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Abstract. This paper introduces a system for expressive locomotion
generation that takes as input a set of sample locomotion clips and a
motion path. Significantly, the system only requires a single sample of
straight-path locomotion for each style modeled and can produce out-
put locomotion for an arbitrary path with arbitrary motion transition
points. For efficient locomotion generation, we represent each sample
with a loop sequence which encapsulates its key style and utilize these se-
quences throughout the synthesis process. Several techniques are applied
to automate the synthesis: foot-plant detection from unlabeled samples,
estimation of an adaptive blending length for a natural style change, and
a post-processing step for enhancing the physical realism of the output
animation. Compared to previous approaches, the system requires sig-
nificantly less data and manual labor, while supporting a large range of
styles.

Keywords: character animation, locomotion style, motion transition,
motion path, motion capture data

1 Introduction

The popularity of motion capture technology makes it possible to convert the
physical realism of live movements into manageable data. Taking as input a set
of recorded motion clips, previous approaches such as motion blending and mo-
tion concatenation have been developed for locomotion synthesis. They all have
inherent trade-offs: A large number of sample motions are required to synthesize
an output locomotion following an arbitrary motion path. Furthermore, most of
them uses a basic locomotion type such as walking or running as their sample
set, where a single blending length has been used throughout the synthesis pro-
cess. With stylistic samples, this can introduce undesirable lag or suddenness
during a motion transition [20].

In this paper, we introduce an animation system that generates expressive
locomotion from a set of sample clips and a motion path specified by an animator.
By using short, straight-path locomotion clips as our sample set, we require only
a small amount of data. We focus on automating locomotion synthesis so that
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a virtual character can adapt to the input path without an animator’s further
intervention. Since the quantitative aspects of various styles such as body speed,
number of foot steps, and range of end-effector positions differ, we represent each
sample by constructing a loop sequence which consists of a minimum number of
foot-plants required to capture the key style and loops smoothly with itself. We
show how to construct such a loop sequence from an unlabeled sample with
minimum manual effort. During the locomotion synthesis, an adaptive blending
length is estimated for transition between styles. After the synthesis, we enhance
the physical validity of the output animation by enforcing foot constraints and
postural adjustments.

Our system contributes an automated method of generating expressive loco-
motion from unlabeled sample clips. We provide a simple and efficient method
of constructing a loop sequence from detected foot-plants that is then used in
the synthesis process. An adaptive blend duration is automatically determined
to provide natural style changes. Notably, our system only requires a small num-
ber of sample clips for a wide range of output. Further, the physical realism is
enhanced, especially for turning motions on a curved path. With our system, an
animator can quickly generate an output animation through control of a motion
path alone, all at interactive speed.

2 Related Work

Motion concatenation is widely used to generate variants of sample motion with-
out destroying the physical details of the original motion. For concatenation of
motion segments, a motion graph [1,7,9] is typically constructed to represent
an output motion sequence as a valid graph path, satisfying edge and node con-
straints specified by an animator. Coupled with motion blending techniques,
this type of approach can provide online locomotion generation [8,12, 14], where
control parameters such as speed, turning angles, or emotional values can be
continuously fed into the system. Kovar and Gleicher [6] investigated the range
of motions that can be created automatically using blending. A low-dimensional
control model was suggested by Treuille et al. [18] to generate continuous loco-
motion sequences from a reduced number of samples. Oshita [11] proposed an
automated system for generating a continuous motion sequences from a set of
short motion clips based on the different support phases of the foot between
two motions. Recently, Zhao et al. [22] introduced an algorithm to reduce the
size of motion graph by limiting the transition time between sample motions.
Nevertheless, the output quality of graph traversal or multidimensional blending
methods is inherently related to the density of input sample motions. Thus, all
these approaches require additional sample data, such as various turning mo-
tions, for each style modeled, for an arbitrary motion path. Furthermore, they
rely on a fixed and user-defined blending length for motion transitions, which
is not suitable for generating a natural transition between stylistically different
motions. Our system shares a similar goal in terms of generating high-quality
locomotion sequences from samples; however, our approach only requires one
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sample for each style and uses an adaptive blending length for a convincing
motion transition.

Some approaches [2,3, 10,16, 19, 21] put more emphasis on editing the loco-
motion’s style by controlling kinematic constraints. Based on the Fourier series
approximation of the joint angles, Unuma et al. [19] interpolated or extrapo-
lated walking and running with different emotions. Given a set of edited key
poses, the displacement mapping technique [2,21] modifies the overall shape
of a motion while maintaining the local details; however, its output quality is
highly reliant on manual specification of key poses. Gleicher [4] applied a similar
mapping technique to edit a sample motion following a different arc-length pa-
rameterized path. Although they preserved foot constraints relative to a path,
transformed turning motions from a straight-path can be unrealistic due to the
physical invalidity. Provided with an arbitrary motion path, Sun and Metaxas
[16] presented a gait generation system, where low-level joint rotations are ad-
justed from the high-level constraint parameters such as step length and height.
Glardon et al. [3] provided adaptive foot-plant detection and enforcement on
noisy data. Recent work has explored style adjustment through interactive con-
trol of a set of pose parameters, correlated between different body parts [10].
None of these approaches target expressive locomotion generation from stylis-
tically different samples and an arbitrary motion path directly specified by an
animator in a fully automated way.

Maintaining physical realism during the synthesizing process is another key
issue for generating a high-quality output animation. Given a kinematically
edited motion, several motion filtering techniques [15,17] have employed the
ZMP-based balance adjustment which corrects physically implausible postures
into balanced ones. Inspired by this, we apply a similar adjustment to create
realistic turning motions to match path curvature.

3 Overview

Figure 1 shows an overview of our locomotion generation. For input data, we use
a set of unlabeled locomotion clips, capturing from a wide variety of locomotion
styles, all on a straight-path, as shown in the accompanying video.

Our locomotion generation starts with constructing a motion path from a
series of path points (Section 4). To represent the key style of each sample, a
corresponding loop sequence is constructed from detected foot-plants (Section
5) and concatenated repeatedly or blended with another loop sequence until the
target path is filled with the sample motions (Section 6). Finally, the physical re-
alism of the initial output animation is enhanced by foot constraint enforcement
to remove any foot-skate as well as postural adjustments to generate convincing
turning motions on a curved path (Section 7).
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Fig. 1. Overview of the expressive locomotion generation

4 Locomotion Path Generation

In our system, a motion path is defined with a time-varying curve, which specifies
the root position and orientation of the character at a given time, ¢. For intuitive
control, it is approximated directly from a series of input path points, sampled
from an animator’s input device such as a mouse pointer. Thus, given a set of
N continuous sample points, each point, p;, is appended continuously to form
a rough path, p(t). This path undergoes a smoothing operation by applying a
1D Gaussian filter kernel of width one to the last N, neighborhood points in
order to generate p;, a weighted average of neighboring points. For the next
input point, p;+1, we replace p; with p; and repeat the operation until all of
the remaining points are filtered to form p(t). Here, we set N, = 7, which was
sufficient to prevent sudden orientation changes of a character’s root following
the given path. During locomotion synthesis, p(¢) is parameterized by arc length
in order to vary the body speed based on the path condition.

5 Loop Sequence Generation

Our sample set includes a wide variety of styles. Since the quantitative aspects
of each style differ in speed, foot steps, and the range of body movements, we
represent each sample with a processed clip we term a loop sequence that is
specified from multiple foot-plants detected from unlabeled samples.

5.1 Foot-plant Detection

A foot-plant is an important physical constraint that must be precisely detected
with two boundary points. Manual labeling is a laborious task even for a short lo-
comotion sequence; furthermore, boundary points are difficult to detect precisely
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with a fixed threshold value as the sample motion contains noise and retarget-
ing errors [3]. For this reason, we initially approximate foot-plants and provide
a new ankle trajectory that replaces step transition periods such as heel-strike
and toe-off moments (Section 7).

Assuming each sample has been captured with a reasonable noise level, a
low-pass filter like the Savitzky-Golay filter [13] can be used to smooth out local
peaks of noise from motion curves of ankle joints while maintaining the high
peaks which possibly belong to an unconstrained frame. For our sample clips, 12
frames (0.1 frames per second) for the filtering window size with degree 4 of the
smoothing polynomial preserve the global shape of significant peaks in target
data.

Once ankle joint data are smoothed out, boundary points of each foot-plant
can be roughly selected from two geometric thresholds: the height and transla-
tional speed of foot. We derived the first threshold at 10 ~ 20% of the vertical
range of the extreme high and low ankle positions and the second threshold
from the average body speed of the sample locomotion sequence. Due to the
lenient smoothing applied by the filter, noisy frames can still exist within a de-
tected foot-plant. Outliers like these tend to last only a few frames; thus, we
can include them as a part of a foot-plant by checking their neighboring frames.
For each noisy frame, we look at Ny frames on both sides of its position and
add 1/(2Ny + 1) to the probability of it being a foot-plant frame whenever its
neighbor is a foot-plant frame. We include a noisy frame into a foot-plant if its
probability is over 0.5. Here, we set Ny with 1/4 of the length of foot-plant.

5.2 Sequential Cycle Construction

Once each sample clip is labeled with foot-plants, the start and end of a loop
sequence can be specified as any frame within a foot-plant. We select the mid-
dle frame since it is typically a moment during which the foot stands fully on
the ground. For the sequence alignment during a motion transition, each loop
sequence starts and ends within a foot-plant of the left foot, requiring at least
three foot-plants detected from the sample clip as shown in Figure 2.

Fig. 2. Specification of a loop sequence: The shaded area is interpolated to create the
smooth loop continuity.

Loop sequences are constructed so that they can be concatenated repeatedly
and will yield smooth motion without further blending. Formally, this requires
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continuity between the starting frame, Fy, and the ending frame, F,, of the loop
sequence. This is ensured by pre-blending the ends of the loop sequence in order
to ensure this continuity; however, the size of blending window, IV, differs for
each loop sequence constructed from samples as follows:

Nb = mzn(Ffs - Fs,Ffe - Fe),

where Fys and Fy. are the last frame of the starting foot-plant and of the
ending foot-plant respectively. Thus, after blending N, frames between Fy 4+ i
and F.+141, we append the first N, /2 blended frames to F, and then replace N,
frames from Fs with the remaining N, /2 blended frames in order to guarantee
smooth continuity throughout the sequence. For the ith blending frame, 0 < i <
Ny, we linearly interpolate the root position, R;, and perform spherical linear
interpolation on jth joint rotation, ¢/, as follows:

R; = w(i)Ry,s + (1 — w(i)) Ry s, (1)

qi = SZGTp(q‘]]{a,ivqlkb’iaw(i)L (2)
where w(i) is a sinusoidal function for blending weights, which should monoton-
ically increase with a range of [0,1]. To ensure the smooth continuity of a loop
sequence, we used w(i) =1 — %cos(i";\%‘sw) + 1. Here, R,,; and R,; are the ith
frame after F, + 1 and after F respectively. Since we complete the construction
process by replacing the first N, frames of a loop sequence with second Nj/2
frames of the blended frames, the y position of Fy+ i is used for R ; if i > N,/2
and of F, + 1+ is used for Ry ; if ¢ < Np,/2. This way, we maintain the original
vertical movements of the root for the output synthesis, adjusting to a new root

position on an input path.

6 Locomotion Synthesis

An initial output locomotion is generated by concatenating a loop sequence re-
peatedly or blending with other sequences to transition between styles. Provided
with the transition timings specified by an animator as shown in the Figure 3,
all loop sequences are fit to an arc-length parameterized motion path.

Add Track |Delete Track Add Block | Delete Block | { } ﬂ Uﬁdate Motion
Confrofler i

il 1
T T T T T T T T T T T T L LU L Track Name [rackt
W trackl Normal_twalk Tired_walk Tired_log Normal_twalk Gaollira_walk
Block Narme |Marmal_twalk

Beqgin Time [18.8132

123456 7 8 0 1011121314 1516 17 15 1920 21 22 23 24 2526 27 23 29 30 End Time |23.8685

Fig. 3. Temporal placements of loop sequences on a motion path via the timing editor.
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6.1 Loop Sequence Alignment

Each loop sequence constructed from a sample set differs in the number of foot-
plants and the body speed. In order to make a natural transition from one
sequence to another, two sequences should be blended with correspondence in
time based on their key-times. These key-times can be easily set from the two
boundary points of each foot-plant detected in Section 5.1. For loop sequence
alignment, we utilized the dynamic time-warping technique suggested by Rose
et al. [14]. With their method, the normalized key-times are used to map the
actual key-times T of each sequence, defined as {K71, ..., Ky, }, to a generic time
t € [0,1]. Here, Nj; = 2Ny, and Ny, is the number of foot-plants. However, this
linear mapping must maintain a consistent number of keys, Ny, for all sample
sequences, but this often varies depending on the sampled style. To deal with this
problem, we determine the correspondence of each loop sequence to a shorter clip
and use this to calculate the correspondence in time of the full loop sequences.
For example, if there is a transition between two sequences, S, and S, as shown
in Figure 4, we use the shorter clip, S,,, as an intermediary clip such that each
cycle (the black vertical lines in Figure 4) of S, and S, is aligned with S,, to
make the correspondence in key-times from S, to Sp.

Therefore, for a given t, its corresponding frame F' can be calculated for each
sequence as follows,

Fi1 — F;

Ft)=Fi+ ———
®) Z+Ki+1_Ki

where F; is a key-frame corresponding to K;, 1 <1 < Ng.

6.2 Adaptive Blending Length

Unlike graph-based approaches [1,7-9,22], our system allows an animator to
start a transition at any point within the loop sequence and uses an adaptive
blending length to ensure a natural style change during a motion transition.
Since one stylistic locomotion can be distinguished from others with a small
number of point configurations [5], we used the end-effectors of the body as such
differentiating points: the head, two hands, and two foot positions.

If a motion transition is requested between two poses, P, within sequence
S, and P, within sequence Sy, we first find the end-effector that has the largest
positional difference between P, and P,. Let this value be AD; for ith end-
effector. Given the frame rate for capturing sample locomotion, fr (frames per
second), we can estimate the blending length, ¢}, as follows:

AD,; 1

= m

);

where T; , and T;; is the average distance traveled by ith end-effector in S,
and Sy, respectively. This £, ensures a gradual change of all end-effectors without
disturbing the physical coherence of joints.
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Fig. 4. Loop sequence alignment: L and R represents a left and a right foot on the
ground while B represents either both feet on ground or in flight. The dashed lines
represent the key-time correspondences of each cycle.

6.3 Displacement Mapping

Once all loop sequences are temporarily specified on an arc-length parameterized
motion path, p(t), we now determine the position and orientation of the root for
each output frame. To incorporate the varied speed between the sequences into
the output generation, the speed parameter s; in the ith sequence is estimated as
£;/N;, where £; is an overall length of the reference root line, a linear least squares
fit of the root trajectory, and N; is the total number of frames in a loop sequence.
Based on s;, the current arc length on p(t) determines the root position, r,, (t),
and orientation, ¢, (t), by interpolating between two sample points on p(t).

For each frame in the sample sequence, we now map the local displacement
of the root from its base motion path to the arbitrary output motion path in
order to preserve the continuity and global shape of root trajectory from the
original sample. Given r,(t) and ¢, (t) from the parametric path at a generic
time ¢, the output root is derived as follows,

ro(t) = rm(t) + (ri(t) = 74(t)),

Go(t) = m (t)d; ' (t)ai(t),
where r;(t) and ¢;(t) are the projected root position and orientation respectively.
G;(t) is the orientation aligned to the tangential direction at #;(¢) on the reference
root trajectory. Notice that the addition of the difference between r;(t) and #;(t)
reflects the side-to-side weight shift of the sample locomotion into the output
animation.
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7 Output Locomotion Enhancement

An output animation generated so far contains a character following a specified
motion path, but lacking two key elements of physical validity. First, foot-skating
is significant throughout the output animation, especially during foot-plant tran-
sitions. Second, the character does not make any physical reaction to the path
curvature. In this section, we enforce such physical validity without using an
expensive physics-based simulation.

7.1 Foot Constraint Enforcement

With the foot-plants detected in Section 5.1, we enforce the foot constraints by
adopting the low-level IK routine from [10] due to its online performance and
simplicity of implementation. However, rooting constrained frames at a single
position introduces a motion discontinuity between an unconstrained frame, F,,,
and a constrained frame, F,, after and before each foot-plant. We eliminate such
discontinuities by interpolating the frames to produce a new ankle trajectory. As
the rate of ankle movements follows an ease-in and out curve between F, and
F., we apply the same interpolation function (Equation 1 and 2) with a slightly
different weight function, w(i) = 1 — 005(0.5“;\2)'5@, 0 < i < N,. Here, N, is
the number of interpolated frames between F, and F, and determined based
on the Euclidean distance between F, and F, divided by the average distance
traveled by an ankle joint during each foot-plant. We ensure the smoothness of
a new joint trajectory by connecting between F,, and F,. with a Hermite spline.
Here, the two tangents at F,, and F, are determined as Tpu = O.5%T and

TFC =0.1 IF’“‘;lF”I Ty, where 7' is a tangent obtained from F, to its closest neighbor
frame, and T}, is the y-component of T'. The constrained positions of ankle over a
new trajectory is shown in Figure 5. We apply a similar constraint enforcement
for the leg swivel rotation in order to prevent an undesirable spinning motion of
the rooted foot on the ground. For this, an average swivel angle of a foot-plant
is used to orient the rooted foot’s direction and gradually changes its rotation
angle over the new ankle trajectory to prevent any rotation discontinuity.

7.2 Postural Adjustments

Each loop sequence constructed from a straight-path sample set contains a uni-
form body speed and foot step size. Because of this, an output animation gen-
erated from the sequence will lack any physical reaction to the path curvature
such as reduced body speed and stride length. Additionally, a character should
lean toward the instantaneous center of curvature of the path in order to resist
the centripetal force.

For reduced speed and stride length, a set of scaled versions of each loop
sequence is generated with progressively shorter strides. This is done by scaling
the distance between the foot-plants and the vertical range of the foot and then
reconstructing motion comparable to the original using IK techniques based on
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Fig.5. Foot Constraint Enforcement: Original ankle positions (round dots) are en-
forced to the constrained positions (rectangle dots) on a Hermite spline.

[10]. We derive the reduced speed parameter for each scaled loop sequence as de-
scribed in Section 6.3. The final locomotion is generated by sampling across this
family of scaled loop sequences to continuously adjust stride length. Each output
frame is selected from one of the scaled sequences based on current curvature of
the path.

To automate this adjustment process, the difference of tangential direction
between p; and p;+;1 on the arc-length parameterized path is precalculated to
determine the degrees of curvature throughout the path. The largest degree is
used to determine the number of scaled sequences that need to be constructed in
advance. Based on our experiments, we scaled down 1% of the original step size
per 0.2 degree difference, to a maximum of 50%, and found no significant motion
discontinuity in the output animation. We limit the scaling to 50% since further
reduction can impact the physical coherence between foot and torso joints.

The ZMP provides a useful correction guide for maintaining physically plau-
sible postures. Since we only need to adjust ankle joint rotation to mimic body
lean during a turning motion, the ZMP-based balance adjustment suggested by
[15] is utilized to calculate the rotation value for the ankle joint. For the actual
ZMP calculation, we used a 4th order central difference with 0.5 seconds as the
sampling rate for the acceleration term.

8 Experimental Results

Our experiments were performed on an Intel Core 2 Quad™ 2.4GHz PC with
2GB memory. As a sample set, we used various short locomotion clips as shown
in Table 1, where their style differs from each other in a frame duration and
number of foot steps. All input clips are sampled at the rate of 120 frames per
second and share the same skeletal structure. The skeletal model is defined in
a Y-up coordinate frame and includes 6 DOF's for root position and orientation
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and 42 DOFs for body joint orientations: 12 for the torso and head, 9 for each
arm, and 6 for each leg.

l [Walking[J ogging[Excited[Balancing Distressed Energetic[Tired‘

Sample Frames 296 253 530 1283 558 341 801

Sample Steps 5 6 8 7 7 7 9
Loop Sequence Frames| 143 100 365 922 364 226 387
Loop Sequence Steps 2 2 4 6 4 2 4

Table 1. Number of frames and foot steps for sample locomotion clips and correspond-
ing loop sequences

Our experiments start with constructing loop sequences from various stylistic
samples and comparing them with shorter two-step sequences. For the compari-
son, two versions of a loop sequence are constructed with two steps and multiple
steps respectively as shown in the Table 1. The accompanying video shows that
the sequences with multiple steps generate physically (balancing) and stylisti-
cally (excited) more convincing results than the two step cycle does.

Next, we compare motion transitions using adaptive blending lengths to ones
with fixed duration. In this demonstration, two comparisons were made with
various samples while the transition point was chosen randomly. For a fixed
blending length, we used 0.33s (40 frames) since this value has been widely
used in previous approaches [20]. The adaptive blending length takes about
2.22 ~ 3.89s for the transition between the walking and balancing sample and
about 1.32 ~ 1.78s for the transition between energetic and tired sample. In
both cases, the blending length varies as the transition can start at any point
within each loop sequence. The accompanying video shows that the adaptive
blending length achieves gradual motion changes; thus, it generates physically
more plausible poses than the fixed blending length does.

To demonstrate the effects of our locomotion enhancement for realistic turn-
ing motions, we next compared the constant turning motion with one enhanced
by our postural adjustments. In this demonstration, we used walking and jog-
ging samples on a sinusoidal motion path as body speed affects the reaction
to centripetal force. For the scaled adjustment, it took less than a minute to
generate 50 scaled versions from the samples. The accompanying video shows
that applied adjustments generate physically preferable turning motion for both
scaled and ZMP-adjusted cases.

Our last result demonstrates an expressive animation generated from a set
of stylistic samples and an arbitrary motion path. After the motion path is
interactively specified, no user intervention has taken place during the output
locomotion synthesis. We used a number of different stylistic samples for output
animation as shown in the Figure 6, also in the accompanying video. In this
demonstration, it took about 6.8s to generate 2401 frames for the first output
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and about 9.2s to generate 2951 frames for the second output, producing over
300 frames per second excluding the rendering time.

Fig. 6. Output Animations: First animation is generated from jogging, walking, and
distressed samples. Second animation is generated from walking, distressed, balancing,
and excited samples.

9 Conclusions

In this paper, we introduced an animation system for expressive locomotion that
generates a continuous output sequence from a set of sample clips and an ar-
bitrary motion path. Conscious of the high cost of preparing motion captured
data, our system only requires a single sample of straight-path locomotion for
each style modeled, keeping the size of the sample set to a minimum. The system
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focuses on automating the generation of expressive animation from a wide variety
of stylistic locomotion samples. It does this by introducing a concise representa-
tion of each style, a loop sequence, which encapsulates its key style in multiple
foot steps. Automation is further supported through: foot-plant detection from
unlabeled samples, estimation of an adaptive blending length for a natural style
change, and post-processing to enhance physical realism for turning motions on
a curved path. Our experimental results show that our system is capable of gen-
erating output animation at an interactive speed, making our system suitable
for both automated and user-controlled virtual characters in various interactive
applications.

Currently, our prototype system only supports samples containing cyclic foot
steps. To extend the sample set to less cyclic motions like dance and ballet, more
sophisticated foot-plant detection is required to anticipate the foot pattern with
additional contact points such as toe and heel.

In addition, the system generates a set of scaled versions of loop sequences
in order to enhance the turning motions. These redundant samples are linearly
generated and controlled for an input path curvature; thus, the result can be
physically implausible for certain outlier path conditions, such as radical turns.
Directly editing of the kinematic controls of a character might complement our
approach without using additional data.
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