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Figure 1: Motion segments and their “deep signatures”.

Abstract

Data-driven motion research requires effective tools to compress,
index, retrieve and reconstruct captured motion data. In this pa-
per, we present a novel method to perform these tasks using a deep
learning architecture. Our deep autoencoder, a form of artificial
neural network, encodes motion segments into “deep signatures”.
This signature is formed by concatenating signatures for function-
ally different parts of the body. The deep signature is a highly
condensed representation of a motion segment, requiring only 20
bytes, yet still encoding high level motion features. It can be used
to produce a very compact representation of a motion database that
can be effectively used for motion indexing and retrieval, with a
very small memory footprint. Database searches are reduced to
low cost binary comparisons of signatures. Motion reconstruction
is achieved by fixing a “deep signature” that is missing a section
using Gibbs Sampling. We tested both manually and automatically
segmented motion databases and our experiments show that extract-
ing the deep signature is fast and scales well with large databases.
Given a query motion, similar motion segments can be retrieved at
interactive speed with excellent match quality.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation, Virtual Reality ,

Keywords: motion retrieval, motion indexing, deep learning, char-
acter animation

Links: ©DL P PDF
1 Introduction

To generate realistic and expressive human motion, people
often turn to data-driven approaches. The effectiveness of these
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approaches generally relies on being able to work efficiently
with large motion databases.  This requires effective tools
to compress, index, and annotate the data, and fast methods
to explore the database and search for relevant motion clips.
Working with motion capture data is difficult because it is a
high dimensional temporal sequence, being inefficient to work
with directly, and showing variation in both time and space.
The temporal and spatial variations mean that motions that are
logically similar may be numerically quite different, and vice versa.

This work addresses these challenges by using a special type
of deep neural network, multichannel autoencoder, to produce
“deep signatures” for motion clips. These signatures allow very
compact representations of databases to be built for search. For
example, our 1.4 GB test database can be represented by a 313 KB
signature database. Clip comparisons are reduced to computing
the difference between 20 byte binary strings. The approach is
very efficient in time and space and produces excellent matches for
query motions.

Researchers have recognized that it is inefficient to use high dimen-
sional raw motion data directly, and inaccurate to measure motion
similarity in the raw data space. Instead, extracting pertinent
features from the data is crucial for motion compression, indexing,
retrieval and annotation. Previous research [Forbes and Fiume
2005; Liu et al. 2005] extracted compressed numerical features to
represent the original motion on its principle components, which
are fast to compute and support numerical reconstruction of the
original data. [Miiller et al. 2005] and [Miiller and Roder 2006]
require offline pre-computation of framewise geometric features
of the motion. The similarity measure, and the subsequent motion
indexing and retrieval are accordingly performed in this new
feature space. As observed by [Laban and Ullmann 1971], human
motion can have shape features, energy features, body connectivity
features and emotional features, some of which are difficult to
quantify and measure in an explicit way.

Common motion retrieval algorithms which use PCA and
ICA correspond to shallow architectures. Compared to low level,
raw data and simple numerical similarity metrics in [Forbes
and Fiume 2005; Liu et al. 2005], higher level features and
logical similarity metrics are preferable for motion retrieval.
Deep architectures such as the deep autoencoder use Restricted
Boltzman Machines (RBMs) as building blocks, extract motion
features at multiple levels of abstraction in hierarchical ways,
and disentangle the varying factors from the underlying data at
each step. They can model highly varying, complex functions
with a concise representation and greater expressive power. The
multi-level non-linear operations could require exponentially
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more computational elements in a shallow architecture. For large
motion databases, deep learning can scale well with the size of the
database and its computation time is close to linear.

Although our work also uses binary representation and is ca-
pable of high level motion retrieval, it is fundamentally different
from [Miiller et al. 2005; Miiller and Roder 2006]. [Miiller et al.
2005] requires user specified motion features (from their predefined
31 features), while our method is fully automatic - the “deep signa-
ture” of each motion clip in the database is automatically encoded,
with no manual design and feature selection. Our method only
takes query motion as input and is able to capture subtle stylistic
features which are difficult for users to describe, e.g “taichi”.
Automatic discovery of motion abstraction is one main advantage
of using our deep architecture. It avoids human intervention and
allows batch processing of retrieval tasks, especially when people
do not know what a good representation of motion features is.
During the preprocessing step, manual feature definition could
also ignore information in the motion data by excluding it from the
feature set. Thus for large datasets, automatically extracted high
level features, “deep signatures”, suffer less information loss and
are far more efficient to compute.

Deep architectures, including Deep Belief Networks (DBN),
Stacked RBMs and deep autoencoders, have been successfully
applied to image, video, audio, motion and natural language
processing. Not only can they handle information from different
media, for motion databases, they can also integrate data from
different modality channels (including joint rotation vectors from
different body parts and text description from annotations), work
well with motion that is labeled or unlabeled, capture statisti-
cal regularity across different modalities, and fix missing motion
parts automatically in a denoising fashion through Gibbs Sampling.

In this paper, we present novel methods for compressing, in-
dexing, retrieval and reconstruction of large motion databases,
based on extracting high level, non-linear “deep signatures” from
motion data. We developed a stacked learning structure suitable
for extracting features from multi-channel human motion data.
The process begins by segmenting a large motion capture database
into motion segments, using either automatic or manual methods.
Each motion segment is divided into five channels: left arm, right
arm, left leg, right leg and torso. We use the deep autoencoder to
extract a 32-bit feature code for each channel in the segment and
concatenate the five 32-bit feature codes into a “deep signature”.
Our deep signature is highly condensed, representing each motion
segment by only 20 bytes, and thus the entire database can be
compressed to fit into main memory, avoiding hard drive accesses.
The deep autoencoder is capable of recognizing consistent high
level features regardless of minor variations.

Our results consistently show that logically similar motions
have similar signatures. Fast bitwise operation on the binary deep
signature replaces the expensive real-valued computation normally
used to compare motions during retrieval. We evaluate our method
by experimenting on two different types of motion databases: one
is the large scale, diversified CMU Motion Database [NSF0196217
], that was automatically segmented using a velocity-based method.
The other is a medium size subset of the CMU Motion Database
with manual segmentation and annotations. Result shows that our
methods work well for both motion databases.

We summarize the main contribution of our work as fol-
lows:

e We propose a novel method that uses a multi-channel deep au-

toencoder to extract a high level “deep signature” from motion
segments.

e We demonstrate methods for indexing large motion databases
based on the “deep signature”, which can make the entire in-
dex database fit into main memory.

e We developed a fast retrieval method which can find similar
motion clips in a large motion database at interactive speed.

e We propose an effective motion reconstruction method by fix-
ing motion’s “deep signature” using Gibbs sampling.

2 Related Work

With the development of motion capture techniques, human
motion data has become a common, publicly available resource.
Data-driven methods thus have become popular and important in
animation research and industry for generating realistic motions.
Some previous motion indexing and retrieval research uses raw
joint rotations or marker positions to compare human motion
[Kovar and Gleicher 2004; Keogh et al. 2004; Meng et al. 2008]
or identifies motions by movement from separate body parts [Wu
et al. 2009; Deng et al. 2009; Liu et al. 2003]. However, high
dimensional, redundant motion data in a continuous space makes
a raw data representation inefficient for motion comparison and
identification. Feature extraction is becoming a common practice,
and finding more compact and representative features that better
capture the essences of the motion plays a crucial role. Forbes and
Fiume [2005] reduces the original motion data to a weighted PCA
space, thus the principal components are then used to identify each
pose in the motion sequence. Liu et al. [2005] select principal
markers from the raw motion data, and represent the motion
sequence using the “transition signature” of poses. In [Kriiger
et al. 2010], experiments were conducted to evaluate the searching
performance on large motion databases of selective joint rotation
data, end-effector trajectory data, and PCA reduced feature data.

Logically similar motions are hard to compare numerically,
given variations in both temporal and spatial domains for the same
motion content. Higher level motion features are thus defined to try
to match logically similar motions. The features used in [Kapadia
et al. 2013] are a set of motion keys, including computed body
contact, energy, balance, shape and other high level information.
Muller et al. [2005] introduced an innovative approach using
geometric relational features, and successfully applied them for
content-based motion indexing, retrieval and segmentation. These
geometric relational features are used to train motion templates
for motion retrieval and annotation in [Miiller and Roder 2006].
However, the definition and specification of high level features
requires human intervention and relies on prior knowledge of
motion content. It is difficult to guarantee completeness: data
that is not involved in the feature computation is thus excluded
and lost. Also these high level features require expensive offline
pre-computation, especially for large motion databases.

A distance metric is another key ingredient in indexing and
comparing motions. Ideally, a distance function should cluster
variations of logically similar motions, distinguish motions of
different content, and be fast to compute. For raw motion data or
real-valued feature representation, Euclidean distance [Kovar and
Gleicher 2004; Keogh et al. 2004] or its weighted [Forbes and
Fiume 2005; Meng et al. 2008] versions are often used. Geometric
relational features in [Miiller and Roder 2006] are in binary,
thus the Hamming distance is used for motion search. The L1
norm was used in [Keogh et al. 2004] to speed up the search. To
address temporal variations, motion sequences are aligned before



feature comparison. Most previous research uses local scaling for
temporal alignment either through DTW [Forbes and Fiume 2005;
Miiller and Roder 2006] or match web [Kovar and Gleicher 2004],
while [Keogh et al. 2004; Argyros and Ermopoulos 2003] focus on
uniform scaling for sequence matching. The distance computation
(real-value operation in most cases) with additional temporal
alignment (usually quadratic complexity) makes searching for
matching motion clips a very expensive process.

To enhance the indexing performance and search execution
time, different data structures have been utilized. Meng et al.
[2008] reduce the size of the match-web to a compact matching
trellis. Tree structures that support range search such as kd-tree
[Kriiger et al. 2010], r-tree [Keogh et al. 2004] and trie [Kapadia
et al. 2013] are used for finding the nearest neighbors of the motion
sample. Other data structure like graph, map are also frequently
used for motion search [Chai and Hodgins 2005; Wu et al. 2009;
Deng et al. 2009].

The idea of deep learning is inspired by the deep architectural struc-
ture of the brain, and Hinton et al. [2006] made a breakthrough by
successfully training a deep network. Since then, deep architectures
such as DBN [Hinton et al. 2006; Mohamed et al. 2012], stacked
RBMs [Salakhutdinov and Hinton 2012; Salakhutdinov and Hin-
ton 2009] and deep autoencoders [Hinton and Salakhutdinov 2006;
Ngiam et al. 2011] have been frequently applied to different me-
dia: text documents [Hinton et al. 2006], images [Krizhevsky et al.
2012], video [Mobabhi et al. 2009] and acoustic speech [Mohamed
et al. 2012], for dimension reduction, classification or regression
tasks. Previous research also proved that deep architectures like au-
toencoders [Ngiam et al. 2011] and DBNs [Srivastava and Salakhut-
dinov 2012] can extract features across multiple modalities, learn a
joint representation from the space of multimodal inputs, and fill in
missing modality data based on the captured statistical distribution.
Taylor and Hinton [2009] use deep neural nets as a replacement of
traditional HMMs to model human motion by treating motion as a
temporal series of body poses. In comparison, our research is the
first work trying to extract features - a “deep signature” from multi-
channel human motion databases, and apply the extracted feature
to motion indexing, retrieval and reconstruction.

3 Deep Signature Learning Architectures

In this section we introduce some basic deep learning concepts
for encoding motion segments. We start with RBMs, the building
block of deep architectures, and further introduce Gaussian RBMs
that suit the real-valued joint rotation input of motion capture data.
Last we discuss the deep autoencoder for extracting deep signatures
from separate channels.

3.1 Restricted Boltzmann Machines

Restricted Boltzmann machines (RBMs) have been used as the
building blocks for deep learning architectures. An RBM is an
undirected graphical model with visible units v € {0, 1} and hid-
den units h € {0,1}*. There are symmetric connections w be-
tween the hidden and visible variables, but no connections within
hidden units or visible units. An RBM constructs a model that de-
fines an energy function (1):
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where the parameters 6 in (1) are {a, b, w}. The RBM model cap-
tures the joint distribution over the visible and hidden units (2):
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where Z () is the normalizing constant.

3.2 Gaussian RBM

A Gaussian RBM is a special type of RBM that takes real-valued
data as input units, v € R” and outputs binary hidden units, h €
{0, 1}*. The energy function of Gaussian RBM is as follows:
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In our learning structure, a Gaussian RBM is at the lowest layer,
taking the real-valued joint rotations as input, and outputting binary
bits for the higher layer RBMs.

3.3 Deep Autoencoder

The deep autoencoder [Hinton and Salakhutdinov 2006] is a special
deep architecture that builds upon stacked RBMs and has frequently
proven to perform better than Principal Component Analysis (PCA)
in dimension reduction and data reconstruction. The encoding path
compresses the input data to stochastic binary output in a non-linear
curvy manifold, while the decoding path reconstructs the original
data, see Figure 2.
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Figure 2: Deep structure of autoencoder:

In our work, for each motion channel, we construct a 4-layer deep
autoencoder with the first layer being the gaussian RBM and the
other 3 layers being normal RBMs. In this deep architecture, low
layer output is used as high layer input. We use Contrastive Di-
vergence (CD-1) for the pretraining. As in our application, no de-
coding path is used for generating motion segments, thus skipping
back-propagation fine tuning works just fine.

3.4 Motion Deep Signature Extraction

Deep learning previously has been successfully applied to media
like text [Hinton et al. 2006] and images [Krizhevsky et al. 2012].
To make it work for motion captured data, we perform three
important process on the segments: Spatial Relocation, Temporal
Unfolding and Channel Separation.

Spatial Relocation: This step serves to remove the impact
of the difference in characters’ scene positions. For each motion
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Figure 3: Multi-channel deep autoencoder for extracting Deep Signature from mo-
tion segments.

segment, we re-locate the character such that it starts at the origin
of the scene, facing forward, thus characters’ movements during
motion segments are all relative to the same starting position.

Temporal Unfolding: Motion segments form a matrix where
columns correspond to character DOFs and rows correspond
to frames in time. To make it fit to the deep autoencoder in
Section 3.3, we unfold joint rotation data along the timeline and
make it a one-dimensional input vector.

Channel Separation: Different body parts have different
motion patterns and active ranges. Treating joint rotations from
different body parts as a whole input could cause mixed errors.
Thus we separate body motions into five different channels: left
arm, right arm, left leg, right leg and torso. In the multi-channel
deep autoencoder in Figure 3, each channel extracts the binary code
to represent its original motion in a compact way. The relationship
across multiple channels can be modeled further using method in
Section 4.3 if necessary. Other benefits of channel separation are
that users can retrieve motion segments with preferred movement
in specified channels e.g. punching in the arms (Section 4.2) or
reconstruct movement of one body part given motions from other
channels (Section 4.3).

To represent the whole motion segment, binary output from
different channels is concatenated as the “deep signature” of the
segment, as illustrated in Figure 3.

4 DS-based Indexing, Retrieval and Recon-
struction

4.1 DS-based Motion Compression,
Database Organization

Indexing and

Motion segments are the fundamental units in our motion database.
Original, captured motion clips can be segmented either manually
or automatically. It is up to the users how they want to manually
segment the motion clips. For large database like the CMU Motion
Database with thousands of motion clips, it is less feasible to per-
form manual segmentation. We provide a very basic velocity-based
automatic segmentation method.

We first compute the weighted velocity of joint rotations per
frame. Torso joint rotations are given higher weights than end-
effector joint rotations like the wrists and fingers. If the weighted
velocity of frame ¢ is a local minima, and below a velocity
threshold, frame ¢ is then detected as a segmentation point. We
use this segmentation method to process large motion databases.
Typically, an automatically segmented motion segment is about
one hundred frames long and is subsampled to 50 frames. We
discard short segments which are less than 20 frames long.

We compute a deep signature for every segment in the database.
We leave it to the autoencoder to capture the temporal differences
between the segments. The typical skeleton in CMU Motion
Database has 62 DOFs. We separate its rotations value into five
different channels, and discard DOFs with little significance,
such as the fingertips and foot toes. Each channel is processed
separately in the deep autoencoder. The first layer input for the five
channels are 50 x 7 (left arm), 50 x 7 (right arm), 50 x 4 (left
leg), 50 x 4 (right leg) and 50 X 15 (torso) rotations unfolded into
one-dimensional real-valued vectors. We set the training epoch
to 50, and the 4 binary layers output 200 bits, 128 bits, 64 bits
and 32 bits, bottom to top. The top 32-bit outputs from the five
channels are concatenated as the 20-byte “deep signature” for the
motion segment. (Larger top outputs such as 64 or 128-bit per
channel work fine. We choose 32-bit outputs per channel as they
still provide decent results with smaller memory requirement.)

Compared to framewise PCA, the “deep signature” only takes 20
bytes of memory per segment. The high compression rate is not
entirely from the data granularity. The deep autoencoder itself is
a better dimension reduction tool, providing flexible non-linear
compression. Previous research in document retrieval shows that
a 10 dimensional autoencoder output works even better than 50
dimensional PCA. The high compression rate make it possible to
load the entire large motion database during runtime.

We maintain a hash table in memory that associates each
“deep signature” as the ID with a path pointing to the motion’s
hard drive location. All the relative motion operations such as
retrieval and reconstruction (described in the following sections
4.2 and 4.3) can be processed based on the signature in memory
before accessing the hard drive to retrieve the motion clip.

4.2 DS-based Motion Retrieval

The extracted “deep signatures” of the motion segments represent
the original data as a binary string. Thus it allows us to use bi-
nary Hamming distance as the metric of difference between the
original motions. Compared to commonly used Euclidean distance,
Hamming distance is basically bit operation, and thus fast to com-
pute. The Hamming distance between two deep signatures is the
number of bits that differ. To verify the validity of using the Ham-
ming distance of deep signatures to measure motion difference, we
randomly selected 2000 automatically segmented motion segments
from the CMU motion database. We calculate both Euclidean dis-
tance with dynamic time warping, and the Hamming distance for
these motion segments. Then we ran the Pearson Rank Correla-
tion between the two distance metric, the correlation coefficient is
0.607 (p < .001). The plotted distance matrices are illustrated in
Figure 4.

As a “deep signature” is comprised of binary codes from five dif-
ferent channels, our motion retrieval method allows user to set bi-
nary masks to ignore irrelevant motion channels and only focus on
searching motion channels of interest. We also support using a
weighted Hamming distance as difference metric as described by
&)

HD,(m,n) = chh * HD(Mch,Nech) %)

ch

The “deep signature” also supports fast search for long motion se-
quence that consists of multiple segments. Given two sequences of
“deep signatures” calculated on the segments in long motion clips, a
Hamming distance with Dynamic Time Warping can be calculated
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Figure 4: Comparison between two distance metric: (a) Euclidean Distance with
Dynamic Time Warping (b) Hamming Distance using a random sample of 2000 motion
segments.

at a coarser granularity (per segment). In Figure 5, each entry is
a Hamming distance between motion segments instead of a frame-
wise Euclidean distance of the long sequences, and the minimum
cost path that provides the best alignment can be found.

4.3 DS-based Motion Reconstruction

As mentioned in Section 3.3, due to the subtlety of human motion,
we would not recommend generating synthetic motion directly
from “deep signature” using the downward path of the autoencoder,
even though “deep signature” has less reconstruction error than
PCA. In this section, we talk about how to reconstruct partially
corrupted motion in the captured data, by filling in the missing bi-
nary feature code in its “deep signature”. For example, movement
of the left arm could be messed up during motion capture, and
our motion reconstruction method can help synthesize plausible
left arm movement based on movements of other body channels.
The motion reconstruction function infers plausible motion for one
body channel given motions of the rest body channels using the
motion “deep signature”.

Based on the multi-channel deep autoencoder in Figure 3,
we add an extra RBM on top of the “deep signature” layer, see
Figure 6. The top RBM takes the 160 bit “deep signature” as input,
and outputs 128 bits binary data which captures the probability
distribution of motion from all channels. The top RBM is trained in
a denoising fashion: for the training motion segments, its channel
binary code in “deep signature” input is randomly set to zero.

Given a motion segment s. with corrupted movement in one
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Figure 5: Temporally aligned long motion sequence matching using Hamming dis-
tance of “deep signatures”.

motion channel, we first extract the “deep signature” using
multi-channel deep autoencoder. As described in Section 3, the
five channels are processed separately. For the non-corrupted
channels, meaningful binary channel code can be extracted. For
the corrupted channel, the 32 bits are set to zero. Binary code from
all channels are then concatenated into the input “deep signature”
dc to the top RBM. We run Gibbs sampling for the top RBM to
fix the zero bits in the corrupted channel. A new “deep signature”
d;, is generated with reconstructed binary code in the corrupted
channel for the original segment s.

We retrieve the most similar motion segment s, in database
using the reconstructed “deep signature” d,. as the query, and use
the movement in s, for the corrupted channel in s.. Temporally
sc and s, are aligned using DTW based on the movements in
non-corrupted channels. Thus the corrupted channel in s. is
fixed by filling in the aligned movement in s,. DTW alignment
only needs to be run once when the nearest match s, is found,
while the retrieval part is a fast binary operation. Thus our “deep
signature”-based motion reconstruction is highly efficient in
runtime.

top RBM

(le‘() @000 Q00 :--00 @O0 ---00 @8 - 0®) Deep Signature
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Figure 6: An extra RBM is added on top of “deep signature” for motion recon-
struction.

5 Experiments and Results

5.1 Motion Compression, Indexing and Database Or-
ganization

In this experiment, we use all the motion clips under
“Motion Categories” in the CMU motion capture website
(http://mocap.cs.cmu.edu/motcat.php) to construct a large motion
database. This database contains various human motions including
Environment Interaction, Locomotion, Physical Activities and
Sports (e.g. boxing, dancing), Situations and Scenarios (e.g.
pantomime, gestures), totaling 607 files in 19 categories, 1,810,082
frames, approximately 252 minutes long and 1.4 GB in size. After
automatic segmentation (described in Section 4.1) for all these
motion files, we get 16,045 motion segments. Though each motion
file has a general category description, this information is too
rough to describe the motion details in the clip. For example,
there are plenty “walking” and “jumping” motion segments in
clips belonging to the category “play ground”. Using the category
description for the motion files could be inaccurate and misleading
for the segments. Thus in our motion database, all the motion
segments are put together, regardless of its file category.

By using the multi-channel deep autoencoder, motion seg-
ments are compressed and indexed using their “deep signatures”,
which is 20 byte per segment, about 313 KB for the entire motion
database. This size can easily fit into the main memory or even
most modern caches in runtime, and database-wide operations
become far more affordable. We maintain a hash table to associate
each “deep signature” to the hard drive path. The motion segment
is loaded into memory only when necessary. For the manually
segmented motion database, our method works in the same way.
Figure 1 illustrates some representative “deep signatures” for
motion segments of various categories, more examples are shown
in Figure 7.
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Figure 7: Motion segments and their “deep signature” for indexing.

5.2 Motion Retrieval

To verify the efficiency and effectiveness of using the Hamming
distance of “deep signatures” as the metric for motion retrieval, we
performed two experiments using different motion databases. In the
first experiment, we test the efficiency and realtime performance of
our retrieval method by using a large motion database with auto-
matically segmented data. To perform a further accuracy check and
deepen our understanding of the retrieval quality, we use a second
motion database - a medium sized motion database with manually
segmented data.

5.2.1 Realtime Performance for a Large Database

In this experiment, the large motion database organized and
indexed as described in 5.1 is used, which includes 16,045 motion
segments in 19 heterogeneous categories. Given the size of the
data, automatic segmentation is applied. The resulting motion
segments in the db are typically 100 to 200 frames long, where
boundaries are at velocity local minima below a certain threshold.
Due to the automatic process, motion segments may or may not
have semantic meaning.

During the retrieval, we only keep the “deep signatures” of the
database in memory, which takes 313 KB. The original motion files
are not loaded. A query motion segment is provided by the user,
from which the query “deep signature” is extracted. We search
the entire database items to find the closest matches. Bitwise
operations are performed to compute the Hamming distance
between the query and every segment in database. We support

Figure 8: Retrieval results for the automatically segmented databases. Query mo-
tions are displayed in blue and the top 7 matched segments are displayed in green.

Fi igure 9: Retrieval results for the lly d databases. “Cartwheel”,

“hand stand”, “boxing defense”, “dribbling basketball”, “exercise” and “pull up”
are illustrated.

weighted search based on body channels, but for simplicity and
generality, we just set all channel weights to 1 in this experiment.
Segments with the nearest distances are returned as retrieval results
and displayed for the user.

The retrieval process computes Hamming distances at run-
time, no pre-computed distance matrix is stored, which greatly
reduces the memory demand. The online retrieval using the large
database takes approximately 512 ms to go through all the motion
segments on a modest laptop machine (Intel Core 2 Duo CPU
2.53GHz, 4GB RAM). Figure 8 illustrates some of the examples of
the query results, where the top 7 segments are displayed.

5.2.2 Retrieval Accuracy and Quality

To carefully evaluate and deepen our understanding of the quality
of the retrieval method, we performed a second experiment by
using a medium-sized motion database with manual segmentation.
We selected a subset of motions from the CMU Database, including
categories “playground”, “acrobatics”, “basketball”, “boxing”,
“dance”, “general exercise and stretching”, “gymnastics”, “martial
arts” and “soccer”. For the motion data, we performed manual
segmentation and extracted 847 segments with clear semantic
meanings, such as climbing ladder, dribbling basketball, etc.
The duration of the manually extracted segments varies, from 40
frames to hundreds of frames, depending on the motion content.
For segments with the same semantic meanings, there are various
implementations, e.g. for boxing motions, we have straight right



Figure 10: Salient features are captured by “deep signatures”. Red circled motion
in row 1 is “upward ladder” among “downward ladder” results. Red circled motion
in row 2 is “boxing dodge” among “crouching” results with similar knee bent. Red
circled motions in row 3 are “cartwheel” and blue motion is a back flip ending with
sitting on the ground.

punch, right hook punch, as well as some other punch and dodge
motions.

During the retrieval, users select a query segment from which
the query “deep signature” is computed using the same method
as described in 5.2.1. Semantic information is not used during
retrieval. Retrieved results are the segments with closest Hamming
distance to the query. We performed a careful analysis of the
results and find that:

o The Hamming distance between “deep signatures” can
effectively find motions with the same content. We tested
segments with various semantic content as the query. The
results show that segments with the closest Hamming
distance are always those with the same semantic content.
In Figure 9, the top ranked results for “cartwheel”, “hand
stand”, “boxing defense”, “dribbling basketball”, “exercise”
and “pull up” are illustrated. With the increase of distance,
segments of different motions then start to appear in the result.

While the results easily passed the visual inspection
test, we ran a perceptual study to formally evaluate the
retrieval quality and compare the two sizes of databases and
the segmentation methods. We picked 12 retrieval cases for
both databases. The top 7 ranked results to the query were
displayed paired with the query, side-by-side, and subjects
were asked if the motions matched. 11 subjects participated
in our study. The mean matched value is 5.83/7 for au-
tomatically segmented database and 6.08/7 for manually
segmented databases. A t-test shows no significant difference
(t=1.5, p=0.136) with the increasing size of database and the
different segmentation method, indicating that the technique
scales well with the size of motion database and performs
well with manual or automatic segmentation.

o The “deep signature” has a deep understanding of the motion
segments. This high level understanding is achieved by
capturing the most salient features in the motion segments.

Figure 11: Swylistic features are captured by “deep signatures”. Motion segments,
from top to bottom, are “tai chi”, “dancing” and “sword play”. In the top ranked
results, the same style of motion with different implementations are retrieved.

With increases of the Hamming distance from the query, we
start to get result segments with varied implementations of
the same motion.

For example, for “downward the ladder” query, the top 5
result segments (Hamming distance 8 to 28) are all “down-
ward ladder” regardless of the location and the number of
steps. Our retrieval method starts to bring in “upward ladder”
(Hamming distance 31, rank 6, see Figure 10 row 1) to the
results as the Hamming distance increases. Segments ranked
from 6 to 20 are a mixture of ‘“’downward or “upward”
ladder climbing. Another example is the “straight right
punch”, the top 9 result segments (Hamming distance 15 to
27) are all “straight right punch”. Then “right hook punch”
(Hamming distance 27, rank 10) and “combination punch”
(Hamming distance 35, rank 17) start to show up in the results
together with “straight right punch”. The top 8 results for
the “crouching” query are all “couching” except a “dodge”
segment of boxing with very similar knee bending motion
(Hamming distance 31, rank 2, Figure 10 row 2). The query
of “back flip” first finds all the “back flips” in the database
(Hamming distance 25 to 38, rank 1 to 4), then a failed
“cartwheel” (Hamming distance 40, rank 5, Figure 10 row 3),
“back flip ending with sitting on ground” (Hamming distance
45, rank 6) and “side flip” (Hamming distance 53, rank 8)
show up in the results. For the query “speed bag punch”,
there are not enough similar segments in the database, so the
returned top results are a mixture of “straight right punch”
and “combination punch” (Hamming distance 39 to 50,
rank 1 to 33). There are numerous other examples in our
experiment. These examples prove that the “deep signature”
is able to capture salient features like arm punch, knee bend
and torso flip in segments despite of minor variations in other
body part channels.

e “Deep signature” is able to capture stylistic information in
the motion segment. In our database, we extracted 28 seg-
ments from the “tai chi” motion, all with different pushing and
pulling moves. For a “tai chi” query, the top 8 ranked results
(Hamming distance 35 to 44, see Figure 11 row 1) returned
by our retrieval method are all “taichi” segments, although



they have different moves. For a “4-step dance” query, all
the “4-step dance” segments in database are ranked as the top
results (Hamming distance 10 to 29, rank 1 to 5). Then our
method finds similar “2-step dance” (Hamming distance 34
to 38, rank 6 to 11, see Figure 11 row 2) as the results. For
the query “sword play”, the top 9 results are all “sword play”
(Hamming distance 10 to 41, rank 1 to 9, , see Figure 11 row
3) despite all the different directions of the sword moves.

5.3 Motion Reconstruction

In this experiment, we reconstruct left arm motions from the rest
four channels using method discussed in Section 4.3. The test clips
were generated by removing motions from the left arm channel in
the originally captured data. We evaluated DS-based reconstruction
numerically by computing the difference between the reconstructed
and original motions. For the reconstructed left arm, the average er-
ror is approximately 12.26° per DOF per frame. We also performed
a visual plausibility check by randomly selecting 360 reconstructed
clips. Results showed that 333 cases looked plausible and 27 were
dissimilar to the original or looked unnatural. Figure 12 illustrates
the top 7 reconstructed left arm motion in the “upward ladder” seg-
ment.

Figure 12: Top 7 reconstructed left arm motion in “upward ladder” segment. Orig-
inal motion segment is displayed in blue.

6 Conclusion and Future Work

In this paper, we presented a novel approach for extracting
binary “deep signatures” from motions using deep multi-channel
autoencoder. We demonstrated that the “deep signature” is a highly
compressed representation of the original motion, yet effectively
captures the high level motion features. “Deep signature”-based
motion indexing, retrieval and reconstruction methods are thus de-
veloped. For a large motion database, the DS compressed database
can easily fit into main memory. The online motion retrieval uses
the Hamming distance between “deep signatures” as the metric.
Compared to the commonly used, real-valued Euclidean distance
computation, the binary operation of Hamming distance can be
completed with interactive speed, even for an extremely large
heterogeneous motion databases. In our experiments, we have
verified the effectiveness and efficiency of our retrieval method.
The highly compressed motion representation and fast retrieval
method are suitable for the new mobile devices. There are several
ways we would like to extend and improve this work:

e During “deep signature” extraction, motion segments are
all down-sampled, which may cause a loss of temporal
information. Our experiment demonstrates the effectiveness
of our retrieval method. To incoporate more careful timing
control, we can use DS-based retrieval for pre-screening of
candidates, and only perform the expensive DTW alignment
for matched motion segments.

e We would like to evaluate the retrieval effectiveness by com-

paring our method to [Kovar and Gleicher 2004] and [Miiller
et al. 2005], but lack implementations. Though DS-based
motion retrieval is faster by using the binary operation, and
space efficient, side-by-side comparison would be more
convincing to verify the retrieval quality.

e Our “deep signature” is in binary format like Muller et
al. [2005], and also captures high level salient motion
features. However, we cannot provide a way to interpret
the semantic meaning of each bit in the signature. With the
development of deep learning research, we hope to have a
better understanding of the binary format of the extracted
motion “deep signature”.

In summary, the deep signature approach provides a method for
indexing and retrieval on motion databases that is both fully auto-
mated and very efficient in time and space.
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