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Abstract

The human hand is a complex biological system able to perform numerous tasks with impressive accuracy and
dexterity. Gestures furthermore play an important role in our daily interactions, and humans are particularly
skilled at perceiving and interpreting detailed signals in communications. Creating believable hand motions for
virtual characters is an important and challenging task. Many new methods have been proposed in the Computer
Graphics community within the last years, and significant progress has been made towards creating convincing,
detailed hand and finger motions. This state of the art report presents a review of the research in the area of hand
and finger modeling and animation. Starting with the biological structure of the hand and its implications for how
the hand moves, we discuss current methods in motion capturing hands, data-driven and physics-based algorithms
to synthesize their motions, and techniques to make the appearance of the hand model surface more realistic. We
then focus on areas in which detailed hand motions are crucial such as manipulation and communication. Our
report concludes by describing emerging trends and applications for virtual hand animation.

Categories and Subject Descriptors (according to ACM CCS): A.l [General]: Introductory and Survey—, 1.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—Animation

1. Introduction

Everyday, we use our hands and fingers to perform complex
tasks. They can move with delicacy or force, executing a
multitude of activities such as writing, eating, playing instru-
ments, handling tools, and communicating (see Figure 1).
Roman rhetorician Marcus Fabius Quintilianus wrote:

As for the hands, without which all action would
be crippled and enfeebled, it is scarcely possible
to describe the variety of their motions, since they
are almost as expressive as words. [Ken04]

We touch, pick up, hold onto, and manipulate objects with
our hands and fingers. We also gesture and sign, comple-
menting or replacing linguistic cues. This report summarizes
the many research efforts aimed at synthesizing hands and
fingers that appear natural as they perform the myriad of be-
haviors seen in their real-world counterparts.

People are keen observers of hand motion. Jorg et al.
[JHO10] showed that small synchronization errors between
hand and finger motions can be detected for delays as lit-
tle as 0.1s and that such errors can alter the interpreta-
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Figure 1: Examples of hand poses synthesized for various
types of motion [JHS12, BL14,ZRHN13,JHO10].
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tion of a scene. Wallbott [Wal98] showed that hand mo-
tion contributes to our perception of emotion. Gestures fur-
thermore can convey an individual’s personality [NWAW 10,
NTB*11], and people can be recognized based on their ges-
ture style alone [WBH*08, NKAS08]. Careful and detailed
hand animation is thus essential in the creation of convincing
virtual characters.

The function of the hand follows from its remarkable
structure, comprised of 27 bones, not including the sesamoid
bone, in a compact space with an intricate arrangement of
muscles and tendons [Nap80]. And so, this report begins
with a discussion of hand anatomy and how it has been mod-
eled and simplified in computer animation (Section 2). A di-
verse set of techniques have been proposed to animate said
models, and we organize and highlight these next (Section
3). Specifically, the high bar for animation quality motivates
the use of capture techniques to record precise movement.
Unfortunately, hands are difficult to capture due in large part
to frequent occlusions and changing contacts. We discuss
capture technologies along with data-driven algorithms that
have been developed to best take advantage of such record-
ings. In addition, Section 3 covers other approaches used for
hand and finger modeling and animation: keyframing, pro-
cedural (including physics-based) methods, and approaches
to model the hand’s surface.

Due to the practical importance of hands, many
application-driven techniques have been proposed which of-
ten cut across methods and offer hybrid approaches to ac-
complish the goals of a specific domain. We collate and sum-
marize research in popular applications of hand animation
in Section 4. Specifically, significant attention has been paid
to synthesizing how hands manipulate objects and their en-
vironment, the creation of hand motion in gesture and com-
munication, sign language animation, and motion generation
for playing musical instruments.

The report concludes with a discussion of emerging trends
and application domains, including virtual reality environ-
ments and interfaces. It also summarizes major trends in
hand animation research and highlights the strengths and
weaknesses of various approaches.

2. Virtual Hand Creation

To discuss the complexities of the many methods used to
model hand and finger animations, we must begin with a
review of the basic biological structure of the hand. This
section describes the key anatomical elements and presents
methods for modeling these elements to create virtual hands.

2.1. Anatomy

The key components that comprise the basic structure of
most animation models include (a subset of) the bones
of the hand and the joints that link those bones together.

Naming conventions for bones and joints are adopted from
anatomical systems like the one shown in Figure 2. Building
upon this basic foundation, the real hand has ligaments that
hold the bones and cartilage together and provide the hand
skeleton’s flexibility while muscles and tendons connect the
bones and, through activation, create contractile forces that
torque and bend the joints (Figure 3). These structures ap-
pear as abstract (simple joint torques) or more explicitly rep-
resented depending on the goals and purposes of the hand
model. Further details beyond those presented here can be
found in anatomy reference books or in work focused on the
hands [PS12, Nap80].
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Figure 2: The bones of the forearm, wrist, and hand [Blal4].
Acronyms: CMC — Carpometacarpal joint, MCP — Metacar-
pophalangeal joint, PIP — Proximal interphalangeal joint,
DIP — Distal interphalangeal joint

The dexterity of the human hand is derived from the
unique configuration of bones, joints, and muscles. Namely,
movement comes in the form of joint rotations: flexion,
bending in the anterior direction (for the hand this means that
the fingers form a fist); extension, straightening or bending
in the posterior direction; abduction, movement away from
the center of the body (the fingers are spread); and adduc-
tion, movement toward the center of the body (bringing the
fingers together).

Anatomically, the hand has 27 bones: eight bones in
the wrist or carpus, five bones in the palm called the
metacarpals, and three in each finger and two in the thumb
known as the phalanges. Technically, the word finger refers
to digits 2-5, the index, middle, ring, and little fingers, but
it is in practice (and in this publication) often used to refer
to all five digits including the thumb. The cluster of bones
that make up the wrist or carpus can be split into two rows
where the proximal row articulates with the head of the two
bones of the forearm, the radius and the ulna, at the radio-
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Figure 3: The muscles of the forearm, wrist, and hand num-
bers by compartment: 1 — Abductor pollicis longus, Extensor
pollicis brevis; 2 — Extensor carpi radialis longus, Extensor
carpi radialis brevis; 3 — Extensor pollicis longus; 4 — Ex-
tensor indicis, Extensor digitorum communis; 5 — Extensor
digiti minimi; 6 — Extensor carpi ulnaris [GLIS]

carpal joint while the distal row articulates with the base of
the metacarpals at the carpometacarpal joints (CMC). The
distal phalanx of the thumb opposes that of the other four fin-
gers. This opposition plays a crucial role in human’s ability
to perform grasping motions and in dextrous manipulation in
general and is rendered possible by the shape of the trapez-
ium, the carpal bone which articulates at the CMC joint with
the metacarpal of the thumb. The four fingers have three pha-
langes, proximal, middle, and distal, while the thumb only
has a proximal and distal phalanx. The four fingers can ar-
ticulate at their three joints: the metacarpophalangeal joints
(MCP) between the metacarpals and the proximal phalanges,
the proximal interphalangeal joints (PIP) between the prox-
imal and middle phalanges, and the distal interphalangeal
Jjoints (DIP) between the middle and distal phalanges. Be-
cause the thumb has no middle phalanx, it can only articu-
late at its MCP and DIP joints. The PIP and DIP joints act
primarily as hinge joints and perform flexion/extension and
can hyperextend to a small degree. The MCP joints are more
mobile and can also perform adduction and abduction and
experience medial (internal) and lateral (external) rotation.
Finally, the cupping of the palm, called the palmar arch, oc-
curs between the CMC and MCP joints of the fingers, par-
ticularly those of the thumb, ring, and little fingers.

The musclotendon systems in the hand are among the
most complex in the body, with connections across several
bones in the hand driven by contraction in the forearm. Fur-
ther, the movement of the palm and fingers is directly re-
lated to the flexion/extension and abduction/adduction of the
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wrist. For example, strong grip is achieved when the wrist
is in a neutral pose [PS12]. The muscles that flex and ex-
tend the thumb are separate from the muscles responsible
for flexing and extending the digits. The extensor digito-
rum communis, a dominant muscle for digit movement, con-
tributes to the coordinated way in which some of our fingers
move [PS12]. The index finger has a separate extensor (ex-
tensor indicis) and the little finger a separate flexor and ex-
tensor (extensor digiti minimi). These separate muscles give
these digits more independence in contrast to the other fin-
gers.

2.2. Hand model representations

Animation researchers have proposed various degrees of
complexity for hand models that are appropriate for the
needs of various problem domains. Clearly, building a high-
resolution anatomical model can be overly complicated and
is too computationally expensive for its utility in many appli-
cations. Thus, in general, simplifications are made in order
to keep models only as complicated as need dictates.

Hands are most often modeled as a relatively small group
of articulated rigid links, where the rigid bodies represent
the bones of the digits, palm, and sometimes the forearm.
While there are researchers that aim at greater anatomical
detail [AHSO03, TSFO5, SKP08], common skeletons usually
contain a reduced set of bones. For example, while Tsang et
al. [TSFO5] build a geometric model that accurately contains
all 27 bones of the hand with 2 bones for the forearm, their
articulation model only has 16 joints. This choice is also sup-
ported by the real anatomy, as many bones of the carpus and
the intercarpal joints for example, can be ignored because
their movement is considered negligible [AHSO03].

Other standard simplifications also appear for the choice
of joint degrees of freedom (DOFs). Minimizing the DOFs
reduces the joint space which can be helpful in various ways,
for example, in physics control problems and optimization
or search by limiting the solution space. It is very common
to simplify finger joints such as the DIP and PIP joints with
single DOF hinge joints. The MCPs are condyloid joints,
consisting of the rounded ends of the metacarpals and the
concave base of the phalanges. These joints afford all move-
ment except axial (i.e., rotation around its own axis). While
there are exceptions to all cases, MCPs are often simplified
in virtual hands as universal joints that yield two DOFs (flex-
ion/extension, abduction/adduction). Some models instead
take the MCP joints’ medial and lateral rotations into ac-
count and depict them as ball joints with three DOFs. The
CMC joint of the thumb is sometimes represented as hav-
ing three DOFs because of its ability to perform opposition,
depending on the choice of palm model.

A greater amount of variability appears across models in
the choice of palm. While it is at times represented as a sin-
gle rigid body with DOFs added to other joints to compen-
sate [ICLO0O, MTA*01], a rigid palm is particularly poor for
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manipulation and grasping tasks. With additional DOFs the
palm is able to bend, for example, to create cupping behav-
iors. Thus for applications involving grasping, two to four
links are commonly employed to represent the palm, with
the multiple rigid bodies connected by varying joints and/or
constraints [PZ05, Liu08, AK13].

Finally, the combination of the radiocarpal, midcarpal,
and carpometacarpal joints give the human wrist a wide
range of motion, performing flexion/extension, abduc-
tion/adduction, and some twisting. At times, the wrist is
modeled with six DOFs, to account for rotations as well as
translation [ES03]. Other virtual wrist/forearm models either
maintain anatomical articulation [TSF05,ZCX12,ZZMC13]
or simplify the wrist to fewer DOFs [Liu08, TSFOS5]. An ex-
ample skeletal model of the hand is shown in Figure 4.

Middle

Pinky

DIP

PIP

MCP

Figure 4: Skeletal model used by Zhao et al. [ZCXI2,
ZZMC13] with the degrees of freedom of each joint.

2.3. Personalized hand skeletons

Personalized skeletal structures closely replicate the kine-
matic structure of an individual’s hand, e.g., the specific
locations and orientations of joints. These skeletal mod-
els can more precisely reproduce the individual’s motions
over generic models with general joint position estimations.
To create such subject-specific models, processes for de-
termining the centers of rotation (CoR) and the axes of
rotation (AoR) for each of the joints have been devel-
oped [CLPFO05,CP07a,CP07b]. Without a user-specific hand
model, data mapping can become problematic, because of
fitting (and other) problems associated with using capture
systems. For example, small off-axis motion as well as soft
tissue deformation can lead to measurement inaccuracies
that result in poor mapping of movement for generic hand
models (see Section 3.2 for more detail).

Chang and Pollard [CP0O7a, CPO7b] propose methods to
determine both the CoR and AoR for joints in the thumb
and index finger. Their approach to determining the CoR in

the CMC joint of the thumb uses a sphere-fitting method ex-
tended to be used with multiple markers and a constrained
least-squares cost function. In their method, the CoR of the
CMC joint of the thumb is found as the center of the sphere
that is common to the trajectories of select markers. Chang
and Pollard also use this method and plane-fitting to deter-
mine the direction of the AoR [CP07b]. They furthermore
propose a technique to identify the directions of the rota-
tional axes of the CMC joint of the thumb [CP08] and deter-
mine the range of motion for rotations in individual subjects.

Medical imaging data has also been used as a tech-
nique to create specific skeletal hand models. Miyata et
al. [MKMKOS5] take multiple images of the hand in vary-
ing poses to create 3D reconstructions and perform measure-
ments of the skeletal structure to produce an accurate kine-
matic model. Stillfried et al. [SHSvdS14] compare the hand
model they create using MRI data to a hand model created
using optical motion capture data. They find that, if they fit
the same number of DOF to the two different models, there
are no significant differences in finger joint translation and
rotation in multi-joint hand movement.

2.4. Dimensionality and Redundancy

The hand moves in particular ways due to its anatomy, and
while its DOFs create affordances for complex movement,
the hand’s motion is structured in a manner that suggests or-
der. For example, Somia et al. [SRWG98] found, along with
a list of other relationships, that 83% of finger flexion and
80% of finger extension begins in a specific joint (the DIP
for the index, middle, and ring fingers and the PIP for the
little finger). While this is not surprising given the anatom-
ical structure of the hand (for a discussion see [Zan79]), it
suggests that reduction in the complexity of the hand is pos-
sible.

Indeed, the motions of the hand have considerable redun-
dancy and reducing the degrees of freedom of the hand sim-
plifies its animation. In an early paper on finger animation,
Rijpkema and Girard [RG91] propose the following relation-
ship between the distal and proximal interphalangeal joints:

2
Opip = §9P1P (1)

This equation has been used by several researchers to sim-
plify their animation models [ST94, LWHO00, HRMO12a].

Since, many researchers have used techniques to explore
and exploit redundancy in hand movement. For example,
principal component analysis (PCA) has been shown a valu-
able technique for studying lower dimensional representa-
tions of hand motion [SFS98, BZ04, CGAO07]. Braido and
Zhang [BZ04] explore finger coordination in both grasping
a cylinder, where all four fingers flex at the same time, and
in individual finger flexion, where each finger is flexed one
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at a time. Through PCA, they find that the first two compo-
nent dimensions explain 98% of the variance in the recorded
motion. In another study, Santello et al. [SFS98] conclude
that the first two components of PCA from a set of grasp-
ing poses account for over 80% of the variance. PCA has
also been used to reduce features for recognition and cap-
ture techniques [CPMX07, WJZ13].

Jorg et al. [JO09] use a distance metric to study corre-
lations between the different DOFs of the hand. Their ap-
proach analyzes which joint rotation DOFs are irrelevant and
which are redundant based on motion captured finger mo-
tions. To determine irrelevance, they find joints whose rota-
tion ranges are below certain thresholds. They find that out
of 50 possible joint rotation curves in two hands, the ranges
of 19 are below a threshold of 5°, out of which 11 are below
a threshold of 1°. A rotation of 5° is small and a rotation
of 1° is barely noticeable. To find redundancy, they examine
the root mean squared deviations between pairs of standard-
ized joint rotation curves to determine how accurately one
rotation curve can be expressed as a linear transformation
of another one. Their results suggest that hand models can
be reduced from 50 to 15 DOFs for both hands combined
without loosing valuable information.

Hoyet et al. [HRMO12b] investigate the perceived fidelity
of finger motions captured with different reduced marker
sets. They find that movements captured with a set of eight
markers per hand, one on each fingertip, two on the palm,
and one on the thumb’s CMC joint, is sufficient to be per-
ceived as very similar to movements captured with a set
of twenty markers. They recommend to use such a reduced
marker set and to reconstruct the motion using inverse kine-
matics in situations where the accurate finger curvature is
not crucial.

3. Animation Techniques

Three main techniques are commonly used in computer an-
imation to create motions: keyframing, motion capture and
data-driven methods, and rule-based techniques, which, for
example, include physics-based animation and animations
based on behavioral rules. These techniques are also com-
bined and hybrid approaches are proposed to provide the
desired results. We will define each technique and give an
overview of the research that employs them.

3.1. Keyframing

Mimicking a traditional approach used in hand drawn ani-
mation, keyframing is one of the earliest methods used in
both 2D and 3D computer animation, dating back at least as
far as Burtnyk and Wein’s use in the early 1970s [BW71,
BW?76]. The process allows an animator to create motion by
specifying the value of attributes (e.g., joint angles) at partic-
ular keyframes, or points in time. The values of the attributes
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are then interpolated over time to create continuous anima-
tion. Various interpolation techniques give animators control
over the resulting animation [Ree81, KB84b, KB84a].

Keyframing allows for the creation of both very realistic
and highly stylized motions. It provides excellent control,
but can be labor intensive and relies on the skill of the anima-
tor to generate quality motion. Keyframing is a convenient
abstraction that is used in algorithmic approaches for ani-
mation. For example, Neff et al. [NKASO8] use keyframes
to represent both hand shape and gesture. Since many ges-
tures have a similar structure (preparation, stroke, and hold
phases, see Section 4.2), this approach can lead to a small
number of required keyframes. Ip et al. [ICLOO] also pro-
duce natural 3D hand gesture animations using an anatom-
ical hand model and a series of keyframes driven by static
image poses to key the 3D model. In contrast, Shankar et
al. [SGO6] use actual 2D images as keyframes and interpo-
late between them to produce 2D gesture animation.

Adamo-Villani [AVO08] present a study that examines
whether keyframing or motion capture is preferred for an-
imating signing avatars. Twenty clips (10 keyframed, 10
motion captured) are rated by 71 participants. The results
show that the keyframed animations are more accurate and
legible to the viewers. While the authors give various rea-
sons, mostly related to the limits of motion capture tech-
nology, it is also possible that the editing and refinement
process of keyframing is responsible for the findings. Jorg
et al. [JHO10] on the contrary find that the quality of mo-
tion captured finger movements is considered higher than
for keyframed animations. However, their study, based on
4 clips in each condition (motion captured, keyframed, ran-
dom, and no animation) and 24 participants, restricts the
number of allowed keyframes and hand poses to account for
an animator’s limited amount of time. When time is not lim-
ited, any type of animation can be created with keyframing.
The quality of the result then solely depends on the skills of
the animator.

Beyond keyframing, many approaches have been proposed
to facilitate the process of animating hands and fingers.
These methods rely less on an artist’s skills but use algo-
rithms and/or data to synthesize motion. In the remainder
of this section we describe such methods, beginning with
methods to motion capture hands and fingers, then describ-
ing data-driven techniques, and finally giving an overview of
physics and rule-based algorithms.

3.2. Motion Capturing Hands

Finger data can be obtained through various forms of motion
capture, including marker-based optical, video tracking sys-
tems, RGB-Depth (RGB-D) sensors, gloves, and tactile sen-
sors. Menache provides a good overview of common tech-
niques [Men99]. Below, we summarize the main approaches
along with recent advances. A comparison of the basic mo-
tion capture technologies can be found in Table 1.
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handshapes, and
marker mislabelings

set, large with
reduced set

Capture Accuracy Sources of Error Capture Vol- | Main Ad- | Cost in Money and
Technology ume vantage Time

Marker- Excellent, although skeleton recon- | Occlusions, espe- | Small  with | Accuracy Expensive in $, time
based optical | struction introduces some error cially for complex | full marker intensive marker at-

tachment and post-
processing

era

capturing silhouettes, complex hand
shapes are difficult to reconstruct

sor noise

quick setup,
cheap

Bend-sensor No spatial position measured, some | Cross-coupling Large No  occlu- | Moderate to high in
gloves calibration techniques target finger | between Sensors, sions, even in $, calibration can be
separation, others just general hand | misalignment of large capture | time consuming, re-
shape, accuracy may be lower than | sensors and joints, volume or | construction is fast
for marker-based optical systems fewer sensors than for complex
hand DOFs hand shapes
Markerless Depends on hand shape, better at | Occlusions and in- | Small Easy and | Cheapin$
Optical capturing silhouettes, complex hand | accurate depth esti- quick setup,
shapes are difficult to reconstruct mates cheap
Depth Cam- | Depends on hand shape, better at | Occlusions and sen- | Small Easy and | Cheap to moderate

in$

Table 1: Comparison of motion capture technologies for recording hand motions.

Optical marker-based motion capture. Optical motion
capture has become an industry standard for acquiring mo-
tion intended for character animation. It allows for the acqui-
sition of natural motion directly from an actor. Marker-based
optical motion capture performs triangulation using cameras
in order to track the 3D location of markers attached to an
actor’s body. Generally, an IK problem is then solved to fit
a skeleton to these tracked data points and the joint angles
of the skeleton can be used to animate a character. A typi-
cal system has 4 to 32 cameras that can record between 30
and 2000 samples per second [KWO08]. Commercial marker-
based optical motion capture systems and companies sell-
ing them include Vicon [Vic14], NaturalPoint’s OptiTrack
[Opt14], Qualisys [Qual4], and PhaseSpace [Phal4].

Marker-based optical motion capture offers excellent po-
sitional accuracy if the cameras are correctly calibrated and
have a clear view of the markers. It can support a large cap-
ture space for full body capture, which permits actors to
move freely and multiple subjects to be captured simulta-
neously. When applied to fingers, marker-based approaches
often require a much smaller capture volume. Fingers are
small and have a large number of degrees of freedom, re-
quiring many small markers to be placed close to one an-
other; usually 13-20 for a high quality capture. This includes
two or more markers on each finger and at least three on the
back of the hand [KWO08]. An example marker configuration
can be seen in Figure 5. In a large space, cameras may not
be able to discern these markers, and it is difficult to place
sufficient cameras to avoid occlusion, for example when the
performer turns the palms up. These problems are alleviated
in a small volume, where cameras are brought in close to the
actor’s hands to capture the motion, isolating the hand mo-
tion from that of the full body. Occlusion remains a problem,
however, if the actor, for example, curls his fingers to make
a fist or performs certain sign language signs. Occlusion is

also possible if there are other physical objects in the cap-
ture volume, especially if the actor is interacting with them.
A substantial amount of post-processing is generally needed
to clean the data, addressing marker occlusion and mislabel-
ing.

Figure 5: Hands outfitted with a fairly comprehensive
marker set for optical motion capture. Further markers
could be added to capture the motion of additional joints
such as the CMC joint.

Researchers have explored methods for addressing these
limitations. A common approach to achieve both full body
capture and hand capture is the use of a reduced marker
set [CHOS5, CPMX07,HRMO12a, KWNZ12,WJZ13], which
allows for more marker separation and will allow the system
to better identify markers correctly [KWOS].

Glove-based motion capture. Glove-based systems provide
an alternative capture technology. Gloves became popular in
the late 1980s as a way for humans to interact with virtual
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environments, allowing for gesture input that uses the entire
hand [SZP89]. Gloves also enable manipulation of objects
in virtual environments [FMHRS87, WG89]. The MIT-LED
glove was one of the first gloves specifically made for track-
ing the motion of the hand for computer animation [SZ94].
Sturman and Zeltzer [SZ94] and DiPietro et al. [DSDO0S8]
have both presented surveys on the different available glove
technologies and their applications.

This section will focus on gloves with bend sensors —
“sensored gloves" — as they are prevalent in current hand an-
imation research. These gloves feature attached sensors that
directly measure hand and finger joint angles. Thomas G.
Zimmerman created what is recognized as the first sensored
glove in 1982 [DSDOS8]. The glove used an optical, flex-
mounted sensor to measure the bends in fingers [Zim85].
Current gloves are often made of Lycra and the sensors are
sewn onto the fabric. Some current sensored glove brands in-
clude CyberGlove Systems [Cyb14], DGTech Engineering
Solutions [DGT14], Fifth Dimension Technologies (SDT)
[Fif14], and Measurand [Meal4]. A pair of CyberGloves
is shown in Figure 6. The gloves use different sensors and
have different designs and sensor configurations. As a re-
sult, some may be better at performing certain tasks than oth-
ers. Many of the different designs are explained by [Men99]
and [DSDOS]. The CyberGlove has piezoresistive sensors
that convert joint angles into voltages. By contrast, SDT’s
Data Glove uses optical-fiber flexor sensors with LED lights
attached to one end. When light is returned to the phototran-
sistor on the other end, the intensity of the returned light acts
as a measurement for how much a joint it bending [DSDOS].

Common design specifications for sensor placement in-
clude sensors measuring the following motions:

flexion/extension of each finger’s DIP, PIP, and MCP
joints

flexion/extension of the thumb’s IP, MP, and MCP joints
abduction/adduction of each finger

wrist flexion and abduction/adduction

the arch of the palm

Gloves have been used in a range of applications with
different accuracy requirements, including sign language
[HL10a, LHO9], gesture [HEK*07,JLC10], virtual environ-
ment interaction [KZK04, MBM* 03], robotic tele-operation
and object manipulation [FvdSH98, GFTC00, HGL*04].
Sensored gloves are appealing because they can be used in a
large space or outdoors, avoid the major problem of occlu-
sion, and are a natural interface for hand data capture. Un-
fortunately, many gloves also suffer from problems of sensor
cross-coupling, where a movement may bend multiple sen-
sors, including some sensors intended to measure a different
motion, noise and, to a lesser degree, sensor nonlinearity. As
a result, their joint angle accuracy may not be high enough
for a detailed finger capture [KZKO04]. The gloves need to
be accurately calibrated to capture data for each subject and
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Figure 6: A pair of CyberGloves, sensored gloves made by
CyberGlove Systems.

this calibration process may need to be repeated often, for
example, between wearings.

Glove Calibration: Most data gloves use linear sensors. The
CyberGlove II user guide [Yaz(09] claims sensor resolution
is approximately 1° with a maximum nonlinearity of 0.6%,
with other research [ChaOl] reporting mean measurement
errors of 1.7° £ 1.5°, and better linearity for flexion sensors
than for abduction sensors [KHW95]. Further work provides
more details on linearity [QWAB89, WGS*90]. Sensored
gloves ideally can be calibrated through a linear function
mapping sensor input to joint rotation data. The default cal-
ibration application provided by CyberGlove [Yaz(09] uses
two poses, “flat" and “okay", to try to fit a linear function to
each DOF. The poses do not involve enough reading changes
to calibrate all sensors however, and a manual parameter tun-
ing process is required. This basic two pose method is ex-
tended by Huenerfauth and Lu as they develop an efficient
and accessible calibration protocol for deaf subjects per-
forming ASL [HL10a, LH09]. They require subjects to per-
form a minimum set of pre-designed “sign language” poses
in proper order, so that each sensor can have two different
readings to calibrate its linear mapping function. Data from
multiple samplings are used to improve error from thumb
cross-coupling in a manual process.

The idealized model of one sensor recording the move-
ment of only one degree of freedom is not accurate in prac-
tice, as a single rotation will often change the readings of
multiple sensors. This cross-coupling is most frequently re-
ported for the abduction sensors [CGKO00, JLC10, SMR11],
with some reporting that it could account for 62.4% to
148.3% of the abduction active range [KZK04] and oth-
ers putting this at 22.7% to 45.7% [WN13a]. Thumb cross-
coupling is more complicated as the sensors are not stitched
orthogonally to measure the joint rotation. Wang and Neff
[WN13a] find that thumb roll could cause 25.4% variance
in the thumb abduction sensor readings, a problem also re-
ported in further research [CGKO00, SMR11]. Due to cross-
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coupling, it is not possible to obtain accurate results with a
calibration system that always maps one sensor to one joint
angle (e.g. using independent linear regression [MBM™03]).
For certain joint angles, readings from multiple sensors must
be used.

Multiple approaches address cross coupling [KZKO04,
CGKO00,JLC10, SMR11, WN13a]. Kahlesz et al. [KZK04]
regard the calibration function for abduction sensors as a
density function in 3D space, which takes readings from
abduction sensor sspp together with two neighboring flex-
ion sensors Syicp_LEFTSMcP_RIGHT as inputs. Ground truth
data is measured using widgets, but only for the zero-
abduction angle. Similarly, Jin et al. collect ground truth data
by using fixed widgets and simulate the calibration function
for cross-coupled sensors by using natural neighbor interpo-
lation of the collected data points [JLC10]. Chou et al. use
a marker based vision system as part of the calibration pro-
cess [CGKOO]. A monocular camera is used to automatically
retrieve ground truth by measuring the actual joint rotation
and link length as the subject performs a set of hand poses.
Multilinear regression is performed to solve for the calibra-
tion function for the cross-coupled abduction sensors. Cal-
ibration accuracy is restricted by the linear model. Steffen
et al. [SMR11] propose different calibration techniques for
different cross-coupling types. For finger abduction sensors,
they use a zero-abduction surface with parabolic form. For
thumb abduction, a parallelogram with non-orthogonal axes
is used to bound all the data points. The third cross-coupling
effect concerns the fingers’ absolute abduction angle, and
the proposed method empirically interpolates between all the
abduction sensor readings, which allows side-movements of
the middle finger.

For gesture or sign language, hand shape accuracy (for-
ward kinematics) may be important while for object manip-
ulation and robotic tele-operation [GFTC00, HGL*04], ac-
curacy of fingertip positions (inverse kinematics) plays a key
role. Some calibration approaches have explicitly sought to
guarantee fingertip accuracy. Unlike general handshape, fin-
gertip positions depend on the lengths of the fingers.

Griffin et al. [GFTCO00] develop individual hand models
for each user. They use a linear calibration model for each
DOF that includes gain and offset parameters and treat link
lengths as additional parameters. During calibration, the sub-
ject keeps the pinky and thumb in contact. A Jacobian ma-
trix is used in an optimization process that solves for all
model parameters. The system achieves 5.26mm =+1.4mm
error. In a related approach, Hu et al. [HGL"04] use two
stereo cameras to track actual fingertip positions and a con-
strained IK solver is used to minimize the errors between
the mapped fingertip positions and the measured fingertip
positions, with respect to the gain and offset of each sen-
sor calibration function. They report error of less than Smm.
Fischer et al. [FvdSH98] collect ground truth data using a vi-
sion tracking system. A feed-forward neural network is con-

structed for their IK calibration. Their evaluation shows that
the resulting position error is typically 0.5mm.

Seeking to provide both accurate hand shape and accu-
rate finger touching, Wang and Neff [WN13a] propose a
more flexible calibration by using a linear mean compos-
ite Gaussian process regression (LMC-GPR) model. LMC-
GPR maps sensor readings to ideal joint rotations in a non-
linear way. During training, it uses input from a widget-
aided sampling process. Compared to linear calibration, the
method can help fix cross-coupling problems and provide
better fingertip accuracy for finger touching poses.

Most data gloves have fewer sensors than the number
of DOFs on a real human hand. Based on biomechanical
observations, the missing finger DIP rotations can be syn-
thesized as proportional to the neighboring PIP rotations
[CGKO00, WN13a, JLC10] as shown in Equation 1. Jin and
Chen [JLC10] also propose a related function to simulate
thumb joint rotations when calibrating the 14 sensor SDT
Data Glove.

Recently, alternative glove technologies have emerged
that utilize small inertial sensors to track hand and finger mo-
tion. Examples include the Synertial’s IGS-Gloves [Syn15]
and the gloves included in a system from two recently
funded Kickstarter projects called Control VR [Con15] and
Perception Neuron [Neul5]. Inertial sensors measure the
rate of change in orientation or velocity. A limitation is that
to calculate position and orientation accurately the output
of all of the sensors must be unified and integrated over
time [DSDOS]. As these systems are in development, re-
search will have to show how they compare to other finger
capture systems.

Image and depth sensor based motion capture. Some op-
tical systems use gloves without specific sensors to help
track the hand. For example, the Color Glove is a sim-
ple cloth glove that has 21 equally sized patches of color
[WPOQ9]. The different colors are used to help make each
pose distinctive when solving the identification and pose es-
timation problem. The creation of this glove was inspired by
previous works that used color coding to identify different
regions of the hand. Dorner [Dor94] used a glove with col-
ored rings on the joints to act as markers that can be easily
detected by a video camera. Her gloves were used to de-
tect signs from the ASL alphabet. Theobalt et al. [TAH*04]
placed a glove with colored markers on a baseball pitcher’s
hand and tracked his hand motion using low-cost cameras
and a stroboscope.

Recently, new technologies have emerged that can per-
form hand tracking and detailed hand capture optically in
smaller spaces without the use of markers or gloves. These
systems commonly use silhouettes or edge detection to de-
termine hand poses.

Wang et al. [WPP11] presents a system that uses two reg-
ular video cameras to track hands and identify gesture poses.

(© 2015 The Author(s)
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The cameras are suspended above the hands. In their system,
hands manipulate virtual objects, including the virtual cam-
era in the scene. The system recognizes a select set of hand
gestures and uses a pose estimation scheme to identify these
gestures from the camera input in real time.

Depth sensor systems have recently been deployed to
record human motion. Technologies, such as the Microsoft
Kinect, have proven capable of full body tracking [SFC*11].
An RGB-D camera like the Kinect captures both color and
depth information. Leap Motion [Leal4] has also created a
system for free hand tracking. It differs from the Kinect in
that it only captures depth information and the motion re-
ceiver/controller lies flat on a surface below the hands. Fur-
ther systems have been developed based on similar tech-
niques [3Gel4, Nim15] even if not all of them have been
commercialized. More complex hand configurations with
self-occlusions are difficult to accurately recognize with this
type of systems. To address this, Tompson et al. [TSLP14]
propose a system to accurately recover poses recorded us-
ing depth cameras. Their method uses a convolutional neural
network to detect the locations of certain 2D and 3D features
of the model in real time. The feature locations are used in
an inverse kinematics algorithm to retrieve the pose of the
hand. Shridar et al. [SOT13] use a different approach to re-
cover poses from depth sensor data. They first filter the data
to extract the hand and then perform principal component
analysis to resolve the orientation of the palm. A linear sup-
port vector machine classifier is used to classify the locations
of the fingertips. A pose estimation algorithm is then used to
match the fingertip locations to poses in a database with sim-
ilar fingertip locations.

A downside to these markerless and gloveless systems is
that they again require a small capture space. Hand motion
must be isolated and free range motion is restricted. To pro-
cess the recorded data and perform accurate tracking and
pose estimation, many approaches employ complex algo-
rithms that are computationally expensive and cannot be run
in real time [SMFWO04, dLGPF08]. Other approaches pro-
vide real time speeds at the expense of resolution, hand pose
detail, or the requirement of larger sets of prerecorded ges-
tures [SKSK07, DMRO06].

A strategy for improving motion capture systems is to
combine approaches. A drawback of RGB-D camera data
is that it is often noisy. To solve this problem, Zhao et al.
[ZCX12] capture high-quality hand shape data by using a
twelve camera Vicon system and a Microsoft Kinect, which
records RGB-D image data. With this setup they build a large
library of poses. The results from the two capture systems
are combined by extracting a silhouette of the hand pose
from the RGB-D image and then solving a cost function that
analyzes how well an input pose matches the data recorded
by the two systems. This combined approach allows to cap-
ture a multitude of hand poses and provides better results
than when only using one capture technique.

(© 2015 The Author(s)
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3.3. Data-driven Methods

The challenges and significant time to create finger motion
notwithstanding, accurately captured finger motions are very
convincing and exhibit a high degree of realism. Data-driven
techniques provide methods for synthesizing new move-
ments using previously recorded or created motion of any
style. They allow for the re-use of motion data, adapting it
to new situations.

Data-driven methods have been used to solve a range of
problems, such as simultaneously capturing full body and
detailed hand movement, synthesizing gestures for conver-
sational characters, or computing parameters for procedu-
ral algorithms. Many approaches employ or are inspired by
existing data-driven animation methods, for example, dy-
namic time warping (DTW) and motion graphs, or common
data reduction or machine learning models, such as principal
component analysis and hidden Markov models, and specifi-
cally adapt them to the creation of finger motions or gestures.

Dynamic time warping (DTW) is used to compare two
temporal signals or to adapt the timing of one signal to an-
other [BW95]. Majkowska et al. [MZF06] present a tech-
nique that relies on DTW to capture detailed finger and body
motions. As finger and body motions are difficult to capture
simultaneously due to differences in the sizes of the motions
and markers, the authors suggest capturing the motion of the
body and the hands in two separate sessions, recording the
detailed finger motions in a smaller area where the performer
remains standing or seated. The positions from four markers
on the hand, wrist, and forearm are included in both cap-
tures, which allows for a later alignment of the hand and
body motions in their three step algorithm. First, movement
phases (preparation, stroke, hold, and retraction, further ex-
plained in Section 4.2) are matched using DTW based on ac-
celeration and velocity profiles. Then, again with DTW, the
frames within the matched phases are aligned to the frames
of the full body motion. Finally, the resulting motions are
smoothed to fit together seamlessly (see Figure 7).

A class of techniques rely on motion databases. For exam-
ple, to create finger motions for arbitrary new sequences of
body motions, an option is to use a database in which both
detailed finger motions and body movements are present. An
inherent limitation of this type of approach is that only fin-
ger motions that are available in the database can be cre-
ated and that there is no guarantee that the resulting finger
motions correspond to the movements intended by the per-
former. However, it has the advantage that such a database
only needs to be captured once and can then be reused as
often as needed.

When separate hand and body databases are used, the
challenge is to select and combine the best matching finger
motion segments from the database. Jorg et al. [JHS12] use
a database to augment the body motions of gesturing virtual
characters with plausible, high-quality finger motions. They
find that, amongst the tested variables, the best predictor for
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Figure 7: Example of full body animation with detailed hand motion from the splicing method proposed by Majkowska et

al. [MZF06].

consistent finger motions is a combination of the wrist posi-
tion and rotation. Once the body motion and the database are
segmented into phases, the combination of wrist position and
orientation is used to select the k best matching finger motion
segments from the database for each motion segment, adapt-
ing shorter and longer segments using DTW. The final se-
quence of movements is determined by first creating a graph
weighted by how well finger and body segments match and
how well consecutive finger motions blend into each other
and then finding the shortest path through it with Dijkstra’s
algorithm.

Many further methods use databases as a starting point.
Stone et al’s [SDO*04] database consists of prerecorded
speech and arm motions. Based on linguistic and behavioral
rules they design a motion graph and find a path through it
minimizing an objective function that scores how well ad-
jacent elements match. The result is an animated conver-
sational character with speech and gestures. They also use
a time warping approach to fit the motions to the differ-
ent speech utterances. Levine et al. [LTK09] synthesize the
arm motions of conversational characters using speech as in-
put. Their approach uses prerecorded motion capture and au-
dio data of conversations to train the model. Animations are
produced by selecting motions from the training based on
prosody cues in a live speech signal. A specialized hidden
Markov model (HMM) is used to perform the selection and
ensure smooth transitions between movements. This method
allows the authors to generate hand and body motions for
arbitrary audio input provided by a microphone in real time.
In further work, Levine et al. create a two layer system to
model the connection between prosody and gesture kine-
matics [LKTK10]. The first layer, the inference layer, infers
a belief distribution over a set of states that represent the
kinematics of the motion from a training database. The con-
trol layer then selects the appropriate gestures based on the
inferred distribution. They found that animations generated

using this method are preferred over animations generated
using the HMM approach.

Other researchers take advantage of the redundancy in
hand motions and combine databases with reduced marker
sets to synthesize motion. Kang et al. [KWNZ12] and
Wheatland et al. [WJZ13] both use a reduced marker set on
the hands to capture the hand and finger motion and then
use a reference database to reconstruct finger motions for
the final animation. The databases contain prerecorded high
resolution finger motion similar to the motion being recon-
structed, and synthesis is performed by finding the pose in
the database that most resembles a low resolution input pose.
Wheatland et al. [WJZ13] use principal component analy-
sis (PCA) to select a sparse marker set and to build a re-
gression model. For reconstruction, input marker positions
from the reduced set are mapped to the joint angles of the
hand through the computed PCA in order to produce the full-
resolution hand signs as output.

Data-driven approaches have also been used with glove-
based input. Wang and Popovi¢ [WP09] propose a system
that tracks hand motions in real-time using a glove with a
distinctive, colored pattern. For their method, shown in Fig-
ure 8, a pose database is built with a large set of prerecorded
3D hand poses and then is sampled to encompass the full
hand pose space. A nearest-neighbor algorithm is employed
to search for poses in the database that are similar to the
query input from the glove, and the most similar poses cho-
sen are blended together to get the estimated result.

Rather than reconstructing motions, some techniques aim
to extract particular features from hand data to classify and
identify the input [DSDO08]. Markov models and neural net-
works have been used to classify input in multiple gesture
recognition systems [MT91,L0O96, DM02, MKO02]. Using a
CyberGlove, Weissmann and Salomon [WS99] explore the
question of how to map the angular measurements received
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from sensored gloves to predefined hand gesture poses. To
this aim, they test the performance of different neural net-
work models on set poses. Using training sets comprised of
200 different hand poses, they find that a simply trained back
propagation neural network classifies their set of gestures
better than a radial basis function neural network. Plancak
and Luzanin [PL14] use a low-budget glove, the SDT Data
Glove 5 Ultra, and train a probabilistic neural network to
recognize gestures of fully open or fully closed hands. Their
method uses clustering algorithms to reduce the training data
size and allow for shorter execution times without significant
loss in training quality.

Finger motion data is also used as an input to drive anima-
tion and several researchers have employed it to animate ob-
jects other than hands. Using data-driven approaches and ap-
proaches combining glove recordings and simulation, con-
trollers have been developed, for example, to animate biped
characters using hand or glove input [DM02, WP09, 11010,
LS12].

One general drawback of data-driven methods is their lack
of adaptability to different situations. The smaller the collec-
tion of prerecorded motion, the more limiting a pure data-
driven approach is. This problem can be solved by adding
simulation to the approach. The combination of motion cap-
ture data and simulation allows the data to be augmented
with a physical model and adapted to new situations. An ex-
ample is the work of Kry and Pai [KP06], who synthesize
hands interacting with different objects. They use motion
capture data as a reference motion and add a simulation to
generate new hand motions. Ye and Liu [YL12] add detailed
manipulation and grasping motion to a full body character
by using an algorithm that determines the best hand shape
to use based on a set of hand-object contact positions. In-
puts to the system include motion capture data of an actor’s
body, including the movement of the wrist, and the motion
of each object that is manipulated by the actor. Multiple con-
tact positions are sampled to find a hand shape that can be
reached from the hand’s current shape and can match the
motion of the wrist and the object. Zhao et al. [ZCX12] syn-
thesize similar interactions combining marker based motion
capture data with RGB-D cameras. A database of ten differ-
ent grip shapes is captured holding a variety of objects. Con-
tact force information is then manually applied to the dif-
ferent grip shapes. Motion captured data has also been used
to compute the best parameters for physical models [PZ05].
Physics based techniques are described in more detail in Sec-
tion 3.4.2.

3.4. Procedural Animation Methods

Procedural systems can help manage the complexity of hand
models when data-driven and/or keyframing approaches are
infeasible and/or undesirable. To create controllers that pro-
duce natural motion, these approaches employ rules derived
from a variety of sources that aim to explain how hands
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should move and function. For example, taking the hand’s
biomechanics, procedural algorithms can be crafted from
rules that facilitate hand and finger coordination from the
hand’s natural structure [RG91, SRWG98, SFS98, LWHO00,
BZ04]. Likewise, procedural techniques can utilize appli-
cation driven rules to constrain movement, for example,
collision-free path planning, which leads to a unique set of
rules in contrast to the gestural hand movement.

The largest class of procedural methods falls into the cat-
egory of physically based modeling. Early research in char-
acter animation identified the benefits and challenges of sim-
ulated hands, as well as the need for control systems to
help guide movement [ADH*89, SC92]. And since, many
researchers in animation (and robotics) have proposed meth-
ods that employ physics and control to animate hands. One
advantage is that hand motion can be synthesized without
the need for input motion trajectories which relieves many
of the problems that come with data capture. In addition, a
benefit to using physics is the ability to add disturbances in
the form of external forces and perturbations. The latter is
key for hand manipulation which is often characterized by
complex, purposeful, and incidental contact forces.

3.4.1. Non-physical procedural motion

Many procedural approaches take advantage of the algorith-
mization of key information related to the domain. Path-
planning for manipulation and grasping is an example as
motion can be generated within pre-defined kinematic con-
straints (e.g., hand poses, object position and orientation if
grasping is the goal of the animation) to synthesize move-
ment to/from an expected goal [SCSLO2, YKHO4]. Like-
wise, application specific desired contact positions, pose se-
lection from pre-existing libraries, and inverse kinematics
provide spatial guides that allow direct or search-based tra-
jectory synthesis [HBMTT95,ES03,HL10b,ZRHN13]. Fur-
ther, temporal cues establish hard and soft timing setpoints
to drive hand motion to move in concert with other salient
features in an animation [CVBO1,NKASO8]. These systems
formulate synchronized non-verbal communicative behav-
iors with timing and pace that support the speech signal.
Many examples of procedural animations for hands have ap-
peared in various domains, each exploiting a new set of rules
based on the application. In Section 4, we organize and high-
light a broad example set by application area.

3.4.2. Physics based techniques

By employing physical rules, hand and finger animation has
been generated under a spectrum of settings. Two primary
goals for the research in this direction are increased qual-
ity through the naturalness of appearance-driven anatomical
models [TBHF03, SKP0O8] and increased generality through
responsive interaction, especially for force-based manipula-
tion [PZ05,KP06,Liu09]. Note a survey on the specific topic
of simulation for hand animation appears in [SP14].
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Figure 8: The pose estimation process proposed by Wang and Popovi¢ for use with their colored glove. The original captured
image is represented as a normalized tiny image. The image is an input query for a nearest-neighbor search algorithm that

returns a corresponding pose from a database [WP09].

Anatomical hands models. A number of researchers
have established the goal of creating natural looking shape
and movement by modeling the multi-layered, physical
structure of the hand. Many rely on physical simulation of
those layered components to add realism based on the estab-
lished model. An example is Albrecht et al. [AHS03] who
create an anatomically driven model of a hand which is an-
imated at the bone level through a set of simplified muscles
that torque finger joints, coupled with deformable spring-
mass volume models that shape and deform the local area
with a skin layer that wraps over the surface to produce the
visual rendering of the hand. Tang and Hui [TH09a] also use
a spring-mass system to model tendon movement in the hand
with the goal of achieving the correct skin deformation on
the hand’s surface. More sophisticated approaches have been
proposed to animate muscle deformation under the surface,
using finite volume models for muscles [TBHF03, LST09].

Sueda and colleagues [SKP08] add musculotendon effects
by simulating a thin strand model using an algorithmic con-
troller to determine the muscle activations. The simulated
strands add the appearance of tendons, visible through the
skin, based on keyframed bone animation input. Using a
method from the field of biomechanics [DL95], Tsang et
al. [TSFOS] present an anatomically correct hand with a two-
pass forward/inverse simulation that is able to drive hand
poses through tendons, as real hands are controlled. One goal
of such an approach is to support medical applications and
visualization of the hand in action.

Physical interaction synthesis. While physical attributes
can add value in a number of fashions, two classes of
techniques have been employed to synthesize purposeful
force-based movement for the hand. With a few excep-
tions [ICLOO, NS06], the goal of these systems is interac-
tion synthesis that lends itself to manipulation and grasping.
The first class of techniques employs forward simulation to
enforce physical correctness, and the primary thrust of the
work comes in the form of the design of an action controller
that drives the hand to perform desired behaviors. The sec-
ond set uses constrained trajectory optimization to compute

physically correct motion based on a series of short-horizon
control problems with a set of desired objectives. While ab-
stractly the difference between these two sets of methods is
arguable, the approach for solving each is fairly different,
and the distinction is helpful for discussing each in this re-
view.

Early on, a main disadvantage with using forward sim-
ulation appeared to be the time needed to solve the equa-
tions [ADH"*89]. However, currently, controller design is the
prominent focus in forward simulation techniques. Using a
control system, the resulting animation is created by apply-
ing generalized forces to the dynamic simulation of the hand
along with inertial influences and external disturbances. In
most of the published examples to date, the controller fol-
lows a hierarchical structure with low-level activation cou-
pled with behavior-level control and sometimes higher-level
planning. Neff and Seidel present a clean example of low-
level control [NS06]. They use a joint-based proportional-
derivative (PD) controller to animate the hand in simple re-
sponse to gravity. This controller acts as a basic muscle sys-
tem by generating joint torques to keep the hand close to a
static (or desired) rest pose. Tuning gain values can be prob-
lematic for such control, although for this particular work
the controller values were acquired by matching observa-
tions and timing in videos of a person performing the hand
motion to be animated.

By layering a state machine over PD-control, Pollard and
Zordan [PZ05] create a hierarchical controller that perfoms
object-grabbing actions. Along with gravity compensation,
a feedforward term, and control parameters extracted from
motion capture data, the controller combines passive respon-
siveness with active control of flexion to grab an object. An-
drews and Kry [AK12, AK13] use a similar hierarchy but
take it a step further in order to produce more subtle, mul-
tifinger manipulations. Rather than extracting poses from a
motion capture trajectory, their system computes hand and
finger poses for three states (approach, actuate, and release)
using a multi-stage optimization. In this fashion, the opti-
mizer is able to search for a small set of joint angles that
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Figure 9: Examples of input grasp poses (top) and poses
modified to perform manipulations (bottom) in the physics-
based method proposed by Liu [Liu09].

accomplish the desired manipulation, for example turning a
dial, by exploring the effect of the poses across the behavior
— without an explicit example or precise control direction.

By recasting the synthesis problem into a series of small,
so-called short-horizon search problems, physically based
animation can be produced that accomplishes a desired out-
come. The structural difference between this approach and
forward simulation is that the dynamic equations of motion
need not be solved explicitly (through forward simulation)
but instead can act as constraints that limit the feasible search
space to remain physically plausible. For example, in two
papers [Liu08,Liu09], Liu describes approaches that synthe-
size physically correct hand and arm reaching and manipu-
lation from a sequence of short-horizon optimizations.

Liu’s two approaches differ somewhat in their specific
problem formulations. Namely, the first includes kinematic
objectives that, for example, dictate contact of a finger tip,
while the second plans for desired contact forces and uses
these as constraints in the optimization. Both uphold phys-
ical correctness through constraints based on the dynamic
equations of motion, but promote smoothness in the multi-
stage trajectory differently, through target hand pose [Liu08]
or minimum internal torque change [Liu09]. To contrast the
effect of these choices, the former casts a problem with con-
flicting kinematic and dynamic goals to create hand motion,
while the latter has the benefit that contact planning leads to
force constraints that form a cleaner search space, which is
solved with the single objective of smooth joint activation
and ultimately results in more robust, less stiff manipula-
tion. Figure 9 shows examples of these synthesized manipu-
lations.

This leads to another important problem in physical inter-
action synthesis: the modeling of compliance. To mimic real
manipulation, we need the hand and fingers to comply or
“give” in the presence of sufficiently large forces. The tech-
niques described above deal with this issue by providing var-
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ious means for keeping the hand from becoming stiff. Jain et
al. [JL11] offer an approach to compliance by modeling de-
formation at the contacts of a simulated manipulation. How-
ever, the interaction capture approach of Kry and Pai [KP06],
shown in Figure 10, tackles the compliance problem in a
more direct and unique way.

To animate hands interacting with a variety of objects, Kry
and Pai simultaneously capture markers from the hands and
force sensors mounted on the fingertips as real-world manip-
ulations are performed. This allows them to compute both
the motion of the joint angles of the hand and possible inter-
nal forces that explain the measured contact forces between
the hand and manipulated objects. From this “interaction
capture”, they build controllers with estimated joint com-
pliance, derived from the small time periods before and af-
ter the contact. Subsequently, reference motion can be com-
bined with the joint compliant control to synthesize new mo-
tions, including those in response to simulated perturbations.
The approach also allows to synthesize compliant hands ma-
nipulating objects of different shape, size, and surface tex-
ture.

3.5. Surface-based models

Along with its movement, the visual rendering of a hand
model affects how it is perceived. To make hands look more
realistic, researchers have proposed several techniques to im-
prove control, calculation speed, and appearance of the sur-
face representation of the hand, for example, by adding skin
wrinkles [YZ05] and palm creases [RNLO6]. Realism has
been approached by modeling underlying bones, muscles,
tendons, and blood distribution that can be seen through the
skin [AJK13], in addition to the deformations of the skin
layer itself. While we describe several related anatomical
modeling techniques in the previous section, surface mod-
els for hands have given rise to their own techniques. For
example, Kurihara and Miyata [KMO04] present a technique
to model hand surfaces based on medical images.

As hands move into different configurations, the surface
of the hand deforms accordingly [ADH*89]. Early methods
for skin deformation propose using a set of operators that af-
fect the skinning of a character based on the configuration of
the joints using joint-dependent local deformation [MTT87,
MTLTS88]. Each deformation operator is responsible for an
individual section of the skin surface. In contrast, Gourret
and colleagues [GTT89] use finite elements to simulate dif-
ferent skin deformations when the hand is grasping objects.
This method also allows them to simulate shape and create
the correct contacts between the hand and the object. Moc-
cozet and Magnenat-Thalmann [MMT97] propose a free-
form deformation (FFD) model which depends on Delau-
nay and Dirichlet diagrams to simulate the tissue between
the skeleton and the skin. With this approach, they are able
to produce wrinkles around the joints and smooth deforma-
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Figure 10: An example of Kry and Pai’s Interaction Capture approach: (a) A grasp is recorded using motion capture markers
and fingertip mounted sensors to measure the contact forces; (b) Recorded contact forces are illustrated; (c) A synthesized
interaction with a similar object; (d) A synthesized interaction with an object of a different shape [KP06].

tions across the surface of the hand. The FFD also allows the
geometric representation of the skin to respond to contacts.

Kry and colleagues [KJP02] sought to improve the
skeletal-subspace deformation skinning technique by
Magnenat-Thalmann et al. [MTLTS88]. Starting from a
simulation of the hand with a finite-element deformable
soft-tissue model, they collect a set of simulated sample
hand poses and subsequently determine which joints influ-
ence displacements in the deformed surface mesh. Principle
component analysis is performed on the positions of the
selected vertices to acquire a set of eigen displacements. By
truncating these terms, they find approximate deformations
that can be computed quickly. At run-time, each of the
vertices contribute to the final skin deformation based on
the eigen displacement basis for that vertex and the current
bone configuration of the hand.

In a more recent method, Huang and col-
leagues [HZY*11] create a multiscale surface hand
model that has large scale deformations with high resolution
details such as wrinkles and creases (Figure 11). To achieve
this goal, they capture a set of high precision 3D scans and
fit the poses with control points. These poses act as the
training input for both the deformation layer and the detail
surface layer. When new control points are added, the two
layers for the new pose are updated and high resolution
hand surfaces are synthesized.

4. Applications
4.1. Manipulation

On a daily basis, human hands must perform precision tasks
that involve manipulation through grasping and deliberate
interaction via contact. It is desirable for virtual characters
to manipulate objects in their environment with their hands
in a similar manner. Synthesizing hand grasps of arbitrary
objects is important but challenging. Grasp synthesis can
be difficult because of the large number of possible con-
figurations of the hand, variation in the types of objects to
grasp, as well as the choice of grasp that would make a
movement natural (e.g. a two-finger pinch or a full hand

Figure 11: Huang’s method. Training poses inform large
scale deformations (a) and high resolution deformation de-
tails (b) for the final result (c) [HZY*11].

grasp). Researchers have created classifications for differ-
ent human grasps and used information regarding the object
and the current task to determine the correct grasp choice for
robots [CW86, CH90, MKCAO03]. While manipulation is an
application that researchers in both animation and robotics
focus on concurrently, animation techniques must prioritize
naturalness in consideration of the shape of the hand as well
as the contact necessary.

Before the onset of motion capture, early researchers
painstakingly crafted the shape of a grasp manually and
placed the hand in a plausible location relative to the object
in order to make visually pleasing manipulations [MTLT88].
In this work, the points of contact on both the hand and
the object are specified for each grasp. Rijpkema and Gi-
rard [RG91] propose a procedural approach that takes into
account the shape of the object and a selection of grasps
from a library and apply rules to adjust the grasp according
to an analysis of the original shape, the current object, and
necessary contact forces. They also use a grasp-planning al-
gorithm and a knowledge-based approach similar to those in
robotics [TBKS87].

Sanso and Thalmann [ST94] propose an automatic sys-
tem to determine how to grasp (e.g., with two fingers or two
hands) and apply joint constraints to make the closing of the
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hand look realistic. Huang et al. [HBMTT95] offer an al-
ternative method that also takes into account the shape of
the object and decides on the grasp strategy. Their heuristic
determines the grasp based on object type, size, and hand
geometry, and their hand uses virtual sensors to maintain
contact. Aydin and Nakajima [AN99] present an approach
that allows a virtual character to employ the full body to per-
form grasping for objects placed at a number of locations,
including the ground. They classify the object to be manip-
ulated, estimate the hand shape needed, estimate the posture
of the body needed, and then perform the grasp relying on a
forward/inverse kinematics scheme.

As motion capture technology became more available,
data-driven techniques grew in popularity. For example, Li
et al. [LFPO7] construct a database of grasp shapes recorded
using motion capture. They also construct a database of var-
ious objects of different shapes and sizes. To choose the
best grasp for each object, a shape-matching algorithm is
employed which returns multiple potential matching grasps
from the shape database that are then clustered and pruned
to find the best grasp. An alternative take on data-driven
manipulation is proposed by Ye and Liu [YL12]. Their ap-
proach provides a full body (input capture) with realistic and
intricate hand configurations for manipulating objects (also
recorded). To synthesize hand manipulations, they randomly
sample a set of hand-object contact positions to determine
feasible contacts based on the present hand configuration.
Once contact points are chosen, optimization is performed
to move the hand from one configuration to the next.

Hybrid data-driven and physics based systems also be-
gan to appear [PZ05, KP06]. For example, using their
system, Pollard and Zordan simulate interactions such as
the two hands grasping each other in the handshake seen
in Figure 12. While physically realistic, these approaches
rely heavily on reference examples. In more recent efforts,
physics-based synthesis is migrating away from dependence
on motion data, for example in Bai and Liu’s simulated ob-
ject rolling [BL14]. This optimization-driven approach con-
trols a virtual robot hand to dextrously maneuver the posi-
tion and orientation of an object automatically. They create
two controllers, one to pick up the object and drop it in the
palm and the other to grasp the object and correct its rotating
motion. The object rolls with respect to gravity and contact
forces associated with the tilt of the palm. To control the tilt
angle of the palm, the algorithm relies on principles of me-
chanical energy.

Virtual Reality applications. An important set of applica-
tions of “direct” virtual manipulation appear in the domain
of human computer interaction and virtual reality (VR) sys-
tems. In many VR systems, virtual hands allow a user to
interact with objects in the scene. The VPL DataGloves let
users naturally interact with simulated environments [SZ94]
and have been used to control touch, grabs, movement,
and even throwing virtual objects as well as selecting on-
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Figure 12: A physical controller coupled with motion cap-

ture able to perform complex interactions such as a hand-
shake [PZ05].

S—

screen menu items [KY89, SZP89, FB90]. The VPL soft-
ware system would execute events, such as grabs, when cer-
tain hand poses were recognized. More recent research looks
at making VR grasps appear more like the actual user grasps
[LCZ*11,AC12]. Beyond non-VR applications, research in
this arena focuses on optimizations to keep processes run-
ning in real time.

4.2. Communication

Gesture is a key component of nonverbal communication,
and an important aspect of communication overall. Gesture
animation focuses largely on the hand, considering position-
ing, timing, and hand shape, and represents an important ap-
plication of hand animation to support communication. The
movement of individual fingers is not always considered and
is not a focus of this section. Jorg et al. [JHS12] propose a
method to automatically add finger animation to body mo-
tions for conversational characters that can be used in com-
bination with approaches where this type of motion detail is
not provided.

Human gesture and speech is produced together from
what is commonly thought of as a single communicative
intent [Ken04, McN92]. Systems that generate conversa-
tional characters, such as the SAIBA project [SAI12], tend
to follow this idea, combining speech and gesture to pro-
duce high level communication. A recognized model for
gesture production is the Prep, Stroke, Retraction (PSR)
model of gesture phases. The PSR model was first devel-
oped by Efron [Efr41], an anthropologist, and later refined
by Kendon [Ken80] and others [KVV98]. According to the
PSR model, a gesture can be divided into a set of phases as
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follows:

GESTURE — [ preparation | [ hold ] STROKE [ hold ][ retraction | (2)

The meaning of the gesture is carried by the stroke phase.
As such, a gesture should always have a stroke phase,
with the other phases being optional, except for indepen-
dent holds (stroke holds) [KVV98,McNO5]. The preparation
phase places the arm, wrist, hand, and fingers in the proper
configuration to begin the stroke [KVV98]. In the retrac-
tion phase, the arm returns to a rest position. It is generally
thought that the hold phases exist to synchronize the mo-
tion of the gesture with speech [dR00, McNO5]. Hold phases
could also convey that the speaker maintains a state for a
certain length of time. The PSR model provides the basis for
many gesture synthesis algorithms.

A large number of researchers have studied how to pro-
duce gesture animation. The two key problems are to deter-
mine which gestures should be performed in a given situa-
tion and to generate appropriate animation of those gestures.
Animation techniques have included procedural approaches,
data-driven techniques, and physical simulation. Significant
attention has been paid to controlling the style of the motion
and synchronizing it appropriately with speech.

Modeling the style of gestural movement is necessary in
order to create a sense of character and personality. Chi et
al. [CCZBO00] designed the EMOTE system by using the
Effort and Shape components of Laban Movement Analy-
sis (LMA) to define a set of animation control parameters.
Effort, for example, consists of four parameters: Weight,
Space, Time and Flow. Each parameter has two poles; for
example, Weight ranges from Light to Strong. An animator
can change the Weight parameter and the resulting anima-
tion will be more delicate or more powerful. The system is
kinematic with hand tuned mappings between the LMA pa-
rameters and spatial and temporal controls. These mappings
were validated through a user study.

Hartmann et al. [HMPO02] focus on creating believable
Embodied Conversational Agents (ECAs), specifically for
information delivery. Their approach takes a user inquiry as
input and responds with an agent trained in the specified do-
main of knowledge. They introduce a kinematic animation
system, the Gesture Engine. Follow-up work [HMPO06] ex-
tends this approach to provide parametrized, expressive con-
trol of arm gestures. They model the parameters: overall ac-
tivation, spatial extent, temporal extent, fluidity, power, and
repetition.

With an emphasis on creating natural motion, Kopp et
al. [KTCO04] present a gesture animation framework based
on neurophysiological research to control the timing of novel
iconic gestures. Iconic gestures focus on visual representa-
tions of concrete entities, for example, when describing an
object, imitating an action, or giving directions.

Neff and Fiume [NFO05] introduce a system that uses edit-

ing operations designed based on the arts literature to mod-
ify the style of an animation sequence. They automate these
style modifications for complete sequences through the use
of customizable character sketches.

Gibet et al. [GKP04] apply invariant features that should
be maintained in gesturing agents, including Fitts’ law
[Fit54], the two-third power law [VT82], and gesture move-
ment smoothing [FH85, UKS89] following motor control
theory, and then give a brief discussion on how these laws
can be applied to motion generation and editing.

Physics-based techniques have seen less use in gesture
animation than manipulation animation, but several sys-
tems support physical simulation for generating the output
[NFO5, NKAS08, vVWRRZ10], often using careful tension
control [NF02] to make the character appear more loose or
stiff and provide secondary oscillations to the motion. These
techniques use proportional-derivative (PD) controllers to
provide a simple model of muscle, forward simulation to
generate the output, and layered balance controllers to keep
the character standing.

Data-driven techniques are popular for gesture animation
as they provide high quality, natural motion. The variation
space for gestures is very large, so it can be a significant
obstacle to capture data for the massive range of feasible in-
teractions. As discussed earlier, data-driven approaches may
also offer less control over the motion, particularly if they
are limited to playing back previously recorded motion. Mo-
tion graphs have been used in several approaches. Stone et
al. [SDO*04] present a system that uses a motion graph
across combined data of speech and animation. Generating
different paths through the motion graph provides differ-
ent multimodal output sequences with synchronized gesture
and speech as feedback for a video game player. Fernandez-
Baena et al. [FBMA*14] develop a Gesture Motion Graph
(GMG) for generating gesture animation sequences and then
use synchrony rules to match the intensity of gestures to the
intensity of the speech.

Some recent approaches have applied machine learning
techniques to try to generalize gesture models from data.
Based on an extension of deep belief networks, Chiu and
Marsella [CM11b,CM11a] use hierarchical factored condi-
tional restricted Boltzmann machines (HFCRBMs) [TH09b]
(extending [THRO6]) to generate gesture sequences from
data, triggered by prosody. Later, Chiu and Marsella [CM 14]
use dynamic Gaussian Process Latent Variable Models
(GPLVMs) [WFHOS] to learn a low-dimensional embedding
of gesture data and find smooth connections between ges-
tures in this space.

The relationship between speech and gestures was often
specified with a custom representation language that was
paired with an animation system. For example, the Gesture
Engine by Hartmann et al. [HMP02] realizes an abstract
scripting language for specifying gesture definitions by syn-
thesizing gesturing behavior. Kopp and Wachsmuth [KW02]
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generate human-like multimodal utterances, gestures, and
concurrent speech for a virtual conversational agent that in-
teracts with humans. Later, Kopp and Wachsmuth [KW04]
extend their work to develop the Multimodal Utterance Rep-
resentation Markup Language that is used to specify body
and hand gestures, facial expressions and prosodic speech
synthesis.

These early specification languages led to the Behavior
Markup Language (BML), an XML description language for
specifying the verbal and nonverbal behavior of embodied
conversational agents [KKM*06, VCC*07]. BML is meant
to be independent of any particular system and a BML re-
alizer is an animation engine that can transform BML into
character animations. A number of researchers have de-
veloped BML realizers, such as Elckerlyc [VWRRZ10], a
BML realizer for generating multimodal verbal and nonver-
bal behavior for virtual humans; SmartBody [TMMKOS],
a BML realizer that also provides locomotion, steering,
object manipulation, lip syncing, and real time gaze con-
trol; EMBR [HK10], which supports micro-planning; and
Greta [MNBPO8], which features significant facial control.
BML realizers generally follow a procedural approach and
play back either key framed or motion captured examples of
gesture, sometimes with parametric variation.

Numerous techniques have been developed to determine
which gesture should be performed to accompany a given
passage of text. The Behavior Expression Animation Toolkit
(BEAT) [CVBOL1] is an enhanced rule-based text-to-speech
system that takes plain text/script as input and uses a set
of predefined rules to automatically generate prosody and
speech synthesizer intonation, facial animation, and ges-
tures. Stone et al. [SDO*04] use a multimodal data cor-
pus that captures the relationship between speech and ges-
ture. The work of Kipp and colleagues [Kip04, KNKAO7]
and Neff et al. [NKASOS8] uses a statistical model of in-
dividual speaker behavior to predict how a particular per-
son will gesture, given input text. The nonverbal behavior
generator presented by Lee and Marsella [LMO06] is another
rule-based tool for automatically generating believable non-
verbal behaviors for embodied conversational characters by
analyzing syntactic and discourse patterns. Bergmann and
Kopp [BKO09] propose a data-driven model for integrated
language and gesture generation that can account for sys-
tematic meaning-form mappings, where speaker preferences
are learned from corpus data. Bergmann et al. extend these
approaches by also including a cognitive model [BKK13].

Focusing on audio instead of text, Levine et al. predict the
timing and type of gesture based on the prosody of the audio
signal using first hidden Markov models [LTK09] and then
conditional random fields [LKTK10]. Chiu and Marsella fol-
low a similar approach using HFCRBMs [CM1 1a] and then
extend this approach to a two level technique that first pre-
dicts the type of gesture from input audio using Conditional
Random Fields and then generates the required motion us-
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ing GPLVMs [CM14]. Fernandez-Baena et al. [FBMA*14]
use synchrony rules to match the intensity of gestures to the
intensity of the speech. Models based purely on prosody rec-
ognize the important correlation between gesture timing and
audio changes (e.g. explored in [KdR12, WN13b] ), but can-
not account for deep semantics. Newer work seeks to address
both, for example, the Cerebella system [LM13].

4.3. Sign Language

An important and challenging application for detailed hand
and finger animation is depicting sign language. Tools that
can produce quality sign language animation can be very
useful for members of the deaf community. Over the years,
many projects have explored ways to recognize and cre-
ate hand signs, leading to major innovations in the creation
of detailed finger animations. For example, in the 1980s,
Kramer and Leifer wanted to build a portable system for the
purpose of sign recognition and for sign language to spoken
word translation [KL88]. Out of this research came the first
CyberGlove [KLG91], which was instrumental in the more
recent research on this topic.

Adamo-Villani and Beni [AVB04] created an educational
tool to teach people to sign and read finger spelling. They
use a realistic hand model with a skeletal deformation sys-
tem that closely resembles the skeleton of a real hand. Their
belief is that realism helps to better identify the shape and
position of the hand. The arm and hand are animated using a
combination of forward and inverse kinematics. Their tool,
which runs in Maya, allows a user to input text and the hand
will spell out what was written. They also provide controls
to manage the speed of the motion, the rotation of the hand,
and the camera angle.

A Chinese sign language recognition and synthesis sys-
tem is proposed by Gao et al. [GMS*00, GCF*04]. Using
a data glove to provide input data, they initially use a fast-
match algorithm to find a list of words from their vocabulary
that is similar to the input. Then they assign probabilities to
the words based on context and search for the most likely
word. Their system also captures facial motion to apply it to
the signing avatar.

In 2010, Lu and Huenerfauth describe how they create
a motion capture ASL corpus [LH10]. They captured body
movements and hand signs from native signers using a com-
bination of sensored gloves, motion capture, eye-tracking,
and video. Figure 13 shows their capture setup and an exam-
ple of their animated character. The collected data is then,
for example, used to produce inflected verb signs [LH11].
For this type of signs the motion path varies depending on
the location in space to which the object and, if present,
the subject have been assigned on an horizontal arc-shaped
space around the signers body. Huenerfauth and Lu’s pre-
vious work uses a database created by human signers with
the sign language animation tool VCom3D Gesture Builder
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Figure 13: The technique used by Lu and Huenerfauth to
create a motion capture ASL corpus: (a) Motion capture
setup consisting of a bodysuit with intertial and magnetic
sensors, an acoustical/inertial sensor for the head, two Cy-
berGloves, and an eye-tracker; (b) An animation generated
from the motion capture data; (c) An animation of their char-
acter Sign Smith performing a sign [LH10].

[HL10b]. A third-order polynomial model is fitted to each
location parameter for each hand, keyframe, and verb. Based
on this parameterization, inflected verbs for new subject and
object locations can be generated. The same method is then
applied to motion captured data [LH11].

Sign language has also been used for evaluation purposes
or as a testbed for new methods, for example, in the work of
Adamo-Villani [AV08] and Wheatland et al. [WJZ13].

4.4. Instrumental Performance

Playing most musical instruments requires significant man-
ual dexterity. String and keyboard instruments, for exam-
ple, require complex positioning of the fingers. Research
has aimed to automatically recreate the fine motions neces-
sary to animate the playing of instruments such as the violin
[KCMTO00], guitar [ES03], and piano [KMO™09,ZRHN13].

A significant hurdle when playing musical scores is that
fingerings (which finger the player uses to play which notes)
are not explicitly stated in the sheet music. Several re-
searchers have addressed this problem using rule-based ap-
proaches based on musical teachings to map from notes to
fingerings [Say89,PSC*97,Jac01]. A general issue with this
type of approach is that the number of rules can become
lengthy and unmanageable.

ElKoura and Singh [ES03] combine rule-based and data-
driven methods to create a virtual character that is able to
read a musical passage written as guitar tablature and to
play it on a virtual guitar (Figure 14). They propose a cost-
minimization algorithm to determine the fingering of the
fretting hand that minimizes objectives such as the required
effort. Once the fingering is solved, the exact joint orienta-
tions are determined using a k-nearest-neighbors search in a
database of motion captured guitar motions to obtain natural
hand poses.

Piano playing involves both hands simultaneously playing

Figure 14: An example of the Handrix system by ElKoura
and Singh performing a C (top left)-G (top right)-F# (bottom
left)-G (bottom right) chord progression [ESO3].

different note patterns. Kugimoto et al. [KMO™*09] present a
system using motion capture data to generate animated pi-
ano playing from MIDI files or musical scores. They capture
the motions of a piano player’s hands and animate the virtual
hands based on this data. Similarly to the previous method,
their work algorithmically determines the optimal piano fin-
gering. It furthermore uses a function to determine the tra-
jectories of the fingers’ control points based on the proposed
fingering. Zhu et al. [ZRHN13] also developed a system to
animate virtual piano playing based on an input MIDI file.
Their kinematic system uses a rule-based method to find the
most comfortable fingering for each note or chord. Then a
graph-theory based motion planning algorithm is used to de-
termine the optimal key fingerings for the entire musical se-
quence. Lastly, the position of unused fingers is calculated
to make future fingerings more efficient. The system can
achieve complicated fingering sequences such as cross-overs
where the hand crosses over the thumb. Once the series of
poses is generated, the result is optimized to create motion
curves based on the performance style.

5. Discussion and Future Trends

This report provided an overview of the research and tech-
nologies for creating hand and finger animation for vir-
tual characters, grouping approaches into keyframing, data-
driven animation, procedural animation, and surface based
animation. Each of these methods has benefits and draw-
backs. Keyframing gives animators full control over the fi-
nal animation, but can be time consuming, and it is difficult
to adapt keyframed motion to new situations. Data-driven
methods can produce realistic and highly detailed results,
but require pre-recorded human motion data similar to the
desired result in order to create animations. Capturing elab-
orate and accurate finger movements is difficult. Optical mo-
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tion capture technologies require laborious post-processing
and occlusions pose a significant problem, while sensored
gloves are challenging to calibrate and reconstructions can
be inaccurate due to sensor cross-coupling. Accurately de-
termining the size of the hand skeleton is also a hard task
when using motion capture techniques. Procedural methods
include a wide set of approaches that are driven by algo-
rithms or rules, which can be based on text and speech, psy-
chological principles, anatomical rules, physics-based laws
or statistical models. These approaches are often flexible, but
when no motion data is used, more complex rules may be re-
quired to create high quality, detailed motion. With physics-
based algorithms, motions are adaptable to different situa-
tions, but might be expensive to compute and can appear
unnatural. Surface-based models can be combined with all
three animation methods to add details such as wrinkles to
the appearance and rendering of a hand model.

We summarize common applications of hand animation
under the topics manipulation, communication, sign lan-
guage, and musical performance. In terms of trends, we note
that much manipulation and grasping research takes a pro-
cedural approach that includes physical simulation. This is
due to the fact that manipulation is highly dependent on the
particular task and physical interaction. Thus algorithms that
can adapt and generate specific, novel motion perform best.
There are numerous successful examples of manipulation
research that combine procedural methods with data-driven
methods to create more natural-looking animations. In those
approaches, the data-driven motion is often used as a first
guess and then customized to the particular task.

When it comes to communication, data-driven and rule-
based methods dominate. There is a trade-off between the
realism of captured motion data and the flexibility of proce-
dural approaches. There are many ways to translate a specific
piece of information into gestures or to convey a particular
character’s personality, and we have yet to fully understand
this intricate process. Therefore, the desired motion is of-
ten underspecified. Data-driven techniques can add details
to the motion in an acceptable way, but we expect that the
demand for motion that precisely reflects both the character
and the communicative context will increase as quality de-
mands grow. Quality and control can benefit from both new
data-driven methods and improved procedural control. Ges-
turing tasks are less physically constrained, and hence have
seen few uses of physics-based models. However, physical
simulation can improve the motion quality and adaptability
to constraints and is a likely future trend. More and more
hybrid solutions span the spectrum from data-driven to pro-
cedural techniques, and we expect such hybrid approaches
that combine the strengths of each technique to provide an
important route forward.

Recent years, have seen an increase in new, more afford-
able products to track and capture hand motions, including
the Microsoft Kinect and the Leap Motion Controller. Even
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though these technologies cannot capture detailed hand mo-
tions in large spaces, they broaden access and grow applica-
tion areas such as virtual reality, digital games, or assistance
and rehabilitation. Some of those applications only track the
hands to provide control and not to create animations. Oth-
ers give a basic or more detailed representation of the hand
as feedback to the user. The possibilities and products in that
area are currently evolving at a quick pace. For example, in
the field of virtual reality, the recent surge in the consumer
market due to affordable head mounted displays, like the
Oculus Rift or Sony’s upcoming Project Morpheus, is lead-
ing to new developments in hand tracking.

The modeling and animation of hands and fingers has seen
great progress over the past three decades. However, captur-
ing the complex motions of the hands accurately or creating
a character that can communicate with people or manipulate
objects in a believable way remains a challenge. As the num-
ber of applications requiring detailed hand animation con-
tinues to increase, the development of new algorithms and
techniques for hand and finger animation remains a vibrant
research area.

Much progress has been made in solving specific situa-
tions. Solutions exist to compute specific grasps, especially
single hand grasps in known scenarios, or to create anima-
tions for communication in a well defined domain. But more
general approaches that could handle a whole range of be-
haviors are missing. More flexible systems could be cre-
ated with hybrid approaches, for example, combining pre-
recorded data with a physics system to increase adaptability.
However, even when it comes to specific situations, many
types of motions, for example, those involving complex in-
teractions such as lacing a shoe, wringing one’s hands, snap-
ping fingers, or using sign language, can currently not be
synthesized automatically at high quality. Improvements are
required not only in the computation of such motions, but
also in generating subtle skin deformations where the fin-
gers interact and in creating wrinkles where necessary. These
types of interactions cannot currently be captured accurately.
In the motion capture area, we expect new capture methods
for the consumer market based on RGB-D cameras to im-
prove in accuracy and gain in popularity. However, the goal
of capturing intricate motions easily and precisely in a large
capture space together with the body has not been reached
yet. Here again, combining different methods might lead to
more powerful techniques. Finally, further systematic per-
ceptual studies are needed to understand how we interpret
hand and finger models and animations. Such studies would
improve our understanding and control of how hand and fin-
ger motions express personality and emotions in multimodal
communication and would also determine which details in
hand and finger modeling and animation are most salient and
need further research.
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