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ABSTRACT
Gesture behavior is a natural part of human conversation. Much
work has focused on removing the need for tedious hand-animation
to create embodied conversational agents by designing speech-
driven gesture generators. However, these generators often work
in a black-box manner, assuming a general relationship between
input speech and output motion. As their success remains limited,
we investigate in more detail how speech may relate to different
aspects of gesture motion. We determine a number of parameters
characterizing gesture, such as speed and gesture size, and explore
their relationship to the speech signal in a two-foldmanner. First, we
train multiple recurrent networks to predict the gesture parameters
from speech to understand how well gesture attributes can be
modeled from speech alone. We find that gesture parameters can be
partially predicted from speech, and some parameters, such as path
length, being predicted more accurately than others, like velocity.
Second, we design a perceptual study to assess the importance of
each gesture parameter for producing motion that people perceive
as appropriate for the speech. Results show that a degradation in
any parameter was viewed negatively, but some changes, such as
hand shape, are more impactful than others. A video summarization
can be found at https://youtu.be/aw6-_5kmLjY.
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1 INTRODUCTION
Generating gesture behavior for virtual agents is an important part
of making them increasingly life-like and engaging. Much work has
focused on generating gestures from speech, but one major chal-
lenge has been the large variability of gesture, with gesture choice
and expression varying both between speakers as well as within
speaker. The same utterance may be accompanied by two com-
pletely different gestures even when repeated by the same speaker
at different points in time. Rather than speech directly informing
the gestures to be produced, the Growth Point theory of [26] argues
that speech and gesture are two communicative channels both aris-
ing from the same cognitive process. Therefore, speech may give
us an indication of the underlying intention that inspired a gesture,
but may never fully predict the gesture expression. Often however,
we want to rely solely on the speech audio signal for generating
gesture behavior due the ease of obtaining such speech in real appli-
cations. While some other works have included text transcriptions
of the speech input [19, 21], transcription of spontaneous speech
can be difficult, and additional processing such as semantic fea-
ture extraction may be necessary in particular for smaller datasets.
For generating gestures from an audio signal, we are interested to
what extent we can predict the expressive qualities of gesture from
speech; specifically, which characteristics of gesture correlate well
with the speech signal and can be predicted successfully, and which
characteristics are perceptually important.

To this aim, we first ran an exploratory study to investigate how
well gesture characteristics may be predicted from a speech signal.
We determined a number of gesture parameters, such as speed
and range, that describe the expressiveness of a gesture. We then
train multiple recurrent networks to model the speech to gesture
parameter relationship and discuss their performance.

Secondly, we assessed the perceptual relevance of the gesture
parameters in an empirical study. Assessing the perceptual salience
of attributes of gesture motion provides guidance on what features
must be accurately modeled to produce satisfying animation.

Our focus is on the relationship between speech and the expres-
sive quality of the gestures, so in all cases we maintain the same
gesture form as used in the original utterance. Results indicate that
all gesture parameters are predicted above chance, but there is vari-
ance in how well they are predicted. For example, arm swivel is
predicted better than gesture velocity. Observers were sensitive to
all variations in parameters away from the original performance
and increased hand opening was viewed particularly negatively,
among other results.

https://youtu.be/aw6-_5kmLjY
https://doi.org/10.1145/3383652.3423882
https://doi.org/10.1145/3383652.3423882
https://doi.org/10.1145/3383652.3423882
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2 RELATEDWORK
A variety of different approaches have been proposed for the prob-
lem of gesture generation from speech. Early work employed ex-
plicit rule systems mapping text to gestures [4, 25, 34] and statistical
modelling of speech features co-occurring with motion features
[2, 28]. With the rise of machine learning, numerous network types
have been investigated, including variations of hiddenMarkov mod-
els [3, 23], conditional random fields [7, 22], and restricted Boltz-
mann machines [6]. In recent work, recurrent neural networks
have proven popular; a classic training loss has been employed for
English [12, 21] and Japanese speech-to-gesture generation [18, 20].
To combat the problem of mean pose regression in a standard train-
ing paradigm, an adversarial training paradigm has been proposed
in [14] (similarly for a convolutional network setup in [15]), and
recently, probabilistic generative modelling has shown promise [1].
However, due to the highly indeterministic input-to-output relation,
modelling plausible gestures remains a difficult problem. There are
a multitude of possible gestures for each utterance, and therefore
modelling gestures as sequences of joint positions or angles can
fail to capture the natural variety of gesture motion. We therefore
explore alternative representations of gesture that do not rely on
explicit joint positions or angles.

Several works have looked at parameter representations of ges-
tures. [36] uses Laban Movement Analysis, specifically the Effort
and Shape parameters, to describe and modify gestures. [17] uses a
review of social psychology literature in combination with a gesture
corpus analysis to determine a set of six parameters to capture the
expressivity of gestures, including gesture scale and fluidity. They
find evidence that matching parameters to the communicative in-
tent makes the gesture behavior more appealing. [29] uses a similar
set of parameters including gesture rate, scale, and position, and
find they can significantly influence perceptions of extraversion by
modifying these parameters in gestures. [33] extends this work by
using a set of parameter modifications to target perceptions of all
Big Five personality traits. [5] defines a set of 11 motion parame-
ters and shows that they can manipulate the perceived emotional
content, defined by valence and arousal, of a gesture.

This previous work on parameter representation of gestures
shows that we can reliably influence perceptions of personality
and emotion by applying simple modifications, and gives some
evidence that matching measures of gesture expressivity to speech
can increase appeal. While tackling the speech-to-gesture problem,
we are interested in which gesture parameters are related to the
speech expression. On the one hand, we would like to know which
gesture parameters can be successfully predicted from speech. On
the other hand, we want to understand which of these parameters
are important for perceptually plausible gesture synthesis.

3 DATASET & PROCESSING
We use a corpus of 6 hours of conversational data, presented in [13]
as our first dataset (dataset A). The dataset consists of high-quality
audio and motion recordings of a single right-handed male English
speaker producing spontaneous, colloquial speech, in monologue
style. During network training (Sec. 4), we include dataset B, the
open-source Trinity Speech-Gesture dataset [12], a similar corpus
of 4 hours of speech and motion data of a different male English

speaker (also right-handed). We find that including this dataset
improves performance. We segment the gesture databases using
the stroke phase labels (see [14]).

3.1 Speech processing
We tested the suitability of three different feature sets for speech
processing. The first set consists of the 12 Mel-frequency cepstral
coefficients (MFCCs), common in speech recognition as well as
previous speech-gesture work [14, 20]. Secondly, we tested Geneva
Minimalistic Acoustic Parameter Set (GeMAPS), both the 18 features
of the compact version, as well as an extended set of 23 features
presented in [10]. The GeMAPS has been specifically developed
for affect recognition. Finally, we tested a three feature set simply
consisting of the pitch (F0), plus its first and second derivative to
describe change over time. We extracted all speech features using
OpenSMILE [11]. After training a number of speech-to-gesture-
parameter models in an exploratory manner with each of the three
feature sets, we found GeMAPS to work best overall, as measured
by the numeric loss during training, with the compact and the
extended feature set performing similarly. MFCCs performed well
but slightly worse than GeMAPS, and the feature set of pitch plus
derivatives greatly underperformed.Wewill therefore report results
using the GeMAPS input representation.

3.2 Gesture processing
We aimed to find a number of gesture characteristics that could
describe the expression of a gesture. We define these characteristics
based on the central part of a gesture, the stroke phase, which rep-
resents the expressive phase of a gesture and carries its meaning
[26] or, in the case of non-meaningful beat gestures, represents
the period of the highest effort. The stroke phase was determined
following a previous approach by [14], using the hand-annotation
where available, and the automatic stroke classification otherwise.
Each feature below is calculated for each gesture from the corre-
sponding motion capture data.

(1) velocity
(2) initial acceleration
(3) gesture size:

(3.1) path length
(3.2) major axis length

(4) arm swivel
(5) hand opening

Velocity and initial acceleration both describe the kinematics of
the gesture, represented by the maximum stroke velocity (1), and by
the mean acceleration to the first major velocity peak (2). Velocity
captures a character’s tempo and relates to the amount of energy
they are using. Initial acceleration may be useful to model an em-
phatic gesture start. This is akin to the type of tangent adjustment
done between key frames in hand animation.

With gesture size (3), we describe the spatial extent of the ges-
ture. We measure this in two ways: The total path length of the
gesture stroke, calculated by summing the difference between the
wrist positions at each subsequent frame, and the length between
the minimum and maximum point of the stroke, which we will
subsequently refer to as major axis length.
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Figure 1: Network structure of the speech-
to-gesture-parameter models. Speech in-
put is batch-normalized, then passed
through a linear feed-forward layer (FF)
of size 64. The core of the model is a bidi-
rectional LSTM cell of size 64 (25% input
dropout). The output of the recurrent cell
is batch-normalized and 25% dropout is
applied before the final output layer with
sigmoid activation.

Arm swivel (4) describes the rotation around an axis between
the shoulder and the wrist, bringing the elbow in or away from
the body. This angle modifies the amount of space taken up by the
gesture and can change the perceived personality [33] and has been
postulated to relate to humility and arrogance [32].

The last parameter, (5), describes the hand shape during a gesture,
specifically, how open or closed the hand is. We calculate this as
the mean distance of the finger tips (excluding thumb) from the
base of the wrist. Such variation in hand flexion has been shown to
impact the perception of character personality [35].

Based on previous work, we expect gesture velocity and acceler-
ation to be well predicted from speech (e.g. [24, 30]), whereas more
uncertainty around speech correspondence to arm swivel and hand
opening.

4 GESTURE PARAMETER PREDICTION
The first part of our work focuses on the problem of predicting
gesture characteristics from a speech signal. Our aim hereby is to
assess which gesture descriptors can be predicted from speech with
current machine learning techniques. While it is reasonable to con-
sider using a single model to jointly predict all gesture properties,
we found this in practice difficult to optimize and instead model
one gesture property at a time. We tested a number of model con-
figurations, such as one vs. two network layers, as well as testing
different layer sizes. Our goal was to adopt a fairly standard network
architecture to explore if gesture parameters can be predicted from
speech in such a framework. After experimenting with configura-
tions, we found the general network structure in Fig. 1 performed
best. Using more layers or larger layer sizes led to frequent over-
fitting; using smaller layer sizes or simpler layers (uni-directional
instead of bidirectional recurrent layer) led to under-fitting.

We use recurrent neural networks due to their strength in mod-
elling sequential time-series data as well as their use in recent
speech-to-gesture research [12, 14, 18, 20]. All models take an in-
put sequence of speech features, extracted over the period of the
corresponding gesture’s stroke phase plus a context of 1 second
in each direction. Sequence-based models require a constant input
length within a training batch, we therefore define a maximum
input length of 5.5 seconds, based on the maximum stroke duration
found in the datasets plus context windows. All shorter sequences
are zero-padded to fulfill the constant input length requirement.

The model applies batch normalization to the input, then input
transformation through a feed-forward layer. This is followed by
one recurrent network layer, followed by batch normalization and

a dropout layer for regularization purposes. The outputs of a model
are the values of the gesture parameter under investigation (e.g.,
velocity, initial acceleration, etc.), normalized to the range of 0-1 for
each given stroke, one value for each hand. The output nodes have
a sigmoid activation. Training minimized the mean squared error
between predicted and true value. We use the Adam optimizer with
a learning rate of 2 × 10−4 and standard decay.

To generate output, it is necessary to resolve a potential ambigu-
ity between the predicted behavior of each hand. The stroke label
does not include the handedness, i.e. whether the right, the left,
or both hands are performing a stroke. Therefore, the predictive
model must make some assumptions about the active hand(s). The
model can learn general statistics regarding differences between
the two hands (e.g. left hand generally slower), but will not be able
to predict diverging values indicating gesture handedness (e.g. high
velocity for right hand and zero velocity for left hand, indicating
a right-handed gesture), unless successfully inferring handedness
from the audio signal. Labelling handedness could improve future
modelling approaches.

4.1 Results
Using the stroke phases as our segmentation, our training data
consists of a total of almost 23,700 gesture stroke samples, with
approximately 58% stemming from dataset A [14] and 42% from the
dataset B [12]. We hold back about 4% of the samples for validation
and 1.5% for testing, chosen randomly. The velocity and acceleration
models reached best performance after 70 epochs, all other models
were trained for about 140 epochs. As described in Sec. 3.1, we
found GeMAPS input speech representation to work best overall,
the reported models used the compact set in the case of gesture
size, and the extended set in all other cases.

Our goal is to understand which gesture features are predictable
from speech audio. A straightforward performance measure is the
mean error between predicted and actual parameter values across
all gestures. As the mean can be distorted by small numbers of
large errors, we also report the median error. Taken alone, this
does not say if the audio data is informative. We therefore compare
the predictions to a model that has no audio input. In this case,
all we can do is match the underlying statistics, the mean and
variance, of our gesture data for each parameter. We do this by
randomly selecting gestures for each slot and report the error such
an approach would produce. Comparing these two errors gives
an indication of how much the audio improved predictions. These
errors are reported in Table 1, with errors for random selection in
brackets. We drew the samples in a database-specific manner, i.e.
we always use the correct database to draw from for each sample,
to ensure that simple speaker-detection by the model is not the
reason for superior performance. We compute the random sampling
error three times for each gesture parameter and report the average
values. Secondly, we report the standard deviation (std) as well as
the mean absolute deviation (MAD) for all true parameter values; a
model with no prediction power can be expected to yield an error
similar to MAD. We trained all networks n times, reporting average
error and std. As we found std to be low in all cases, we considered
n=3 to be sufficient. Prediction results and random as well as MAD
baseline values are listed in Table 1.
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Table 1: Performance evaluation of the speech-to-gesture-parameter models. In brackets are random sampling errors, com-
puted using a randomly drawn parameter sample from true values as prediction value. Random samples for all parameters
except gesture size (path length and major axis length) are drawn with the constraint noted in Eq. 1. 𝑀𝐴𝐷 denotes the mean
absolute deviation of each gesture parameter. We report mean (𝑒)and median (𝑒) errors for the left (L) and right (R) hand, as
well as the % reduction (red.) in error between random sampling and ourmodels. A higher reduction percentage implies better
model performance.

MAD L/R 𝑒 L red. 𝑒 R red. 𝑒 L red. 𝑒 R red.

velocity (𝑚/𝑠) 0.34/ 0.37 0.31 (0.38) 19% 0.35 (0.43) 17% 0.24 (0.27) 12% 0.28 (0.31) 11%
initial acceleration (𝑚/𝑠2) 0.30/ 0.34 0.27 (0.37) 27% 0.30 (0.42) 28% 0.15 (0.18) 17% 0.16 (0.23) 30%
path length (𝑚) 0.21/ 0.24 0.11 (0.28) 60% 0.13 (0.33) 61% 0.06 (0.17) 63% 0.07 (0.21) 64%
major axis length (𝑚) 0.10/ 0.11 0.08 (0.14) 41% 0.09 (0.16) 45% 0.06 (0.10) 39% 0.06 (0.12) 49%
arm swivel (degrees) 12.42/ 10.16 11.52 (15.39) 25% 9.32 (13.28) 30% 8.82 (10.47) 18% 6.86 (10.02) 31%
hand opening (𝑐𝑚) 3.91/ 3.73 1.64 (2.29) 29% 1.23 (1.85) 33% 1.14 (1.39) 18% 0.97 (1.19) 18%

Maximum velocity averaged 0.59𝑚/𝑠 (std=0.46𝑚/𝑠 , MAD=
0.34𝑚/𝑠) for the left, and 0.70𝑚/𝑠 (std=0.49𝑚/𝑠 , MAD=0.37𝑚/𝑠))
for the right hand, and our model produced mean errors of 0.31𝑚/𝑠
(std=0.01𝑚/𝑠) and 0.35𝑚/𝑠 (std=0.01𝑚/𝑠) respectively, with the
median at 0.24𝑚/𝑠 and 0.28𝑚/𝑠 . Referring to Table 1, we see 19%
and 17% mean error reduction for the left and right hand, compared
to random sampling, and 12% and 11% median error reduction. The
model avoids very low velocity predictions, and to some degree high
velocity predictions (Supp. Mat. Fig. ?? (top)). A possible reason is
the use of the mean squared error function in training, which can
encourage outputs to stay around the mean value.

Initial acceleration averaged 0.16𝑚/𝑠2 (std=0.58𝑚/𝑠2, MAD=0.30
𝑚/𝑠2) for the left, and 0.22𝑚/𝑠2 (std=0.61𝑚/𝑠2, MAD=0.34𝑚/𝑠2)
for the right hand, and our model produced mean errors of 0.27
𝑚/𝑠2 (std=0.01𝑚/𝑠2, median=0.15𝑚/𝑠2) and 0.30𝑚/𝑠2 (std=0.01
𝑚/𝑠2, median=0.16 𝑚/𝑠2), respectively. The model again avoids
very high acceleration predictions, however, high acceleration is
often correctly identified though the predicted value tends to be
lower than the true value (see plotted prediction results in Supp.
Mat. Fig. ?? (bottom)). Compared to our baseline random sampling
error, we achieve a mean error reduction of 27% and 28% for the
left and right hand, respectively, and 17% and 30% median error
reduction (see Table 1). The mean error reductions indicate that
acceleration can be modelled more successfully than velocity.

Our first measure of Gesture Size is path length. We find that
gesture path length is highly correlated with the length of the corre-
sponding input speech segment; a longer speech input is associated
with a longer stroke. Hence, in addition to comparing prediction
results to the random sampling error (see Table 1), we employ a
second test taking into account only speech length. For this, model
input is a single speech feature has the value 1 for all input time
steps before the zero-padding. This input processing means that the
model can base predictions solely on the length of the input signal,
without receiving information about the speech quality. Using only
speech length versus GeMAPS input yielded very similar errors.
Mean path lengths were 0.25𝑚 (std=0.30𝑚, MAD=0.21𝑚) and 0.32
𝑚 (std=0.34𝑚, MAD=0.24𝑚) for the left and right hand, respec-
tively. Using only speech length input yielded mean errors of 0.11𝑚
(std=0.00𝑚, median=0.07𝑚) and 0.13𝑚 (std=0.00𝑚, median=0.08
𝑚) for the left and right hand, while using GeMAPS results in mean

errors of 0.11𝑚 (std=0.00𝑚, median=0.06𝑚) and 0.13𝑚 (std=0.00
𝑚 median=0.07𝑚), respectively. Paired Wilcoxon tests showed no
significant improvement of path length prediction for GeMAPS
input over speech length input, suggesting that the length of the
speech signal was the essential determinant for path length.

Our second measure of Gesture Size, is the major axis length,
defined as the length of the axis between the minimum and maxi-
mum point of the gesture. The average major axis lengths for the
left and right hand are 0.15𝑚 (std=0.14𝑚, MAD=0.10𝑚) and 0.19𝑚
(std=0.15𝑚, MAD=0.11𝑚), respectively, and our model produced
mean errors of 0.08 𝑚 (std=0.00 𝑚, median=0.06 𝑚) and 0.09 𝑚

(std=0.00𝑚,median=0.06𝑚) for the left and right hand, respectively
(see also Supp. Mat. Fig. ?? (bottom)). We critically evaluate the
results for the major axis length in the same manner as for the path
length, using only speech length as input. Model errors the same as
for GeMAPS input, and paired Wilcoxon test showed speech input
to yield no significantly better performance. As for path length
predictions, this suggests that major axis length predictions were
only significantly informed by the length of the speech signal.

Due to the strong correlation of speech input length and gesture
size, we tighten the conditions for the random baseline sample
selection. In addition to drawing samples dataset-specific, we also
restrict sample selection to a small range around the true gesture
size. That is, when selecting a random sample, we only consider
samples 𝑖 for which the path length 𝑝𝑙 :

𝑝𝑙𝑡𝑟𝑢𝑒 −
𝑠𝑡𝑑 (𝑝𝑙)

4
< 𝑝𝑙𝑖 < 𝑝𝑙𝑡𝑟𝑢𝑒 +

𝑠𝑡𝑑 (𝑝𝑙)
4

(1)

This represents a tight restriction of random selection to only
around 5% of the total samples. All random sampling results re-
ported are path length restricted.

For arm swivel, increasing swivel angle for the left arm (moving
the elbow out) means a higher positive value, whereas increasing
the right arm’s swivel means increasingly negative values. The left
arm had a mean angle of 14.43° (std=16.28°, MAD=12.42°), and our
model yielded a mean error of 11.52° (std=0.34°, median=8.82°) . The
mean right swivel was −21.58° (std=13.61°, MAD=10.16°) and our
model yielded a mean error of 9.32° (std=0.05°, median=6.86°) (Supp.
Mat. Fig. 3 (top)). Mean error reductions with respect to random
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sampling were 25% (left hand) and 30% (right hand), and median
reductions were 18% (left hand) and 31% (right hand) (see Table 1).

Hand opening averaged 16.56 𝑐𝑚 (std=4.37, MAD=3.91) and
17.05 𝑐𝑚 (std=4.10, MAD=3.73) for the left and right hand, respec-
tively, and corresponding mean model errors were 1.64 (std=0.00,
median=1.14) and 1.23 (std=0.02, median=0.97) (see also Supp. Mat.
Fig. 3 (bottom)). As noted in Table 1, this meant mean error reduc-
tions, with respect to random sampling, of 29% and 33% for the left
and right hand, respectively, and median reductions of 18% each.

Shapiro-Wilk tests showed that the distributions of gesture pa-
rameters were not normal. We evaluated error reduction with re-
spect to random sampling using paired Wilcoxon tests with Bonfer-
roni correction for multiple hypothesis testing (n=16). All models
performed better than random sampling (all p<.001/16).

Wilcoxon tests further revealed that path length prediction errors
were lower than for all other parameters except right arm swivel (all
p<.001). Arm swivel errors were lower compared to all parameters
except path length and left hand acceleration (p<.001/16 for all but
left major axis length (p<.05/16)).

4.2 Discussion
In this first part of our work, we sought to examine which gesture
parameters may be predicted well from a speech signal and may
therefore be well accounted for by a speech-to-gesture generation
model. For this, we explored five different gesture parameters.

Gesture velocity has been used in previous work on gesture
generation from speech [18, 21]. However, interestingly, we found
this to be a difficult parameter to model from speech. While there
does appear to be an underlying relationship between velocity
and the speech representaion, it proved to be difficult to capture
velocities farther from the mean, i.e. we could not capture the
full variability of velocities. As an additional measure of gesture
kinematics, we modelled the acceleration to the first major velocity
peak. Accelerationwas predictedmore accurately than velocity. The
model often successfully detects high initial acceleration; common
errors are failing to capture high initial acceleration of the left hand
(non-dominant hand) and instead only capturing this for the right
hand, as well as not modelling very high values. Avoidance of high
value predictions can be expected due to the low frequency of these
values overall; the model would be penalized strongly for wrongly
predicting large values, and rewarded only in the infrequent cases
of true high values. Oversampling high values to increase their
frequency could help encourage more diverse predictions.

For modelling gesture size, we used two measures, path length
andmajor axis length.We found that the gesture size measures were
predicted best overall, howeveras larger lengths may take more
time to complete, we compare our model to a baseline prediction
model conditioned on only the length of the speech signal. The
length of the speech signal was highly correlated with gesture path
length and major axis length, and statistical tests showed using
speech input did not improve predictions.

Our results also emphasize the difficulty of the speech-to-gesture
generation problem. Even with a highly reduced data complexity of
just one gesture descriptor rather than many skeleton joints, mod-
elling remains difficult. While motion parameter predictions based
on audio showed lower error compared to baselines, indicating that

audio is informative when determining gesture parameters, the
errors in these predictions are still relatively large when compared
against expected deviations for these parameters. This may suggest
that audio alone is not sufficient for predicting gesture parameters.

5 GESTURE PARAMETER EVALUATION
As audio is only partially successful at predicting gesture param-
eters, we want to understand which gesture parameters must be
accurately realized in order to achieve satisfying motion. To explore
this, we design an empirical evaluation of the impact of gesture pa-
rameters on perception. We assess people’s judgment of the gesture
expression regarding its suitability for the expressed speech. We
test the perceptual impact of our gesture parameters by creating
variations that increase or decrease them, as described below.

5.1 Stimuli creation
Artificial stimuli are created through a three step process. First, the
variation in the source data is measured. Second, clips are selected
that best represent high and low variations within this. Third, these
clips are algorithmically modified to fully match the desired high
and low performance.

First, we compute the natural variation of each of our parame-
ters within the gesture database by calculating the 25th percentile
marker as a lower bound, and the 75th percentile marker as the
upper bound. Samples below the lower bound are defined as having
a low expression, and samples above the upper bound are defined
as having a high expression of a given parameter. (The data distri-
bution is visualized in Fig. 4 in Supp. Mat.).

Second, we randomly select short gesture sequences of about 10
seconds. A 10-second time-frame has previously been shown to be
sufficient for participants to make judgements about conversing
agents [9]. For low sequences, we use sequences that contain low
parameter expressions. However, as there are practically no 10
second sections in the database of only low expression, we allow
the sequences to contain medium expression (values below the
upper bound), but give preference to gesture sequences with the
highest percentage of low samples. Equivalently, for high sequences,
we use sequences containingmainly high expression, allowing some
medium expression samples. This biased selection ensures that the
edited clips are as different as possible from the source clips (i.e.
error maximizing).

In the third step, we create the parameter manipulations. For low
sequences, we increase the parameter expression to high, keeping
within the found natural limits. For high sequences, we decrease the
parameter expression to low. We select 5 samples each for the low
and the high manipulations of each parameter. As baseline samples,
we randomly select 10 sequences that remain un-manipulated.

All samples are generated with animation software based on
the open-source animation environment DANCE [31] that uses
a motion parameterization similar to Neff and Kim [27] and IK
tools to generate variations of the input motion capture data. It
takes as input the motion data and the corresponding stroke la-
bels and synthesizes preparation (bringing the hands into position
for the gesture) and retraction (returning the hands to a rest posi-
tion) phases for the strokes using splines, proportionally matching
the stroke speed. Synthesizing preparations and retractions avoids
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problems such as two lengthened gestures not maintaining the
necessary time for a retraction that was originally present between
them. If a manipulation is applied, it is applied to the stroke phase.
We restrict our data selection to the hand-annotated sections of
dataset A . Including dataset B in this step would require manually
correcting all automatically determined stroke labels to ensure cor-
rect boundaries. All stimuli can be viewed at https://www.youtube.
com/playlist?list=PLLrShDUC_FZzhemzr0g1ekt1jz45-y_u3.

5.2 Experiment
The experiment was designed with the Unity3D game engine and
the open-source Virtual Human Toolkit (VHTK) [16]. The displayed
character was Brad from the VHTK, producing regular eye blinks,
lip synchronisation, as well as an idle motion for the body exclud-
ing the arms and hands. In each experiment trial, participants first
watched a 10 second clip of the character acting out one of the
gesture sequences. Following the clip, participants were asked the
following question: "How well did the expressive quality of the ges-
tures match the expressive quality of the speech?"

This question was specifically designed to motivate participants
to focus on the expression of the gestures; we did not want par-
ticipants to judge the semantic entropy of the gesture sequence.
A 7-point Likert scale was provided as a rating scheme. Partici-
pants first completed 5 example trials for which responses were
not recorded. This was in order to establish an expectation of the
gesture quality variation in the experiment and to familiarize the
participants with the rating scale. Following the example trials,
participants completed 60 experiment trials (5 samples for each of
the 5 parameters, with 2 expression manipulations each, plus 10
baseline samples), presented in random order.

The online experiment was distributed via university mailing
lists, with an incentive of a 100 Euro raffle voucher. We collected
data from 60 participants (23 females, 36 males, 1 other gender, ages
18-59 years,M = 26.4, SD = 9.1), all of whom gave informed consent
regarding their participation. All participants reported sufficient
English proficiency (35 “native”, 20 “fluent”, 3 “very good”, 2 “good”).

5.3 Results
The study consisted of two factors, the parameter that was modified
and the direction of the modification. The first factor had 11 con-
ditions, with mean ratings summarized in Fig. 2 a), and the rating
score distribution further explored in Fig. 2 b). The second factor
had two levels, increase and decrease.

We analyzed the data by treating the rating scores as ordinal data
and fitting a cumulative link model, using clm from the R ordinal
package [8]. All modification conditions were rated significantly
lower than the no modification condition (all p<0.001, Bonferroni
corrected with n=55). Decreasing gesture size was rated signifi-
cantly worse than increasing (p<.05). Decreasing hand opening
was preferred over increasing (p<.001). Increasing hand opening
received the lowest rating compared to all other conditions (all
p<.05). Complete results are detailed in Table 2.

5.4 Discussion
We found that all our gesture modification had a significant percep-
tual effect. Unmodified gestures were preferred over all modification

Figure 2: Perceptual results. a) Mean rating scores for all
experimental manipulations. Unmodified gestures received
the highest average rating, and increased hand opening
the lowest. b) Stacked bar chart of all given ratings. Plot-
ted is the frequency of responses for the 7 rating scores.
(The y-axis represents the frequency of responses). The no-
modification condition is scaled by 50%.

conditions, indicating some perceptual relevance for each of the
five gesture parameters.

Altered gesture kinematics, as described by gesture velocity and
initial acceleration, significantly worsened speech-gesture match,
with the slowing-down modification yielding similar ratings as the
sped-up modification. In Sec. 4, we found gesture velocity partic-
ularly difficult to model. The perceptual impact of velocity in our
study suggests the need for more work on modelling velocity well.

For modified gestures, we found that enlarged gesture size was
preferred over reduced size gestures. Enlarged gesture size was fur-
ther preferred over a number of other modifications, while reduced
gesture size showed the opposite trend. Machine learning models
for gesture generation are often trained with a mean-squared error
loss [12, 18, 21], commonly leading to smaller than natural ges-
tures due to convergence to the mean pose. Our perceptual results
give further motivation to move away from such traditional model
training approaches. Recent works have proposed alternative ap-
proaches [1, 14, 15]. While we achieved good modelling results for
gesture size, this was due to a strong correlation of gesture size and
input speech length. Therefore, to infer correct gesture size, focus
should be on determining the correct window (size) for a gesture.

There was a large effect of hand opening, with the open, flat
hand rated significantly lower than all other modifications. Gesture

https://www.youtube.com/playlist?list=PLLrShDUC_FZzhemzr0g1ekt1jz45-y_u3
https://www.youtube.com/playlist?list=PLLrShDUC_FZzhemzr0g1ekt1jz45-y_u3
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Table 2: All results for the perceptual experiment. Indicated are both significant and non-significant condition differences
(plotted in Fig. 2). + means the row condition was rated higher, - means lower rating. All p values were Bonferroni corrected
(n=55): , ∗ = 𝑝<.05/55, ∗∗ = 𝑝<.01/55, ∗ ∗ ∗ = 𝑝<.001/55. n.s.=not significant

no mod. velocity ↓ velocity ↑ init. acc. ↓ init. acc. ↑ size ↓ size ↑ swivel ↓ swivel ↑ hand ↓ hand ↑
no mod. - ∗ ∗ ∗+ ∗ ∗ ∗+ ∗ ∗ ∗+ ∗ ∗ ∗+ ∗ ∗ ∗+ ∗ ∗ ∗+ ∗ ∗ ∗+ ∗ ∗ ∗+ ∗∗+ ∗ ∗ ∗+
velocity ↓ ∗ ∗ ∗− - n.s. n.s. n.s. ∗+ n.s. n.s. n.s. ∗− ∗ ∗ ∗+
velocity ↑ ∗ ∗ ∗− n.s. - n.s n.s. n.s n.s. n.s. n.s. ∗∗− ∗∗+
init. acc. ↓ ∗ ∗ ∗− n.s. ∗+ - n.s. ∗+ n.s. ∗+ ∗+ n.s. ∗ ∗ ∗+
init. acc. ↑ ∗ ∗ ∗− n.s. n.s. n.s. - n.s. n.s. n.s. n.s. n.s. ∗ ∗ ∗+
size ↓ ∗ ∗ ∗− n.s. n.s. ∗− n.s. - ∗− n.s. n.s. ∗ ∗ ∗− ∗+
size ↑ ∗ ∗ ∗− n.s. n.s. n.s. n.s. ∗+ - ∗+ ∗+ n.s. ∗ ∗ ∗+
swivel ↓ ∗ ∗ ∗− n.s. n.s. n.s. n.s. n.s. ∗− - n.s. ∗ ∗ ∗− ∗+
swivel ↑ ∗ ∗ ∗− n.s. n.s. ∗− n.s. n.s. ∗− n.s. - ∗ ∗ ∗− ∗+
hand open ↓ ∗ ∗ ∗− ∗+ ∗∗+ n.s. n.s. ∗ ∗ ∗+ n.s. ∗ ∗ ∗+ ∗ ∗ ∗+ - ∗ ∗ ∗+
hand open ↑ ∗ ∗ ∗− ∗− ∗− ∗ ∗ ∗− ∗ ∗ ∗− ∗− ∗ ∗ ∗− ∗− ∗− ∗ ∗ ∗− -

sequences with decreased hand opening were preferred over most
other modifications. Strong effects for manipulating hand shape
has also previously been reported by [35] in a study on personality
perceptions. Modelling finger motion is a complex problem due to
the high dimensionality of the hand skeleton; when accurate hand
shape prediction is not possible, based on our results, we suggest
animating slightly flexed fingers rather than straightened fingers.

Modifying arm swivel angle in either direction elicited relatively
low preference ratings, indicating this to be an important factor in
believable gesture synthesis. Notably, arm swivel was also predicted
relatively well in Sec. 4.

6 GENERAL DISCUSSION
In this work, we investigated the relationship between speech
and gesture expressivity. Gesture generation approaches often as-
sume some underlying connection between modalities by training
black-box models, feeding in speech data and outputting high-
dimensional and complex skeleton motion data. Due to their limited
success, we aimed to assess in more detail how speech may relate
to gesture motion. Based on a literature review, we first determined
a number of parameters to characterize gesture. We then assessed
the speech-gesture parameter relationship in two ways.

First, we used machine learning, specifically recurrent neural
networks, to phrase the question as a problem of predicting gesture
properties from speech. We train separate models for each gesture
parameter, working solely on the audio speech signal as input.
By judging the successes or failures of the model predictions, we
gain a measure of how well the speech signal relates to a given
gesture parameter. Results indicate that all gesture parameters are
predicted above chance, but there is variance in how well they are
predicted. For example, the size of a gesture is predicted better than
its velocity. Arm swivel predictions, surprisingly, surpass all other
measures but path length. Our results also indicate the remaining
difficulty in modelling the speech to gesture relation. Previous work
on gesture generation has reported good adherence of their model
to the acceleration distribution of a dataset [20, 21], however, our
results indicate that the correct acceleration at the correct time
matters, and generated gestures should hence be assessed in a

gesture-specific rather than output-general manner. Rather than
only assessing acceleration distribution of the output, evaluation
should consider the correctness of the acceleration per gesture.

Finally, while gesture parameter predictions were significantly
above baseline, they remained well short of ground truth, indi-
cating that audio alone may not be sufficient to predict gesture
performance. Future work could consider additional input, such
as semantic content via information extraction from speech tran-
scripts. Other types of models could also be explored for the task.
Our gesture property modelling is limited to two speakers; it is un-
clear if our results represent ‘typical’ speech-gesture relationships,
or if a larger set of speakers would yield different results.

Second, we conducted a perceptual study to assess the relevance
of each gesture parameter for gesture synthesis. For this, we ma-
nipulated the level of each parameter and tested the impact on the
perceived match of speech and gesture. Observers were sensitive to
all variations in parameters away from the original performance, in-
dicating that each of our chosen parameters is important in realistic
gesture synthesis. Hand pose showed to be particularly important,
with flat, open hands being viewed especially negatively, and more
flexed fingers being preferred. Regarding gesture size, we found
enlarged gestures being preferred over reduced gestures.

For gesture parameter prediction, we see an expected preference
of the models to keep predictions somewhat around the mean for
all parameter values, infrequently predicting extreme values. Based
on our perceptual results, speech-to-gesture training data could
be augmented for better results: for example, due to participants’
preference for enlarged versus reduced size gestures, and the com-
mon problem of reduced-size gesture output in machine learning
models, we could increase the frequency of large gestures within
the training dataset. This could be done in three ways: by oversam-
pling large gestures selectively, by oversampling and augmenting
large gestures by applying perceptually less salient modifications
(e.g. slight acceleration warps), or by applying data augmentation
of smaller gestures (artificially enlarging). Additionally, rather than
tackling high-dimensional finger motion modelling, simply using
slightly flexed fingers is a perceptually reasonable choice.
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With this work, we provide better insights into which aspects of
gesture may be modelled from speech. We suggest a step toward
better evaluation of gesture generation models by providing nu-
meric gesture descriptors that impact the perceived match of the
generated gesture, as shown by our perceptual study.

In future work, we want to address the problem of determining
the gesture timing from speech, without relying on motion data.
Our gesture modelling results are limited to two speakers, and our
perceptual results to one speaker. In future work, we would like
to include a larger variety of speakers and speaker style. While
this work focused on performance variation, it is also important to
correctly match the semantics of the gesture with the spoken text.
Systems that generate gesture from speech signals will ultimately
need to match both style and content. As a next step, we would like
to explore gesture generation based on parameterization, avoiding
the problem of high-dimensional skeleton data.

Supplemental Figures can be found at https://tinyurl.com/y4hdefho
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