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Figure 1: Overview of the proposed framework. We first use speech text and audio to predict whether or not the agent should
gesture. After that, we predict several gesture properties, such as gesture type. Finally, gestures are generated by a probabilistic
model (e.g., a normalizing flow) conditioned on text, audio, and predicted gesture properties together.

ABSTRACT
We propose a new framework for gesture generation, aiming to
allow data-driven approaches to produce more semantically rich
gestures. Our approach first predicts whether to gesture, followed
by a prediction of the gesture properties. Those properties are then
used as conditioning for a modern probabilistic gesture-generation
model capable of high-quality output. This empowers the approach
to generate gestures that are both diverse and representational.
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1 INTRODUCTION AND BACKGROUND
A large part of human communication is non-verbal [10]. A sub-
stantial fraction of non-verbal communication takes place through
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co-speech gestures [9, 18]. Co-speech gesture behavior in embodied
agents has, for example, been shown to help with learning tasks
[5] and lead to greater emotional response [23]. Gesture generation
is hence an important part of both automated character animation
and human-agent interaction.

Early dominance of rule-based approaches [6, 12, 17, 20] has
been challenged by data-driven gesture generation systems [1, 4, 7,
14, 19, 25, 26]. These latter systems first only considered a single
speech modality (either audio or text) [4, 13, 19, 26], but are now
shifting to use both audio and text together [1, 14, 25].

While rule-based systems provide control over the communica-
tive function of output gestures, they lack variability and require
much manual effort to design. Data-driven systems, on the other
hand, need less manual work and are very flexible, but most existing
systems do not provide much control over communicative function,
and generated gestures have little relation to speech content [15].

This paper continues recent efforts to bridge the gap between
the two paradigms [7, 22, 28]. The most similar prior work is Yunus
et al. [28] where gesture timing and duration were predicted based
on acoustic features only. The method proposed here differs from
their approach in three ways: 1) it considers not only audio but also
text as input; 2) it models not only gesture phase, but multiple ges-
ture properties; 3) it also provides a framework for integrating these
gesture properties in a data-driven gesture-generation system.

The proposed approach helps decouple different aspects of gestic-
ulation and can leverage database information about gesture timing
and content with modern, high-quality data-driven animation.
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Gesture category [Macro F1] Gesture semantics [Macro F1] Gesture phase [F1]

Label deictic beat iconic discourse amount shape direction size pre-hold post-hold stroke retr. prep.

Relative frequency 29.05% 14.47% 72.03% 12.78% 4.7% 13.1% 13.7% 1.9% 0.6% 12.2% 40.9% 14.8% 30.8%

RandomGuess 50% ± 2% 50% ± 2% 50% ± 1.5% 50% ± 2% 49% ± 1% 49% ± 2% 49% ± 2% 50% ± 1% 1.3% ± 4% 12% ± 4% 42% ± 4% 14% ± 5% 30% ± 3%

ProposedModel 60% ± 6% 53% ± 6% 63% ± 5% 59% ± 7% 63% ± 8% 65% ± 6% 62% ± 8% 59% ± 9% 0.5% ± 1.3% 23% ± 12% 47% ± 10% 25% ± 5% 45% ± 6%

Table 1: Gesture-property prediction scores for random guessing and our trained predictors using both text and audio modal-
ities. Bold, coloured numbers indicate that the given label can be predicted better than chance.

2 PROPOSED MODEL
Our unified model uses speech text and audio as input to generate
gestures as a sequence of 3D poses. As depicted in Figure 1, it is
composed of three neural networks:

(1) Speech2GestExist: A temporal CNN which takes speech as
input and returns a binary flag indicating if the agent should
gesture (similar to [27]);

(2) Speech2GestProp: A temporal CNN which takes speech as
input and predicts a set of binary gesture properties, such as
gesture type, gesture phase, etc.;

(3) GestureFlow:Anormalizing flow [11] that takes both speech
and predicted gesture properties as input, and describes a
probability distribution over 3D poses, from which motion
sequences can be sampled.

In this study, we experiment with the first two neural networks
only. We implemented the Speech2GestProp and Speech2GestExist
components using dilated CNNs. Their inputs are sequences of
aligned speech text and audio frames, and they return a binary
vector of gesture properties (for Speech2Prop) or a binary flag of
gesture existence (for Speech2GestExist) as its output. By sliding
a window over the speech and predicting poses, frame-by-frame
properties are generated at 5 fps. Text features were extracted using
DistilBERT [21]. Audio features were log-scaled mel-spectrograms.

3 PRELIMINARY RESULTS
Dataset. We evaluated our model on the SaGa direction-giving

dataset [16] designed to contain many representational gestures-
The dataset contains audio/video recordings of 25 participants (all
German native speakers) describing the same route to other partic-
ipants and includes detailed annotations of gesture properties. The
limited scope of this data should make gesture modeling easier.

We considered the following three gesture properties contained
in the annotation: 1) Phase (preparation, pre-stroke hold, stroke,
post-stroke hold, and retraction); 2) Type (deictic, beat, iconic [18],
and discourse), denoted as “Phrase” in the dataset; 3) Semantic
information (amount, shape, direction, size, as described in [3]).

Experimental Results. For each of our experiments we calculated
the mean and standard deviation of the F1 score across 20-fold cross-
validation. The F1 score is preferable over accuracy here since the
data is highly unbalanced and accuracy does not represent overall
performance well. For gesture category and phase we report Macro
F1 score [24], since those properties are not mutually exclusive.

First we validated that gesture presence can be predicted from
the speech in our dataset. We achieved a 70% ± 3.7% F1 score for
this binary classification task, which aligns with previous work
[27]. Next, we experimented with predicting gesture properties.

Table 1 contains results for predicting the gesture category, ges-
ture semantic information, and gesture phase from speech text and
audio. We can see that this is a challenging task, but we are still
able to predict most of the values better than chance.

Our predictions performed surprisingly well: around 60% Macro
F1 score for most classes. This was unexpected given how complex
gesture semantics tend to be and could be due to the focused scope
of the consistent-route direction-giving task.

4 DISCUSSION
In this section we discuss the feasibility of the proposed approach.
Our proposal to use probabilistic models (especially normalizing
flows) is inspired by a recent application of MoGlow [8] to perform
gesture synthesis by Alexanderson et al. [2]. They showed that such
models can be seamlessly conditioned on various kinematic gesture
properties (such as speed, range, and hand height), suggesting that
it is possible to condition gestures on semantic properties as well.

We obtained good results for the gesture-property prediction
part of our proposed system, as described in Section 3. Since we can
predict several important properties with F1 scores significantly
above chance level, we believe that our predictions are reasonable
and will be useful for gesture synthesis.

Our two-stage approach lets the machine learning model lever-
age additional information (such as detailed annotation) about hu-
man gestures. It also allows direct control of gesture frequency, by
adjusting the threshold on the output of Speech2GestExist needed
to trigger a gesture. Finally, it helps the model learn from small
datasets, since each sub-module has a more straightforward task
than learning everything at once and also can be trained separately.

5 CONCLUSION
We presented a novel gesture generation framework aiming to
bridge the semantic gap between rule-based and data-drivenmodels.
Our method first predicts if a gesture is appropriate for a given point
in the speech and what kind of gesture is appropriate. Once this
prediction is made, it is used to condition the gesture generation
model. Our gesture-property prediction results are promising and
indicate that the presented approach is feasible.
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