assumed and implicit speech-gesture relationship. In this
work, we generate gestures based on expressive gesture parameters shown to be related to the speech prosody and to impact
speech-gesture match. By using a parameterized motion representation in lieu of exact joint configurations, we aim to minimize
the overfitting to one speaker’s data. By selecting appropriate gestures from a motion-captured database, we always produce
natural and well defined gesture form.

We evaluated our gesture generation method with two perceptual studies. First, we compare our method to a baseline method
selecting random gestures at the same frequency but agnostic to speech emphasis, as well as to the ground truth gestures.
Our method of generating gesture sequences for speech proved to outperform un-matched gesture animation. In our second
evaluation, we compare our method to five current machine learning models, as well as to ground truth motion capture, mis-
matched motion capture, and ground truth gestures with synthetic transitions. The results show that our method is comparative
in performance to the best of the tested generative models.

Most machine learning approaches, including the compared, generate continuous motion. Due to our gesture-by-gesture
synthesis approach, our method may be easier to integrate into existing state-based frameworks used by game developers. Fur-
thermore, by generating and linking individual gestures, our method allows modifying the expression of individual gestures.
For example, a recent proposed framework for personality expression of virtual agents modifies the the Laban Effort and Shape
parameters of individual gestures given just their start and end frame (which are known variables within our system)-". Our
method also allows for tuning of gesture frequency, which can be used to modulate perceptions of extraversion2¥31,

We release 6 hours of natural conversational data with high-quality motion-capture and speech recordings of an English
speaker, to our knowledge the largest open-source dataset of its kind. We also release our full database of gestures, segmented
from 10 hours of motion-capture, a total of almost 23,700 samples, as a major resource for gesture research.

Our segmentation of gesture motion into individual gestures may also be useful in developing semantic-aware systems. Wrist
trajectories of individual gestures may be analyzed to determine simple gesture shapes, such as wiping. Combined with lexical
analysis, such as negation tagging, we are interested in exploring integration of semantically meaningful gesture parameters.
The current lack of lexical matching is also one potential reason for disliked gestures within generated sequences. Many of the
gestures in the database are iconic gestures: gestures visualizing physical properties and describing the semantic content of the
verbalisation. When searching the database for a matching gesture, we only take into account qualitative measures of the gesture
(the five gesture parameters), without considering semantic content. Therefore, we sometimes find a gesture match that produces
a semantic mismatch with the speech. This is different from many machine learning gesture generation models which largely
focus on generating beat gestures, gestures without specific meaning but linked to the rhythm and pace of the speech.

Different techniques may be used to combine individual motion segments for improved between-gesture motion. Motion
graphs have been employed for dyadic conversation gestures?, however, building a motion graph for very large datasets can
potentially become problematic. Yang et al.” note that the motion variety of conversational gesture requires a much larger graph
than was previously used for e.g. locomotion. While they build a graph from 30 minutes of motion data, our work uses 20 times
that amount. Constructing and searching a motion graph in our case would require questionable computing power. We instead
opted for a more flexible method of motion blending and transition poses, only requiring storage of each gesture’s stroke motion
data, but theoretically our method can be combined with any other technique of combining motion segments and in future work
we would like to improve the realism of the between-gesture motion.

Our gesture database can easily be extended with new motion without associated speech, such as the released 20 hours of
the Talking With Hands 16.2M conversational dataset. This only requires automatic stroke segmentation as utilized here, and
automatic tagging of the gesture parameters. In this regard, our method differs from Yang et al.”, who base motion selection on
the associated audio segment and therefore require every addition to the database to contain synchronized speech audio.

Additional gesture parameters can be used for improved gesture selection. Any automatically extractable motion measure
would be readily integratable in our system. To improve the speech-gesture match, a relationship has to be established between
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the speech prosody and the new gesture parameter. If the parameter is not computable from speech, it may still be used for biased
gesture selection after determining a number of suitable gestures from speech-based parameters, for example in order to achieve
a specific gesture style.

Gesture selection can be tuned by scaling gesture parameters. This could be used for creating gesture behavior specific to
a personality, for example, for an extroverted speaker, predicted gesture size can be scaled up in order to retain predicted size
variation but creating gesture sequences with overall larger gestures. In this study we do not adjust for speaker style or personality
other than what may be implicitly expressed through the five gesture parameters. For generating animation for one speaker, we
allowed gesture selection from either speaker, resulting in a mix of gestures from both speakers within a sequence. This could
potentially create style-mismatches both between gestures, and between gesture and speech. Speaker-specific gesture retrieval
is possible with the downside of reducing the amount of available gestures.

Our method works for offline gesture synthesis; real-time gesture selection is difficult due to the gesture-before-speech rule
in natural speech. Our results are limited to two speakers due to data availability; in future work we hope to be able to include
more speakers and validate gesture parameter suitability across additional speakersE]
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