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Fig. 1. This study used dumbbell lifts to explore the impact of A) kinematics (Exps. 1 and 5), B) body shape (Exp. 2), C) object
size (Exp. 3), and D) muscle flexion (Exps. 4 and 5) on perceived effort, object weight and motion realism.

Errors that arise due to a mismatch in the dynamics of a person’s motion and the visualized movements of their avatar in

virtual reality are termed ‘physicality errors’ to distinguish them from simple physical errors, such as footskate. Physicality

errors involve plausible motions, but with dynamic inconsistencies. Even with perfect tracking and ideal virtual worlds, such

errors are inevitable in virtual reality whenever a person adopts an avatar that does not match their own proportions or lifts a

virtual object that appears heavier than the movement of their hand. This study investigates people’s sensitivity to physicality

errors in order to understand when they are likely to be noticeable and need to be mitigated. It uses a simple, well-understood

exercise of a dumbbell lift to explore the impact of motion kinematics and varied sources of visual information, including

changing body size, changing the size of manipulated objects, and displaying muscular strain. Results suggest that kinematic

(motion) information has a dominant impact on perception of effort, but visual information, particularly the visual size of

the lifted object, has a strong impact on perceived weight. This can lead to perceptual mismatches which reduce perceived

naturalness. Small errors may not be noticeable, but large errors reduce naturalness. Further results are discussed, which

inform the requirements for animation algorithms.
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1 INTRODUCTION
You can be anyone or anything you want in virtual reality (VR), or so the story goes. But what if the proportions

of an avatar do not match the user? Or if someone is visualized moving larger objects than the controllers they

are moving in the real world? Given that the dominant approach to drive people’s avatars in VR is to track their

movements in the real world, mismatches between people’s dynamics and those of their avatars will result in

perceptible errors. Such ‘physicality errors’ are an inevitable part of many embodied virtual reality [43, 44] or

metaverse scenarios as people wish to use their motion to naturally drive a range of avatars, without restriction

to match their own appearance, and to do so across a spectrum of activities. This is not only the case for their

own self-avatars, but also for the avatars with whom they share a virtual environment. It is, perhaps, even more

important that the avatars of virtual companions are believable for a sense of co-presence [16] to be perceived, as

their bodies and motions will be fully visible to the user. It is thus critical to understand whether these errors are

noticeable and likely to impact user experience and what types of ameliorations may be necessary.

In this paper, we investigate the impact of errors in physicality on people observing the avatars of others. We

employ the scenario of lifting dumbbells, a simple physical activity that is well understood by the general public

and can easily be performed with different levels of resistance. Through five experiments, we seek answers to the

following questions about the perceptual impact of both the kinematic signal (i.e., the motion) and visual signals

including the size of the avatar, the size of the lifted object and the presence of muscle deformations:

(1) Baseline: How accurately can people perceive effort and infer weight from motion kinematics on a meshed

character in VR?

(2) Body Shape: If people are visualized with avatars that have different proportions and mass than their own,

how sensitive are observers to the resulting errors in their motion dynamics?

(3) Dumbbell Size: How sensitive are people to visualizations that show an avatar moving a different mass

than what they actually moved?

(4) Strain Deformations: Can the display of muscle deformations, including facial strain, shift people’s percep-

tion of effort and inference of weight in lifts?

(5) Discrimination: Can people distinguish between a zero-weight lift, as would be performed by a VR user in

standard use cases, and an accurate lift for various weight dumbbells? Can displays of muscular sensitivity

reduce sensitivity to these mismatches?

In the experiments, participants watch a series of animations in virtual reality (VR) of avatars lifting dumbbells

and either estimate the effort and weight of the action, sometimes including naturalness ratings, or try to

determine which of the two animations accurately reflects a visualized lift. Four different avatars are driven by

the recorded motion of two average-strength male lifters and two strong male lifters. Avatar bodies are matched

to the lifters, with the strong lifters being taller and heavier. This allows multiple combinations of body type,

motion kinematics, and displayed weight to be shown. A blendshape model is added to support realistic muscle

deformations. Blendshape models average different versions of the character mesh that are sculpted to show

particular features, in this work used for showing muscle bulges.

Results suggest that: (1) when presented with kinematic data – an avatar lifting an unseen weight – people

make largely consistent judgments of effort and weight, modulo modest scaling based on the size of the avatar

body. This scaling is less than the actual range of strength variation seen in our lifters; (2) when visual information

on the weight of the lift is introduced – a dumbbell is shown – weight and effort estimates diverge. Effort estimates
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are still largely driven by kinematics, but weight estimates are changed substantially to be consistent with the new

visual information; (3) changes in body size and in dumbbell size also have a larger impact on weight estimates

than effort estimates. This can create discordant signals where effort and weight estimates no longer match when

the visualized motion varies from the actual motion; (4) adding displays of muscle strain impacts both effort and

weight estimates in the absence of visualized dumbbells; (5) when dumbbells are present, the strain signal can

make incorrect motion kinematics less noticeable when the strain is appropriate for the visualized dumbbell

weight, but the clips with muscular deformation become more distinguishable when the muscular deformation is

excessive for the visualized dumbbell. In general, naturalness ratings tend to decline for large mismatches. Within

a narrower range of lower-effort motions, however, people are less sensitive to inconsistencies and there may

be room for variation without negative consequences. Taken together, these results shed light on how people

interpret animated motion and help illuminate the animation requirements that will be necessary to support

envisioned metaverse scenarios.

2 BACKGROUND
The perception of weight and effort has been studied in fields such as Computer Graphics, VR, perception and

psychophysics. In this section, we provide an overview of the most relevant literature.

2.1 Character Animation and Virtual Reality
The perception of animated character motion has been studied in the field of Computer Graphics, e.g., the

perception of child vs. adult motion [25] and the perception of sex from walking motion [32]. It has been shown

that anomalies in facial motion were more disturbing than body motion [21] and that motion attractiveness

affects users’ comfort level in proximity to avatars [48]. Sensitivity to limb length changes also varies based

on factors such as motion speed and attention [20], and viewers were found to be accurate at detecting force

errors when one animated character pushes another [22]. Concerning interactions in VR, it has been shown that,

although performance was better when an animated hand was accurately tracked and allowed to penetrate a

grasped object, users actually preferred it when the hand motion was adjusted to avoid interpenetrations [12].

Related work has examined how motion frameworks such as Laban Movement Analysis (LMA) can be used to

synthesize [14, 45] or perceive [30] variation in motion, including force as manifested in the Weight quality of

LMA Effort. In our work, we asked the actors to use the force required for the functional motion of lifting the

weight and not to intentionally manipulate their effort beyond this. Expressive animation tools may prove useful

in addressing the perceptual errors that surfaced in our studies.

Perception of weight in VR has also been extensively studied and still remains an open challenge [31]. It

has been shown that people underestimated weight by 10-20% when they were asked to adjust an avatar to

match their body proportions [47]. As haptic hardware is often inaccessible to incorporate in VR applications,

pseudo-haptics cues, i.e., visual information that is associated with haptic sensations, can be used to trick users

by manipulating the visual information provided in the Virtual Environment (VE) [34]. These approaches include

the manipulation of self-avatar animation [26], control-display ratio [39], and tracking offsets [35].

Most relevant to our work, Kenny et al. [28, 29] measured sensitivity to mismatches between avatar body size

and motion for pushing, lifting, and throwing actions. Two weight groups of male actors performed each action

and participants viewed them on avatars that matched or mismatched the actor’s size. Although the detection

rate of these mismatches was low and the ratings of naturalness remained unchanged, they did change the

interpretation of the physical activity, e.g., heavier avatars were perceived as lifting heavier objects and light

avatars with a heavy actor’s motion were perceived as pushing lighter than vice versa. Notably, the experiment

did not visualize the objects that the avatars were interacting with, which allowed observers to interpret the
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change in stimuli as reflecting a change in object properties (e.g., a heavier imagined object). As such freedom will

not be the case in most practical scenarios, our study includes experiments that visualize the manipulated object.

2.2 Perception of Human Motion Dynamics
Much of the research on the perception of dynamics from human motion has employed point-light displays,

i.e., videos that show only points, normally at joint centers. Participants were consistently able to estimate the

weight of a lifted box [8, 36, 40–42] or dumbbell [7]. However, the accuracy of estimates varied widely, from

very high correlation between actual and perceived weight [36, 42], to much lower accuracy [41, 42]. It was

found accuracy was lower for weights below 30lbs [8] and that light weights were overestimated, whereas heavy

ones were underestimated [41]. The lift phase of a lift and carry motion was found to be sufficient to make a

judgment [40]. Variations of the study design that improved estimates include: showing a reference lift of a

specified weight [7, 36, 42] (although this may have introduced systematic errors [8]), not telling the actors the

weight of the box [36], participants performing their own max lift to gain haptic experience [7, 42], knowing the

size of the lifter [8], rating a single lifter at a time [41], and using average strength actors [42]. When compared

with point-light displays, showing the full video of the actor resulted in the highest accuracy [18], while in

another study with virtual and real conditions [23], the additional visual data available for the real lifts improved

performance, which was most likely due to muscle contractions that were lacking in the virtual condition. These

results suggest that both motion and human form are important for judging actions [9]. We also explore this

question by adding muscle strain cues.

Kinematic changes that correlate with weight have been observed, in particular object velocity decreases [7, 18,

40, 41], although not for all actors [41]. Dwell time at the start of the lift, hip angle [40], and max trunk velocity [41]

also vary. Manipulating kinematic patterns can change weight perceptions [40, 42], potentially because the

consequences of gravitational attraction on objects has been incorporated into mental representations [24].

However, it was insufficient to show only the motion of the box [18, 42] or one degree of freedom movement of

the elbow for dumbbell lifts [7]. Neck strain in a filmed pilot study was mentioned as a cue by participants [36],

which we simulate in ours. Finally, there is a response in the motor cortex consistent with force cues from

kinematics and hand contraction state, which manifests visually in the color and deformation of the hand [3]. It

has also been suggested that the motor cortex may be active in motion perception [19].

Providing information about the size of the box did not confound the perception of lifted weight for point-light

displays [18], but a small box was judged to weigh less with a video presentation. Although people scaled their

motor functions appropriately when lifting a small box [17], they later reported that the weight of the smaller

box was heavier. This suggests that Visual cues are integrated into the programming of manipulative forces

during precision grip. When participants were asked viewers to estimate both effort and weight [41], they were

more accurate at estimating the effort of lifters. However, if they knew a lifter’s size and weight beforehand, their

estimates of weight and effort were comparable. An unexpected result showed participants judged the weight of a

heavier object lifted by a stronger and larger actor as being lighter than a weight lifted by a normal, weaker lifter.

Since ordinal judgments were correct, they suggest observers may be more attuned to effort than weight [42].

The field of psychophysics involves the study of how people perceive physical phenomena. In general, there is

not a linear but rather a power law relationship between the perception of a phenomenon and the underlying

physical quantity [10], e.g., when asked to judge the heaviness of objects, people may feel that an object with

70% of the actual mass is half as heavy, rather than one with 50% of the mass. Such judgments are affected by

factors beyond the mass alone. The well-studied size-weight illusion (SWI) shows that when people are asked

to lift and then estimate the heaviness of two objects that are actually the same weight, but differ in size, they

will estimate the smaller object as heavier [11, 15, 27, 46]. Other factors like the object’s material [11, 38], color

[27] and shape [37] will also impact the perceived heaviness, although size has a larger effect [38]. The SWI is
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Table 1. Summary of the Experiments

Experiment # Name Deformations Body Dumbbell Medium

1 Baseline No Lifter Matched Not Shown VR

2 Body Shape No All Four Lifters Motion Matched VR

3 Dumbbell Size No Lifter Matched All weights for lifter VR

4 Muscle Strain Yes Lifter Matched Not Shown VR

5 Discrimination w/Strain Yes Lifter Matched Matched and mismatched VR

still not fully understood, but there is evidence that both bottom-up physical factors, such as the object’s inertia

tensor [4] or perceived density [46], and top-down conceptual priors play a role [11, 15, 38].

3 EXPERIMENTAL METHODS
The study was organized into a sequence of experiments (Table 1) that explored various signals of physicality

(kinematics, avatar representation, object representation, and muscle deformations, respectively). All experiments

followed the same basic design, which will be described here.

3.1 Experimental Design
During each experiment, participants were recruited for a single session in which they completed a survey in

VR. After an orientation on using a VR headset and the controls employed in the survey, they were given brief

instructions on the experiment in the headset. They were then shown a range of clips that indicated the type of

variation they might see in the experiment. This enables them to start the experiment knowing the stimuli range.

After this, they saw a randomized sequence of short motion clips that showed a single person lifting a dumbbell

in a simple room. After each clip, participants were asked to rate the clip using a floating 2-D slider in terms of

the perceived effort of the lifter, from 0 to 100% where 100% represented their maximum effort; their estimation

of the weight that was lifted, from 0 to 100 lbs (they were told that weights may not span the entire scale) and,

for Exps. 2-4, the naturalness of the motion by rating the statement “The motion in this clip appears natural”

on a 7-point Likert scale ranging from Strongly Disagree to Strongly Agree. At the end of the experiment, they

participated in a brief exit interview and debrief.

Apparatus. The experiment environment was developed in Unity and presented on an Oculus Quest 2 headset.

This headset has a resolution of 1832×1920 pixels per eye with around 90
◦
horizontal and vertical Field of View.

The virtual environment (VE) was a standard room with a door, several lights, and several power outlets on the

walls. It contained a chair that acted as a scale marker. An X was placed on the floor to make sure that every

participant observed the stimuli from a same distance of about 1.5m (Figure 2). Participants interacted with the

VE using an Oculus Touch controller. A visible ray coming out from the virtual representation of the controller

was used to control interface widgets.

Stimuli. The lifters that provided the source motion for the study were recruited through online advertisements to

a pool of actors. The actors submitted their maximum dumbbell curl and a short video of themselves performing

a lift. The selection was based on establishing two sets of lifters, two “strong” lifters and two “average” that had

clearly differentiated maximum lifts. This allowed us to examine the impact of both body size and lifter strength

on observations of dynamics. Details on the selected lifters are summarized in Table 2.

To establish their actual maximum lift, all lifters came to the studio at least a day before the actual motion

recording. They started by lifting what they estimated would be their maximum lift. The weight was gradually

increased as long as they could complete three repetitions of the lift. They were given time to rest between each
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Fig. 2. Participants stood on an X on the floor in front of the lifter throughout the experiment

Lifter Max Dumbbell Weight 75% 50% 25% Age Weight (lbs) Height Dominant Hand

Avg. Male 1 (AA1) 27 lbs 20.25 13.5 6.75 24 139 5ft. 9in. R

Avg. Male 2 (AA2) 35 lbs 26.25 17.5 8.75 38 191 5ft. 9in. R

Strong Male 1 (SA1) 60 lbs 45 30 15 30 237 6ft. 1in. R

Strong Male 2 (SA2) 60 lbs 45 30 15 27 231 6ft. 2in. R

Table 2. Performers in weight lifting task.

set. The process stopped when they decided they had reached their maximum, which was recorded for use during

the motion capture session.

The motion of each lifter was recorded using a Vicon, marker-based optical motion capture system featuring

with forty 16MP cameras. A standard marker set was used consisting of 67 markers. Each lifter performed lifts at

0 (holding nothing), 25, 50, 75, and 100% of their maximum lift. They performed a single set of three lifts at a given

weight before resting. The order of weights was randomized for each lifter to avoid any fatigue patterns. Two sets

of lifts were recorded for each weight for each lifter. Lifters were instructed to do the lift as they would normally

to meet the functional requirements of the action, with no effort to accentuate or minimize the appearance of

applied force. The motion capture data were solved such that the captured marker data were used to fit a skeleton

that matches the actor’s body. This was performed using a custom solver that minimized the root mean square

error over the marker set. In the preparation of the set of virtual dumbbells used in the experiments, we first

created a virtual replica of a real 10-lb dumbbell. The other dumbbells were created by scaling the volume of the

dumbbell ends, assuming fixed density.

Model and Deformations. The avatar model needed to support two research goals: allow variation in body shape

and provide plausible muscle deformations. It was beyond the scope of the project to create and validate a full

simulation model of human muscle. Instead, we employed an artist-driven approach whereby an artist with

twenty years of experience in the visual effects industry generated a model and set of blend shapes to control

deformations. The muscle deformations used in Exps. 4 and 5 were designed to show a high level of strain, rather

than being tuned to each lift. This allowed us to investigate if strain cues are impactful, but further work would be
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Fig. 3. The models for each of the four performers, AA1, AA2, SA1, SA2.

Fig. 4. Muscle deformations shown on avatar SA1 for an intense moment in a lift with the five different deformation levels:
A) no deformation, B) BODY, C) PARTIAL, D) HEAD, and E) FULL. See the video for examples of the deformations animated.

required to tune deformations to arbitrary lifts. A full discussion of the model is contained in the supplementary

material. The effectiveness of the model deformations for conveying strain was validated (see Appendix).

3.2 Demographics
The number of participants, mean age (SD), and gender data for each experiment are shown in Table 3. Other

data were similar across participant pools. The ethnicity was: 81.3% White/Caucasian, 6.7% Black/African/African

American, 6% Asian/Asian American, 4.4% Latin/Hispanic, and 3.1% preferred not to say. Experience with VR was

some (48.2%), none (35.2%), or more extensive (16.6%), while 62.0% had some experience exercising or weightlifting

or did it regularly (31.3%). Most had some experience seeing others lift weights (62.6%), and some regularly (24.2%).

Participants were non-overlapping, but Exp. 3 and 5 shared a pool. The stimuli differed, but some learning may

have occurred across Exp. 3 and 5.

3.3 Analysis
Analysis was generally performed using linear mixed effect models [5, 6]. These offer a more general approach

than ANOVA as they include fixed and random effects, but similarly predict the dependence of a response

term (e.g., perceived effort) on one or more factors (e.g., the size of the avatar’s body). The participant ID was

treated as a random effect since the participant pool is merely a sample of the more general population. Type II

Wald chisquare tests were used to evaluate significance within the models. Post-hoc analysis was conducted by

calculating pairwise comparisons using estimated marginal means with Tukey correction. Naturalness ratings
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Exp. N Age Gender

1 30 37.7 (12.7) F 50%, M 46.7%, O 3.3%

2 35 35.7 (9.7) F 48.6%, M 48.6%, O 2.9%

3 & 5 35 33.9 (9.5) F 45.7%, M 45.7%, O 8.6%

4 35 34.5 (8.3) F 45.7%, M 51.4%, O 2.9%

Table 3. Participant demographics. Gender category O is a composite of Non-binary/third gender and Other.

Fig. 5. Exp. 1: Perceived effort by lifter compared to actual
effort. The black line indicates perfect performance.

Fig. 6. Exp. 1: Inferred weight by lifter.

were instead fit with a Cumulative Link Model [13], which treats the Likert scores as ordinal data. Exceptions to

this analysis scheme will be noted in the relevant sections. The error bars in all plots show standard error. The

statistical results are shown in tables or the Appendix.

4 EXP. 1, BASELINE: PERCEPTION OF EFFORT AND INFERRED WEIGHT
The first experiment was designed to provide a baseline measurement of how well people can perceive effort and

infer weight from motion kinematics on a meshed character in VR. For this reason, the lifted dumbbells were not

shown. This also makes the work more directly comparable with previous work on point-light displays. The

displayed body was approximately matched to that of the lifter, as described in Sec. 3.1. Forty clips were used in

this experiment (4 lifters x 5 different weights x 2 repetitions). Weights were evenly spaced at 0, 25, 50, 75, and

100% of each person’s maximum lift, i.e., they differed per lifter (Table 2). Since previous research [41] has shown

that people are more accurate when making estimates for a single lifter at a time, clips were grouped by lifter

and randomized within lifter. Participants rated their estimates of both effort and weight for each clip.

Figure 5 shows perceived effort as a function of the actual effort made by the lifter, considering their maximum

lift to be 100% effort. Participants’ estimates of the weights for the various lifts by lifter are shown in Figure 6.

For every lifter, there is a highly significant correlation between estimated effort/weight and actual effort/weight

(“highly significant” is used for p-values < .001, where Pearson’s product-moment correlation had all p-values

less than 1e-14). The correlations are strong for the stronger lifters and medium for the average lifters on both

measures: (Effort Pearson’s r: 𝐴𝐴1 = .41, 𝐴𝐴2 = .48, 𝑆𝐴1 = .73, 𝑆𝐴2 = .73; Weight Pearson’s r: 𝐴𝐴1 = .36, 𝐴𝐴2 =

.41, 𝑆𝐴1 = .61, 𝑆𝐴2 = .64). These findings suggest that at least to some degree, people are able to infer both weight

and effort from lifters’ kinematics.

It can also be observed that correlations are somewhat stronger for effort. Using Fisher’s Z transform to

compare correlations shows that these differences are not significant for the average strength lifters (AA1:

𝑍 = .72, 𝑝 = .47;𝐴𝐴2 : 𝑍 = 1.06, 𝑝 = .29), but are significant for the strong lifters (SA1: 𝑍 = 2.68, 𝑝 = .0074; 𝑆𝐴2 :
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Fig. 7. Exp. 1: Perceived effort and normalized weight where the normalizing constant is optimized for each lifter (AA1: 51.3
lbs, AA2: 60.6 lbs, SA1: 65.3 lbs, SA2: 64.8 lbs).

𝑍 = 2.08, 𝑝 = .038). This suggests that people may be better able to observe effort than weight for the strong

lifters, perhaps because effort can be more directly observed and weight needs to be inferred.

Observation of Figures 5 and 6 shows a curvilinear relationship between the actual and estimated values such

that the curve is flatter for lower effort/weight and steeper towards the maximum. Mirroring previous analyses

(e.g., [41]), a linear mixed effects model was fitted to each lifter for each Effort and Weight. Since the Weight levels

differ across lifters, we chose to fit an individual model to each lifter, rather than treating Lifter as an additional

factor. In all cases, the independent variable (effort or weight) had a highly significant impact on the estimates

(p<.001, see Appendix), reflecting that people adjust their judgments based on both the actual effort and actual

weight. Pairwise comparisons were done for each model. These show that the 100% lifts differed significantly

from the 75% lifts for both Effort and Weight for all lifters, but lower levels were generally not significantly

different for the average lifters (see Appendix). This reflects the more moderate slope in this part of the response

curve and implies that observers may be less sensitive to these more subtle variations in kinematics. As with

other psychophysical tasks [10], the relationship between the actual weight lifted and the participants’ weight

estimates based on visual perception can be related by a power function. However, the exponent found here is

not consistent across lifters, and variance in ratings is high.

Relationship between Effort and Weight Estimates. In order to better understand the relationship between effort

and weight estimates, we can normalize the estimated weight values (i.e. express them as a percentage of some

max lift) so that effort and weight can be plotted on the same scale. If we optimize for a normalizing constant for

each lifter by minimizing the difference between the normalized weight and estimated effort, we produce the

chart in Figure 7 with weights: AA1: 51.3 lbs, AA2: 60.6 lbs, SA1: 65.3 lbs, SA2: 64.8 lbs. There is clearly a strong

correspondence between the curves for effort and weight estimates (Pearson’s correlation 𝑟 = 0.74), so it may

be that people were making a single judgment based on the motion and then scaling that to estimate the other

quantity. We will revisit this in the discussion (Sec. 9) when there is more evidence that effort is the quantity

estimated. Note that these optimized max weights are more similar than the lifters’ actual max lifts.

Discussion
To answer “How accurately can people perceive effort and infer weight from motion kinematics on a meshed character
in VR?”, while estimates are not perfect, Exp. 1 provides evidence that people can gauge both effort and weight

from kinematic signals for characters in virtual reality. This confirms earlier work with point-light displays.

The overall correlation between actual and perceived values is consistent with those reported in [41], but below

the highest estimates in the literature (e.g., [36]). We did not provide a reference lift with a specified weight in
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Table 4. Exp. 2: Effort Ratings (l), Lifted weight ratings (r). “Body” is short for “Body shape.”
(Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ )

Motion 𝜒2 𝑑𝑜𝑓 𝑝 (> 𝜒2 )
AA1 Effort 533.2 3 < .0001 ***

Body 3.97 3 .26

Effort:Body 14.55 9 .10

AA2 Effort 253.46 3 < .0001 ***

Body 1.08 3 .78

Effort:Body 12.64 9 .18

SA1 Effort 915.8 3 < .0001 ***

Body 63.72 3 < .0001 ***

Effort:Body 26.10 9 .0020 *

SA2 Effort 723.9 3 < .0001 ***

Body 6.26 3 .10

Effort:Body 13.27 9 .15

Lifter 𝜒2 𝑑𝑜𝑓 𝑝 (> 𝜒2 )
AA1 Weight 813.9 3 < .0001 ***

Body 22.34 3 < .0001 ***

Weight:Body 14.34 9 .11

AA2 Weight 711.6 3 < .0001 ***

Body 46.87 3 < .0001 ***

Weight:Body 11.61 9 .24

SA1 Weight 730.1 3 < .0001 ***

Body 62.35 3 < .0001 ***

Weight:Body 11.72 9 .23

SA2 Weight 696.7 3 < .0001 ***

Body 42.8 3 < .0001 ***

Weight:Body 6.87 9 .65

any of our experiments. While this has been shown to improve the accuracy of predictions [7, 36, 42], it is not a

likely scenario in real VR applications. This may account for why our correlations are somewhat lower than the

highest values reported in the literature, although we did always include an indication of lifter size, which is also

a useful leveling cue [8].

Notably, people are less sensitive to differences at lower weight or effort levels. The Discrimination experiment

(Exp. 5) showed a similar finding. People were not sensitive to the differences between 0 and 25% effort lifts, but

they were sensitive to differences between higher effort lifts (somewhere between 50 and 100%, depending on the

lifter), or lifts over about 30 lbs. Designers of VR experiences may be able to mitigate much of the potential negative

impact of potential discrepancies by staying under these thresholds in the object manipulations they display. We

also found people tended to overestimate lower weight lifts and underestimate higher weight lifts [8, 41]. As

with previous work [41], we found in Exp. 1 that people made less error estimating effort than estimating weight.

We found larger, stronger lifters were accurately perceived as lifting heavier weights when they did so, unlike

previous findings where this was unexpectedly reversed [42].

5 EXP. 2, BODY SHAPE
The goal of Exp. 2 was to understand how the size and shape of the avatar body impacted weight and effort

estimates. This is relevant for situations where people are observing someone’s avatar that may not match the

observed person’s actual body proportions. For a more realistic VR use case, the dumbbells were visualized with

the avatar. In all cases, the size of the dumbbell was matched to the lift motion used (e.g., a 30-lb dumbbell if

the lifter had lifted 30 lbs). Each motion was displayed on the avatar models of each of the four lifters (Body

shape factor). Thus the motion and visualized dumbbell provided consistent signals, but the body shape could be

inconsistent (i.e., matched to the original lifter in some clips, and not in others). One matched animation was

included for each mismatched, so there were six clips for each lifter-weight combination (3 on the matched lifter’s

avatar and 1 on each of the unmatched ones). In total, there were 96 clips (6 body shape-motion combinations x 4

lifters x 4 weights). Note that the zero-weight lifts were not used. The presentation was fully randomized. After

each clip, participants were asked to rate weight and effort as before, and also to rate the naturalness of the clip

on a 7-point Likert scale. Since we are combining different lifter body shapes and lifter motions, we add ‘m’ after

a lifter ID to specify motion and ‘b’ body shape, e.g., AA1m and AA1b.
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Fig. 8. Exp. 2: Perceived effort as body shape is changed. Facets show motion from different lifters, colors code different
avatar bodies.

Fig. 9. Exp 2.: Estimated dumbbell weight as body shape is changed. Facets show motion from different lifters, colors code
different avatar bodies.

Does body shape impact the perception of effort? Effort ratings for the motions of each lifter displayed on each

avatar model are shown in Figure 8. It is clear that effort ratings are largely consistent across these variations in

body shape. Linear mixed effect models fit to each lifter motion show that body shape did not have a significant

impact on Effort ratings for AA1m, AA2m, or SA2m (Table 4(l)). However, there was a significant impact of Body

shape on Effort ratings for the motion of SA1m. Post-hoc analysis shows that the only significant differences

related to the AA1 body. Perceived effort on the AA1 avatar was significantly less than SA1 and SA2 bodies

at 50 (𝑝 < .0001, 𝑝 = .0005), 75 (𝑝 < .0001, 𝑝 < .0001), and 100% (𝑝 = .0001, 𝑝 = .0003) actual effort. It was also

significantly less than AA2 at 25% (𝑝 = .005) and almost at 50% (𝑝 = .0504). It is not clear what is causing this

difference.

Does body shape impact the inference of lifted weight? The effect of body shape on weight estimates is shown

in Figure 9. Linear mixed effect models fitted to the data for each lifter all show significant main impacts of

Body shape and actual Weight on inferred weight, but no interaction (Table 4(r)). Post-hoc analysis shows

that the weight estimates for the average avatars were always significantly lower than those for the strong

avatars (larger bodies), though the avatars of AA1 vs. SA1 fell slightly below significance for the motion of AA2

(𝑡 = −2.411, 𝑝 = 0.076). This suggests that given the same perception of effort, people assume the larger avatars

are lifting more weight.
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Table 5. Exps. 1 and 2: Effort Ratings (l), Lifted weight ratings (r). “Dumbbell” is short for “Dumbbell Visibility”.
(Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ )

Lifter 𝜒2 𝑑𝑜𝑓 𝑝 (> 𝜒2 )
AA1 Effort 622.7 3 < .0001 ***

Dumbbell 3.92 1 .047 *

Effort:Dumbbell 7.63 3 .054 .

AA2 Effort 421.2 3 < .0001 ***

Dumbbell 1.92 1 .17

Effort:Dumbbell 9.65 3 .023 *

SA1 Effort 1243.7 3 < .0001 ***

Dumbbell .0020 1 .96

Effort:Dumbbell 5.68 3 .13

SA2 Effort 1052.9 3 < .0001 ***

Dumbbell 0.83 1 .77

Effort:Dumbbell 1.79 3 .62

Lifter 𝜒2 𝑑𝑜𝑓 𝑝 (> 𝜒2 )
AA1 Weight 613.6 3 < .0001 ***

Dumbbell 3.04 1 .081 .

Weight:Dumbbell 52.62 3 < .0001 ***

AA2 Weight 659.2 3 < .0001 ***

Dumbbell .514 1 .47

Weight:Dumbbell 63.88 3 < .0001 ***

SA1 Weight 976.2 3 < .0001 ***

Dumbbell 3.61 1 .057 .

Weight:Dumbbell 48.60 3 < .0001 ***

SA2 Weight 870.6 3 < .0001 ***

Dumbbell 17.74 1 < .0001 ***

Weight:Dumbbell 44.08 3 < .0001 ***

How much does body shape impact the inference of lifted weight? Since the effect of body shape on weight

estimates was significant at the class level, Average vs. Strong, differences were calculated by comparing the

means of the ratings for these classes. In 15 of the 16 cases, the estimates were heavier for the Strong class. The

one outlier is the lightest lift performed by AA1 (lift was 6.75 lbs, mean Average estimate 7.56 lbs, Strong estimate

7.36 lbs). For the remaining classes, the mean Strong estimate was between 1.5 and 5.7 lbs heavier and generally

increased for larger weights. As a percentage of the actual lift, the Strong estimates averaged 11% higher.

Does changing the body size impact the naturalness of the motion? A Cumulative Link Model was fit to the data

with response variable Naturalness ratings and factors Effort, lifter Motion, and Body shape (character model

displayed). There were significant main effects for Body shape and lifter Motion, all 2-way interactions were

significant, but the 3-way was not. Both interactions, Effort:Body shape and lifter Motion:Body shape are shown

in the Appendix. The significant differences from post-hoc analysis are marked. Most drops in Naturalness are

almost exclusively related to the AA1 model. When AA1b is used on motion from larger lifters (which also feature

larger dumbbells) and at higher efforts (heavier lifts), it looks less natural.

Impact of Showing Dumbbells. Between Exps. 1 and 2, we have data for the same motions with and without the

display of dumbbells. This allows us to consider whether the visual appearance of dumbbells influences the

perception of effort. Plots of effort with and without visualized dumbbells for the same motion and body shape

from Exp. 1 and Exp. 2 are shown in Figure 10. Results are mixed (Table 5). There is no significant difference for

SA1 and SA2. For AA1, there is a significant main effect for Dumbbell, but no significant interaction between

Dumbbell and Actual Effort. Effort estimates with dumbbells present are lower. For AA2, there is a significant

interaction between Dumbbell and Actual Effort, with post-hoc analysis showing the clips with dumbbells rate

significantly lower (𝑡 = 2.10, 𝑝 = 0.038) at 25% effort and no significant differences at other effort levels (100%

effort is tendential (𝑡 = 1.906, 𝑝 = 0.059)). The appearance of the dumbbells lowered the perceived effort for the

Average lifters, likely because the participants believed these lifters could lift heavier weights than they could (cf.

Exp. 1).

Does the visualization of dumbbells impact the inference of weight? Data from Exps. 1 and 2 for the same lifts,

with and without dumbbells, are shown in Figure 11. The patterns are clearly different, with much-improved

estimates when dumbbells are present. This difference was confirmed by again fitting a linear mixed effects model

to the motion of each lifter. In all cases, there is a significant interaction between the lifted weight and the visual

presence of dumbbells (Table 5). The lift magnitude where the presence of the dumbbell led to significant changes
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Fig. 10. Perceived effort with and without displayed dumbbells. Facets show motion from different lifters.

Fig. 11. Estimated weight with and without displayed dumbbells. Facets show motion from different lifters.

in ratings are the ones that appear visually different in Figure 11 (6.75 lbs for AA1; 8.75 lbs for AA2; 30, 45 and

60lbs for both SA1 and SA2) . The presence of weights seems to have led to the correction of judgment errors

made in their absence. Correlations between real and inferred weight substantially improved when dumbbells

were shown, and in all cases, the improvement is statistically significant using Fisher’s Z transform to compare

correlations (AA1: 𝑟 = .69 vs. .36, 𝑧 = 6.2, 𝑝 < .00001; AA2: 𝑟 = .73 vs. .41, 𝑧 = 6.49, 𝑝 < .00001; AA2: 𝑟 = .77 vs.

.61, 𝑧 = 4.1, 𝑝 < .00001; SA2: 𝑟 = .76 vs. .64, 𝑧 = 3.14, 𝑝 < .00001) , suggesting that visualizing the dumbbells had

a large impact on the ability to accurately estimate weight. Interestingly, if we fit a power function to these, the

exponent is much closer to 1, also indicating a more linear relationship.

Discussion
In answering the question “If people are visualized with avatars that have different proportions and mass than
their own, how sensitive are observers to the resulting errors in their motion dynamics?”, we saw that body shape

had a limited impact on perceived effort. However, we saw that body shape changes do impact judgment of

weight, with the larger “strong” avatars being judged as lifting heavier weights. This is consistent with Kenny

et al. [28, 29], although their animations did not include a visualization of the lifted object, so that may not be

necessary for the difference. This study adds a potential causal mechanism to that finding: since the impression

of effort is largely constant, the same effort combined with a larger body appears to produce a larger estimated
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Fig. 12. Exp. 3: Perceived effort as a function of actual effort for different dumbbell sizes (indicated by line color). Facets
show motion from different lifters. Note that estimated effort is largely a function of actual effort with limited variation from
the different dumbbell sizes.

weight. We also found degradations in naturalness not observed in Kenny et al. that may result from including a

visualization of the lifted object. This grounds the task and no longer allows people to justify mismatches by

imagining that the weight of the object is different from what it is. The findings for weight may be connected

to the Shape-Weight Illusion, where there seems to be the same underlying assumption that larger should be

heavier.

6 EXP. 3, DUMBBELL SIZE
Next, we explored how changing the dumbbell size impacted weight and effort estimates, i.e., when a user’s

avatar is shown moving objects of different mass to what they are actually moving. The varied parameter was

dumbbell size. Motions for each weight lift were used from each lifter, and displayed on the corresponding body,

but each motion was shown with all possible dumbbell sizes for that lifter. In total, 80 clips were prepared (5

motions x 4 dumbbell sizes x 4 lifters). The zero lift motion was used, but only dumbbells with mass > 0 were

displayed. As with Exp. 1, lifters were grouped and clips were randomized within each lifter. Participants rated

weight, effort, and naturalness. Figure 12 shows the relation between actual effort and perceived effort for each

lifter when dumbbell size is changed across clips. The clear takeaway is that estimated effort is largely a function

of actual effort, with only a small impact from the visualized dumbbell as can be seen by the minimal spacing

between the different weight lines on each plot.

Again, linear mixed-effect models were fitted to the data for each lifter. Statistical analysis indicates that in

all cases, there was a significant main effect for dumbbell size (size indicates a particular weight), and for AA2

there is also a significant interaction between dumbbell size and effort (Table 6). The majority of the variation

results from Effort, not Dumbbell size, however, and post-hoc analysis shows that the impact of dumbbell size is

almost exclusively limited to the lightest dumbbell for each lifter being perceived as less effort to lift than some

of the heavier three (For AA1, 6.75 lbs < 20.25 (𝑝 = .0038) and 27 (𝑝 = .0280); AA2: 8.75 lbs < 26.25 at 50% Effort

(𝑝 = .0003) and (25% Effort (𝑝 = .0002); 8.75 lbs < 35 at 75% Effort (𝑝 = .0002), 50% Effort (𝑝 = .027) and 25% Effort

(𝑝 = .0021). In the one case involving a dumbbell other than the lightest, 17.5 lbs < 26.25 at 50% Effort (𝑝 = .0040).

For SA1, 15 lbs < 45 (𝑝 = .0027) and for SA2, 15 lbs < 30 (𝑝 = .018) and 45 (𝑝 = .046). This rather limited impact is

consistent with the visually quite consistent ratings across dumbbell sizes shown in Figure 12.

The impact of dumbbell size on the inference of weight is shown in Figure 13. The visual size of the dumbbell

has a very strong impact on the inferred weight. Fitting linear mixed effect models to each lifter showed a

significant main effect for both actual Weight and displayed Dumbbell size for all lifters, and no significant
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Fig. 13. Exp. 3: Estimated weight as a function of actual lift weight for different dumbbell sizes. Facets show motion from
different lifters. Note that visualized dumbbell size has a clear impact on inferred weight.

Table 6. Exp. 3 Effort ratings (l), Lifted weight ratings (r). "Dumbbell" is short for "Dumbbell size".
(Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ )

Lifter 𝜒2 𝑑𝑜𝑓 𝑝 (> 𝜒2 )
AA1 Effort 303.5 3 < .0001 ***

Dumbbell 13.75 3 .0032 **

Effort:Dumbbell 15.19 9 .23

AA2 Effort 176.2 3 < .0001 ***

Dumbbell 39.67 3 < .0001 ***

Effort:Dumbbell 35.93 9 .0033 **

SA1 Effort 649.9 3 < .0001 ***

Dumbbell 12.78 3 .0052 **

Effort:Dumbbell 11.48 9 .49

SA2 Effort 603.3 3 < .0001 ***

Dumbbell 10.66 3 .014 *

Effort:Dumbbell 10.98 9 .53

Lifter 𝜒2 𝑑𝑜𝑓 𝑝 (> 𝜒2 )
AA1 Weight 38.3 3 < .0001 ***

Dumbbell 427.1 3 < .0001 ***

Weight:Dumbbell 6.24 9 .90

AA2 Weight 25.23 3 < .0001 ***

Dumbbell 628.5 3 < .0001 ***

Weight:Dumbbell 15.6 9 .211

SA1 Weight 65.30 3 < .0001 ***

Dumbbell 794.3 3 < .0001 ***

Weight:Dumbbell 14.36 9 .28

SA2 Weight 59.66 3 < .0001 ***

Dumbbell 592.7 3 < .0001 ***

Weight:Dumbbell 10.92 9 .53

interactions (Table 6). Unlike for effort, the majority of the variance was due to visualized Dumbbell size, not the

actual weight lifted. Post-hoc analysis showed that every dumbbell size led to a significantly different estimated

weight than every other dumbbell size for all lifters (all 𝑝 < .0001). The impact of motion kinematics is more

modest, but does exist, and is discussed in the supplemental material.

Naturalness ratings were used to evaluate if people were sensitive to mismatches between the lift motion

and the displayed dumbbell. A single Cumulative Link Model was fit to the full data set with response variable

Naturalness ratings and factors lifter Effort, Dumbbell size (as % of largest dumbbell used by lifter) andmotion Lifter,

along with all interactions. There were significant main effects for all three factors and significant interactions

for Effort:Dumbbell size. Post-hoc analysis on the Effort:Dumbbell size interaction is shown inFigure 14 with

significant differences marked. It can be seen that Naturalness ratings decrease for the more extreme combinations.

For 0% effort lifts, the largest dumbbell was perceived as less natural.

Discussion
To answer the question “How sensitive are people to visualizations that show an avatar moving a different mass
than what they actually moved?”, we conclude that dumbbell size has a major impact on estimated weight, but

only a minor impact on perceived effort. As the discrepancy between visualized weight and effort reflected in the

kinematics increases, these discordant signals are found to be less natural. This occurs when people lift nothing,
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Fig. 14. Exp. 3: Naturalness ratings as a function of different dumbbell sizes. Facets show different effort levels.

but are shown with a heavy weight. This is the most likely problem case in VR, when a person just moves their

hands or a light controller but is shown lifting a heavy object. At the other end of the spectrum, the smallest

dumbbell size was seen as unnatural at both 75 and 100% lifts. At the 100% lift, the 50% dumbbell was also seen

as less natural. This is an unlikely practical scenario in VR, but something similar might manifest in cases of

fatigue or a particularly weak or sick user. While variation in object shape has been shown to impact weight

judgments [37], we tried to minimize this impact by only scaling the object, so the general shape was fixed.

7 EXP. 4, STRAIN DEFORMATIONS
The goal of this experiment was to understand the impact of adding muscle deformations on the inference

of weight and effort. In all cases, the motion clip was matched to the body model of the original performer.

The dumbbells were not shown to allow a direct investigation of the relative impact of motion kinematics and

visualized muscle strain. Each lift was shown with one of five deformation strain levels: NONE (the base clips

used before), FULL (flexion of the body, face and neck in correspondence with the lifted motion), FACE (the face

and neck flexion from FULL), BODY (the body and arm flexion from FULL) and PARTIAL (a reduced magnitude

version of FULL), as shown in Figure 4 and the accompanying video. See Sec. 3.1 for details of how deformations

were modeled. As this was a preliminary investigation into the impact of muscle strain, no attempt was made to

tune the strain to the particular weight lifted, which would be a significant endeavor. Rather, we test the impact of

a strong display of strain relative to motion kinematics. In total, there were 100 clips (5 strain levels x 5 motions x

4 lifters). Clips were randomized within each lifter group. A manipulation check of the muscle strain displays

was successful and is described in the supplementary material.

Figure 15 shows the impact of deformation conditions on perceived effort. Linear mixed effect models were fit

to the data for each lifter. The general ordering in terms of increasing perceived Effort is: NONE, BODY, PARTIAL,

HEAD, and FULL. The differences largely relate to which of these are statistically separated (Table 7). For AA1

and SA1, there is a significant main effect of Deformation and no interaction. In both cases, HEAD and FULL are

not significantly different, but each of the other levels are. For AA2 and SA2, there is a significant interaction

between Effort and Deformation. For AA2, the differences that are not significant are: BODY - NONE and FULL -

HEAD at all effort levels, HEAD - PARTIAL 0, 50 and 100% effort and FULL - PARTIAL 50 and 75% effort. For SA2,

HEAD - PARTIAL are not significantly different at 0% effort and BODY - NONE, FULL - HEAD, FULL - PARTIAL

and HEAD - PARTIAL are not significant at 50 or 75% effort. At 100% effort, there are two separated groups:

FULL, HEAD, PARTIAL and NONE, BODY. Overall, the deformations have a clear impact on effort, especially

those involving the head and neck (FULL, HEAD, PARTIAL). The impact of BODY on its own is more limited.

Results are similar for the inference of weight and detailed in the Appendix.
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Table 7. Exp. 4 Effort ratings (l), Naturalness ratings (r).
(Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ )

Lifter 𝜒2 𝑑𝑜𝑓 𝑝 (> 𝜒2 )
AA1 Effort 126.2 4 < .0001 ***

Deformation 549.0 4 < .0001 ***

Effort:Deformation 17.1 16 .38

AA2 Effort 136.5 4 < .0001 ***

Deformation 809.1 4 < .0001 ***

Effort:Deformation 26.48 16 .048

SA1 Effort 454.3 4 < .0001 ***

Deformation 482.7 4 < .0001 ***

Effort:Deformation 24.77 16 .074 .

SA2 Effort 328.9 4 < .0001 ***

Deformation 385.7 4 < .0001 ***

Effort:Deformation 30.10 16 .017

𝜒2 𝑑𝑜𝑓 𝑝 (> 𝜒2 )
Effort 29.539 4 < .0001 ***

Deformation 18.077 4 .0011 **

Effort:Deformation 37.320 16 .0019 **

Fig. 15. Exp. 4: Perceived effort as a function of actual effort for different deformations. Facets show motion from different
lifters.

Figures 16 and 17 quantify the impact of the strain deformations on effort and weight, respectively, by plotting

the mean difference from the examples with no deformation. The general trends across deformation conditions

reflect those of the previous analysis.

To analyze any impact on naturalness, we fit a Cumulative Link Model to the full set of data with Naturalness

ratings as the response variable and factors lift Effort and Deformation, along with their interaction. It showed

significant main effects for Effort and Deformation, and a significant interaction (Table 7). The data for the

interaction is plotted in Figure 18, with significant differences marked based on a post-hoc, pairwise comparison.

It can be seen that Naturalness ratings drop at either end when the strain deformations do not match the motion.

For 0-effort lifts, the strain on the head and neck was seen as significantly less natural than no deformations

or body-only deformations, which is consistent with the strain being a mismatch with the lift. Interestingly, it

was also seen as less natural than FULL, so the combined body and facial strain cues were still plausible. At the

maximum, 100% Effort, the no deformation condition was seen as less natural than PARTIAL, HEAD, and FULL,

and BODY-only deformation was seen as less natural than HEAD and FULL.
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Fig. 16. Exp. 4: Perceived effort as a function of actual effort
with various levels of muscle deformation.

Fig. 17. Exp. 4: Estimated weight as a function of actual
weight with various levels of muscle deformation.

Fig. 18. Naturalness ratings with changes in deformation. Facets correspond to different naturalness levels.

Discussion
The answer to the question “Can the display of muscle deformations, including facial strain, shift people’s perception
of effort and inference of weight in lifts?” is a clear yes. The impact of the deformations can be substantial: up to

a 30% increase of perceived effort for the FULL deformations and up to a 10-15lb increase in estimated weight.

Results indicate that the impact of deformations is largest on the lightest lifts and reduces as the lifts become

heavier. This suggests that the deformation and kinematic signals are acting in concert and when there is limited

evidence of effort on the kinematic channel, the deformation channel can have more impact.

8 EXP. 5, DISCRIMINATION BETWEEN CORRECT AND FAKE MOTIONS, WITH AND WITHOUT
MUSCLE DEFORMATIONS

This experiment had twin goals. The first was to understand when people could detect a zero-weight lift as being

a fake lift, as compared to a lift that matched the visualized dumbbell size, and the second was to investigate

if adding muscle deformations made it more difficult to detect zero-weight lifts. Zero-effort lifts were chosen

as the comparison point because because they correspond to the motion a person would perform if they were

interacting in VR using hand tracking. Unlike the previous experiments, this experiment was run as an Interval

Forced-Choice experiment in which participants were shown two clips in sequence and had to decide which clip

was a correct visualization of the lift. In all cases, one lift was a zero weight lift and the other lift was performed
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Fig. 19. Exp. 5: Detection rates for zero lifts with and without deformations, compared to actual weight lifts. Asterisks
indicate when the actual lift without deformations is significantly more likely to be correctly identified than chance. Braces
indicate when the proportion of correct identifications is significantly different with muscle deformations than without.

with one of the weights greater than zero. Before each case, participants were told the weight of the target lift,

and a dumbbell of that size was used in both clips. The order was randomized. Two types of pairs were run. One

had no muscle deformation on either clip (NONE). The second had FULL deformation on the zero-weight clip

and no deformation on the actual lift. Each participant saw 64 pairs (4 lifters x 4 weights x 4 pairs that randomly

showed FULL or NONE as the comparison).

Psycophysics experiments are traditionally run with a high repetition count and a low number of participants.

Instead, this was run with a relatively high participant count (35), and a low number of repetitions, in part because

it is not clear that intersubject variation would not effect these judgments. It is also not the goal of the work to fit

a psychometric function to the data nor establish precise detection thresholds. However, this does not provide

enough repetitions to calculate a per-participant average. Each bar in Figure 19 shows the result of about 140

samples across the participant pool.

The teal bars in Figure 19 show the proportion of times people can detect the correct weight lift compared

to a zero lift when both show the same dumbbell size. Those significantly above chance based on a one-tail

exact binomial test are marked with an asterisk. Bonferroni correction was used for all the statistical tests in this

section and the numeric test data is contained in the supplemental material. Light lifts of 25% effort are detected

roughly at chance level, meaning people had difficulty distinguishing between these and zero lifts. The remainder

are significantly above chance and for both average and strong lifters, the heavier lifts exceed the 75% threshold

traditionally used in discrimination tasks.

The orange bars in Figure 19 show the proportion of people able to identify the correct lift, shown with no

muscle deformation, when the opposing lift is a zero effort lift with the FULL strain deformation applied.The

success proportions for the deformation and no-deformation zero lifts are compared with prop.test in R, which

does a 2-sample test for equality of proportions with continuity correction. For both average and strong lifters,
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people are more likely to detect the fake lift at 25% with full deformations, but less likely to do so for higher

efforts (100 and 75%, respectively).

Discussion
The answer to our first question, “Can people distinguish between a zero-weight lift and an accurate lift for various
weight dumbbells?”, is yes for heavier weights. It is helpful for VR designers to know that our lightest lifts, 25% of

a person’s maximum, were basically indistinguishable from zero-weight lifts for all lifters. This suggests that

amelioration is not required in cases where avatars are shown lifting only relatively light objects. However, in all

cases for the lifters’ max lift, and sometimes as low as 50% of their max, people were able to detect the fake lift

over 75% of the time. In these cases, some adjustment to the VR experience is likely required. Exact thresholds

should be developed through follow up experiments, with more densely sampled weight increments and higher

repetitions.

In all but one case, if the dumbbell lifted had been heavier than 25 lbs, the difference with a 0 weight lift was

detectable at 75% or above. Kinematic aspects of the lift such as a compensatory weight shift will depend both on

the amount lifted and the size of the lifter. It may be that heavier lifts created more kinematic signal, even at

lower effort, so were easier to distinguish.

For the second question, “Can displays of muscular sensitivity reduce sensitivity to these mismatches?”, the answer
is again yes, in some cases. For strong and average lifters, there was at least one weight at which participants were

significantly less likely to detect the 0 weight lift if deformations were present. Large improvements generally

occurred for weights between 13 and 45 lbs. In these cases, the addition of muscle deformation could be a useful

technique for obscuring the fact that users were unencumbered when their avatars were lifting objects. For the

max lift of the strong lifters, adding strain to the zero animation did make it less detectable, but this difference

was no longer significant. It may be that at these extreme lifts, the kinematic signal was so strong that muscle

deformations alone did not provide enough counter information to override it.

Interestingly, in all cases for 25% effort lifts, adding muscle deformations to the zero-lift made it easier to detect

the correct lift. This is likely because the FULL deformation simply showed too much strain for the displayed

dumbbell. The general trend is for the detection of the “zero lift with strain” to be easy at light lifts and become

more difficult at heavy lifts. This is reasonable as the strain level used in these clips was quite intense, so only

appropriate for heavier lifts. It speaks to the need to tune the strain level to the desired exertion of the character.

9 GENERAL DISCUSSION
Perception of effort appears to be largely driven by motion kinematics and, if present, displays of muscular strain.

Visual size indicators of either the avatar or lifted object look to have a limited impact. The avatar size had no

impact on effort for motion from three of our lifters (Exp. 2). For the fourth, SA1’s motion, the effort estimates

were lower when shown on the smallest avatar, AA1, for 25, 50, and 100% lifts, but did not otherwise significantly

differ. When comparing the same motions with and without displaying dumbbells from Exps. 2 and 1, there was

no significant impact on effort estimates for the strong lifters, but effort estimates were lower for the average

lifters when dumbbells were present. A possible explanation is that, once dumbbells are shown, people corrected

a faulty baseline assumption that the average lifters were stronger than they actually are. Varying dumbbell size

had a limited impact on effort, largely constrained to the smallest of the four dumbbells being seen as lower effort

than the remainder at particular effort levels for each lifter. When only kinematic information and these visual

size indicators are present, it appears that kinematic information dominates the perception of effort. However,

when muscle deformations are added to the animation, these have a clear impact on effort (Exp. 4), particularly

those involving the head and neck (FULL, HEAD, PARTIAL). The impact of BODY flexion alone is more limited.

Inference of weight seems to be dominated by visual size indicators, especially of the lifted object, while

kinematics still contribute. There was a consistent impact of body shape, where the smaller avatars were
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estimated to lift about 11% less on average. Comparing motions with and without dumbbells from Exps. 2 and 1

established that displaying the dumbbells leads to improvements in weight estimates with significantly higher

correlations between actual and estimated weight. Exp. 3 showed that visualization of the dumbbells had a large,

and likely dominant, impact on the inference of weight with every dumbbell size seen as a significantly different

weight than every other dumbbell for all lifters (e.g., the 60-lb dumbbell shown for SA1’s 15-lb lift was estimated to

be 44.6 lbs on average, whereas the 15-lb dumbbell shown with a 60-lb lift was only estimated to be about 20.5 lbs).

Adding muscle deformations also has a clear impact, although the interaction of muscle deformation and dumbbell

size remains to be explored. For AA1, every level of deformation was significantly different from the others except

PARTIAL and HEAD. For the remaining lifters, there were three groupings: {NONE, BODY}, {PARTIAL, HEAD},

and {FULL}, from least to most impact. The strong impact of visual information on the inference of weight can be

compared with that of visual information in the Size-Weight Illusion, where size impacts the perceived tactile

heaviness of an object (non-visual size indicators can also invoke this effect).

Visualizing the size of the lifted object had a strong effect on people’s estimates of weight, unlike previous

findings for point-light displays [18]. This may in part stem from dumbbells providing a clearer indication of

weight than boxes, as boxes may be filled with vastly different density material. Given the clear correspondence

between effort and normalized weight estimates in Figure 7 when dumbbells were not shown (strongly correlated,

with a Pearson’s 𝑟 = .74), it may be that people were using a single estimate of performance based largely on

motion kinematics to estimate both weight and effort. When the visual dumbbell information was introduced,

they relied heavily on that channel to estimate weight, but effort estimates were still largely based on kinematics.

This led to divergence in the two estimates when information on the control channels was not congruent (e.g.,

mismatched dumbbells). It is possible that participants had fairly similar mental estimates of what a person could

lift across the body variations shown and these were not consistent with the lifters’ actual strength range. When

they were given additional information, they appeared to revise these estimates (e.g., when shown small dumbbell

size for the average lifters, they reduced effort estimates).

Muscle deformations added an additional signal that influenced the estimation of both effort and weight. In Exp.

4, the impact of the strain deformations is greatest at the lowest effort and weight levels and attenuates as these

increase, which suggests that the deformation and kinematic signals are acting in concert. With limited visual

evidence of effort on the kinematic channel, the deformation channel can have more impact. Exp. 5 showed that

adding deformations to zero lifts with heavier dumbbells can make it harder to notice the difference between these

animations and the correct lifts without muscle deformation. For light dumbbells, adding FULL deformations to

the zero lifts makes it more noticeable that these are incorrect, presumably because this is an unrealistic amount

of strain for the dumbbell shown. This result highlights the need for VR systems to carefully tune deformations

to the desired weight/effort perception.

Strain animations could be used to mitigate the impact of mismatches between user kinematics and visualized

motion. It is interesting that the HEAD deformation seems to carry much of the impact of FULL deformation

for effort, and to a lesser degree for weight. This implies that VR applications could use only face and neck

deformation on clothed characters, if appropriate, and still achieve most of the impact, if tuned to the desired

effect. Such an approach would introduce an artificial strain signal to replace a signal missing in the motion

kinematics, raising an interesting issue of how to balance verisimilitude with actual faithfulness to the person’s

behavior.

Naturalness ratings are lower for mismatching body types when the motion and dumbbell size of larger avatars

are displayed on smaller avatars (motion and dumbbell sizes from all other lifters played on AA1). The AA1motion

also looked less natural at higher effort/weights, perhaps because the larger dumbbells looked less plausible

for smaller bodies. In Exp. 3, naturalness fell when the size of the dumbbell was a poor match for the actual

lift (either large dumbbells with low effort or small dumbbells with high effort). The cases where dumbbell size

looked less natural in Figure 14 correspond to cases where the effort was out of line with weight estimates. Effort
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perception was largely constant across the different displayed dumbbells for a particular weight lift, but weight

varied heavily based on the displayed dumbbell. Finally, the HEAD deformation was less natural at 0% effort, as

this shows a high level of strain that would mismatch with the kinematic signal. However, there is no similar

drop for FULL. NONE and BODY were seen as less natural at 100% effort, due to a mismatch of a kinematic

signal indicating high effort, but muscle deformations that do not reflect this effort. These findings emphasize the

importance of calibrating all signals – kinematics, visual size indicators, and muscle deformations – to avoid

degrading the user experience.

Limitations of our work include the use of male-only avatars that were not racially diverse. As a first study,

this allowed us to easily have quite muscular avatars and display them shirtless, while also roughly matching the

avatar to the lifter pool. It is important to explore if any of the findings here might change as the gender or race

of the avatar varies. Stereotypes may come into play and this may also vary with the participant pool. A much

larger study would be required to explore this. It would also be worthwhile to look at nonhuman avatars and the

full range of beings that people may wish to embody in VR. Finally, looking at other physical quantities, such as

the velocity of the motion, may be informative.

10 CONCLUSION
This paper describes a series of experiments that explore how people understand the dynamic properties of

actions based on motion kinematics, the avatar’s body, the size of manipulated objects, and muscle strain. By

looking separately at people’s perception of effort and weight, we were able to show that their judgments of these

quantities are impacted by different signals. While effort is influenced by all control channels, motion kinematics

appears to have a dominant role, especially when muscle flexion is not shown. On the other hand, visual indicators

of size, particularly of the lifted object, have a strong influence on the inference of weight. If kinematics and

visualization are not matched, this can produce incongruent information, where people’s estimates of effort and

weight are inconsistent and can lead to degraded naturalness. It may even be that such mismatched signals are

one of the contributors to the Uncanny Valley effect [33]. While this paper indicates there is an operating range

of moderate weights where such discrepancies are not likely noticed, going beyond that creates errors that must

be avoided or mitigated, motivating the need for new animation algorithms.
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Appendix

A MODEL AND DEFORMATIONS
As discussed in the main paper, the character model and muscle deformations were created by an experienced

artist. The base avatar model was generated with Human Generator V2, a tool for creating fairly realistic human

models with varied body shapes in Blender[1]. Three types of blend shapes were used on the model (Table 8).

Body Type Shapes were used to create a variety of body shapes to account for various amounts of muscle

mass and belly fat. These included a thin model, a very muscular model, and a “bellyOut” shape that indicated a

large amount of fat around the midriff (used for AA2, who was somewhat stockier). The motion capture solver

automatically scales the skeleton limb lengths based on a range of motion recording. The model was further fit to

each lifter by adjusting these blendshapes, using both the markers and lifter footage as reference (Figure 3).

Corrective Shapes were created to preserve volume and improve anatomical detail as the model moved through

a range of motion. These shapes were driven by the joint angle of a related skeletal joint with the one exception

of the “latIn” shapes that were used to prevent penetration of the arm muscles with the latissimus dorsi. These

‘latIn” shapes were driven by the distance between the elbow and the side of the body and provided a simulation

of the interaction between these surfaces.

Tense Shapes were a collection of shapes built to emulate muscle strain and physical exertion (Figure 4). The

limited range of motion in the study and the similarity of the animation cycles allowed these shapes to be grouped

into regions. This reduced dimensionality made for easier retargeting to the animation clips.

These clips were animated with shape activations offset from one another in time. For example, shapes

indicating great effort (such as the clenching of the mouth or squinting of eyes) were dialed in during “mid

curl” where the effort expended is greatest. The video of the mocap session proved uninformative about actual

deformation as the lifters were wearing black mocap suits. Instead, reference of weight lifters and videos taken

by the artist helped inform the creation and animation of these shapes. Wrap3D [2] was used as a basis for many

of the facial shapes.

The muscle deformations were animated manually for one reference clip and then retargeted to all clips. The

retargeting process took as input the start-end frame of each up or downswing in both the reference clip and the

target clip. It then scaled the timing of the keys from the reference clip to the target clip based on these landmarks

in the timeline.

B MODEL VALIDATION
To confirm that the strain animations read as desired, we performed a manipulation check as an online experiment

on Amazon Mechanical Turk using Mephisto library
1
. We have set qualifications such that only people who

have already completed over 1000 tasks with above 95% approval rating could participate in the experiment.

The duration of the task was 30 minutes and the paid amount was $7.5. Fifty participants viewed a sequence of

clips and after each clip rated the prompt: “How much strain do you think the person in the video is exhibiting?

(0 - no strain, 100 - maximum strain)”. The videos contained 5 strain levels x 4 lifters x 2 samples for a total of

40 clips. All strain animations were done on a character in a static A-pose to avoid any impact from motion. A

linear mixed effect model showed a significant main effect for Deformation
2
. The data averaged across lifters

is plotted in Figure 20 and the pattern was similar for each lifter. Post-hoc analysis shows that the difference

between every strain deformation was highly significant (p<.001). This confirms that the strain deformations are

read as intended.

1
https://github.com/facebookresearch/Mephisto

2
Lifter 𝜒2 (3) = 6.51, 𝑝 = .089, Deformation 𝜒2 (4) = 1724.4, 𝑝 < .0001, Lifter:Deformation 𝜒2 (12) = 6.29, 𝑝 = .90
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Table 8. Blendshapes in the Avatar Model

Body Type:

Slim Reduces overall muscle mass

BellyOut Increases torso fat

Corrective shapes:

Leg Leg lifting corrective

forearm Corrective for arm bending at elbow

WristDown Flexion of the wrist

WristUp Extension of the wrist

LatIN Prevents arm from penetrating the side of the torso

Tense Shapes:

Torso Tense Abdominal, obliques and pectoralis strain (abs and oblique deltas reduced dramatically

for BellyOut variation)

NasilFold Nasolabial fold (crease at the inside edge of cheek)

PlatFront Platysmal sheet, the broad sheet of muscle fibers extending from the collarbone to the

edge of the jaw

Plat Platysmal sheet lateral (indicating extra strain/effort)

SternoMastoid Large muscle from the corner of jaw/head to the start of collarbone

JawClench Clench jaw

FaceClose A “wince” comprised of closing of eyes, cheek raiser and tightening, raising of lips

LegFlex All major muscles around knee

ArmFlex Flex the bicep/tricep muscles and also added some forearm definition

EyeClose Used in sync with face close to offset timing

Fig. 20. Manipulation check ratings for the level of strain conveyed by each deformation condition.

C ADDITIONAL VISUAL RESULTS
The figures here complement those shown in the main paper.

Exp. 1: Visual inspection of Figure 5 shows similar slopes within the Average Strength and Strong groups, but

differences between them, a trend made more clear in Figure 21. Lifter group does significantly affect observations
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Fig. 21. Exp. 1: Perceived effort, grouped by lifter strength.

Fig. 22. Exp. 1: Perceived effort and inferred weight for weights that are normalized based on the actual max lift for each
lifter.

based on fitting a linear mixed effects model (𝜒2 (1) = 15.645, 𝑝 < .001). People were more accurate in their effort

perceptions for the strong group.

The paper offered a comparison between participants perception of the lifters’ effort and estimates of the

weight they lifted, with that weight normalized. Normalizing with the actual max lift of each performer produces

the plots in Figure 22, which shows the curves have similar shapes, but are not aligned for the average lifters.

Exp. 2 collected naturalness ratings on a Likert scale of 1-7. The results are shown in Figures 23 and 24.

Exp. 3 looked at the impact of visualizing different dumbbell weights. The displayed dumbbell size had a

strong impact on people’s inference of weight, but motion kinematics still made a modest contribution. For all

lifters, the heaviest lift was still seen as heavier than all others, except for the second heaviest lift for AA2. The

additional significant differences were: AA2, {0 < 26.25-lb lift}; SA2, {15 < 30, 45-lb lifts}. Plotting estimated weight

as a function of dumbbell size (Figure 25) illustrates that much of the weight estimate is based on the dumbbell

size, but some clear variation comes from the kinematics of the motion.
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Fig. 23. Exp 2.: Naturalness for different body shapes. Facets show different effort lifts.

Fig. 24. Exp 2.: Naturalness for different body shapes. Facets show motion from different lifters.

Fig. 25. Exp. 3: Estimated weight as a function of dumbbell size for different actual weight lifts. Facets show motion from
different lifters, colors indicate different actual weights.
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Fig. 26. Exp. 4: Estimated weight as a function of actual weight lifts for different deformations. Facets show motion from
different lifters.

Exp. 4 examined the impact of visualized muscle deformations on the perception of effort and inference of

weight. Effort perception is discussed in the main paper. Figure 26 shows the impact of muscle deformations on

the inference of weight. A linear mixed effects model was fit to the data for each lifter. In each case, there was a

main effect of Deformation, but not an interaction between Deformation and Weight (Table 9). The overall pattern

is the same as with Effort, with the levels ordered NONE, BODY, PARTIAL, HEAD, and FULL and variation

on whether they are statistically separated. For AA2, SA1 and SA2, there are three groupings: NONE, BODY,

PARTIAL, HEAD and FULL. For AA1, all levels are significantly different except PARTIAL and HEAD. As with

Effort, the deformations have a clear impact on the estimation of lifted Weight.

Table 9. Lifted weight ratings for Exp. 4
(Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ )

Lifter 𝜒2 𝑑𝑜 𝑓 𝑝 (> 𝜒2)
AA1 Weight 174.0 4 < .0001 ***

Deformation 250.9 4 < .0001 ***

Weight:Deformation 15.0 16 .51

AA2 Weight 128.7 4 < .0001 ***

Deformation 347.7 4 < .0001 ***

Weight:Deformation 25.51 16 .061 .

SA1 Weight 499.2 4 < .0001 ***

Deformation 205.6 4 < .0001 ***

Weight:Deformation 25.1 16 .068 .

SA2 Weight 370/6 4 < .0001 ***

Deformation 101.0 4 < .0001 ***

Weight:Deformation 21.74 16 .15

Pairwise comparisons were performed for each level of effort and weight. In the ideal case, each would be

significantly separated from its predecessor. Instead of just looking at the significance cutoff of 𝛼 = .05, which can

overly simplify relationships, Table 10 shows the distribution of p-values for the ten pairwise comparisons for
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p-value [1, .5) [.5, .1) [.1, 0.05) [.05, .01) [.01, .001) < .001

Effort

AA1

0-25

50-75 25-50 0-50 25-75 0-75 rest

AA2

0-25

25-50 50-75 0-50 rest

SA1 25-50 0-25 rest

SA2

0-25

25-50 50-75 rest

Weight

AA1

0-6.75

13.5-20.25

0-13.5

6.75-13.5

6.75-20.25 0-22.5 rest

AA2

0-8.75

8.75-17.5 0-17.5 17.5-26.25 rest

SA1 15-30 0-15 rest

SA2 0-15 15-30 rest

Table 10. Tukey-adjusted P-values for pairwise comparisons of the different stimuli levels. There are ten comparisons for
each lifter. Pairs with significance values higher than .001 are indicated and the remainder are marked “rest”. Grey cells are
above the alpha = 0.05 test line (not significant).

each model. In every case, the largest effort/weight is clearly separated from all others (p<.001). However, for the

average strength lifters, both effort and weight are generally not significantly different at the lower levels, given

the sample size. This reflects the more moderate slope in this part of the response curve and a more moderate

slope for the average lifters than the strong.

Table 11. Naturalness ratings for Exp. 2 using Analysis of Deviance: Type I Wald chisquare tests
(Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ )

Body Shape

𝜒2 𝑑𝑜 𝑓 𝑝 (> 𝜒2)
Effort 7.562 3 .056

Body 64.897 3 < .0001 ***

Motion 9.624 3 < .0001 ***

Effort:Body 33.922 9 < .0001 ***

Effort:Motion 68.504 9 < .0001 ***

Body:Motion 47.592 9 < .0001 ***

Effort:Body:Motion 15.260 27 .97
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Table 12. Naturalness ratings for Exp. 3 using Analysis of Deviance: Type I Wald chisquare tests
(Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ )

Dumbbell Size

𝜒2 𝑑𝑜 𝑓 𝑝 (> 𝜒2)
Effort 43.016 4 < .0001 ***

Dumbbell 17.607 3 .00053 ***

Lifter 10.731 3 .0133 *

Effort:Dumbbell 53.709 12 < .0001 ***

Effort:Lifter 10.762 12 .55

Dumbbell:Lifter 10.493 9 .31

Effort:Dumbbell:Lifter 27.502 36 .84

Table 13. Exp. 5: Exact Binomial Tests evaluating the likelihood of detecting a zero weight lift vs. an actual weight lift

Zero lift detection

Lifter Class Effort 𝑝

Average 25 .14

Average 50 .00076 *

Average 75 < .0001 *

Average 100 < .0001 *

Strong 25 .75

Strong 50 < .0001 *

Strong 75 < .0001 *

Strong 100 < .0001 *

𝛼 with Bonferroni correction is 0.00625

Table 14. Exp. 5: 2-Sample Test for Equality of Proportions comparing the likelihood of detecting a zero lift, with and without
deformations.

Zero lift detection comparison

Lifter Class Effort 𝜒2 𝑝

Average 25 29.72 < .0001 *

Average 50 6.96 .0084

Average 75 2.12 .15

Average 100 19.87 < .0001 *

Strong 25 42.21 < .0001 *

Strong 50 .662 .42

Strong 75 38.10 < .0001 *

Strong 100 1.86 .17

𝛼 with Bonferroni correction is 0.00625
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