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ABSTRACT
Variation in muscular tension has important expressive impacts on
agent motion; however, it is difficult to tune simulations to achieve
particular effects. With a focus on gesture animation, we introduce
mass trackers, a lightweight approach that employs proportional
derivative control to track point masses that define the position of
each wrist. The restriction to point masses allows the derivation of
response functions that support straightforward tuning of system
behavior. Using the point mass as an end-effector for an inverse
kinematics rig allows easy control of both loose and high tension
arm motion. Examples illustrate the expressive variation that can
be achieved with this tension modulation. Two perceptual studies
confirm that these changes impact the overall level of tension per-
ceived in the motion of a gesturing character and further explore
the parameter space. Practical guidelines on tuning are discussed.
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1 INTRODUCTION
Intelligent virtual agents use their bodies, including their gestures,
to communicate. This is particularly true when considering commu-
nication of emotion, personality and other social cues. Variation in
muscular tension is a key contributor to this expressive communica-
tion [6, 12, 26, 27, 36]. There is an ebb and flow between tension and
relaxation that builds variation and interest in movement. A rise
in tension can serve to accent a movement [26], providing empha-
sis or conveying an emotion; consider the taught energy of anger
or the limpness of dejection. Controlling such tension variation
provides a powerful tool that allows virtual agents to adjust their
expression. The approach presented here has been used to adjust
the impression of both personality [37] and emotion [10].
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Figure 1: Frames from a tense (left) and loose (right) anima-
tion.

Physical simulation provides a method for directly controlling
the tension of a character by adjusting the activation of virtual
“muscles". The primary challenge of the approach is that it is difficult
to tune for particular expressive effects. A secondary challenge is
that such approaches can be difficult to implement and integrate
into character pipelines.

This paper presents a simplified approach to physical simulation
that allows for the derivation of a straightforward and intuitive
tension parameterization that is directly related to the expressive
animation goals. The approach can be easily integrated into exist-
ing animation systems and applied to motion capture, data from
machine learning or with keyframing approaches.

The approach uses a spring and damper, which is also known
as a proportional-derivative (PD) controller, to attach a point-mass
to the input location of the wrist (taken from the motion data). De-
pending on the tuning of the controller and the character’s motion,
there will be some error between the input wrist location and the
location of the point mass. The arm is animated with an inverse
kinematics rig such that the wrist follows the location of the point
mass, rather than the original location of the wrist. Adjusting the
gains on the spring and damper allow various physical effects, most
importantly varying how tightly the motion follows the trajec-
tory and adding secondary oscillatory effects to the motion. The
approach is particularly appropriate for the animation of manual
gestures. While good gesture animation involves the entire body,
tension variation, and in particular the oscillatory aspects attended
to here, largely involve movements of the arms, which can alternate
from swinging freely to being tightly controlled.

As a first-order approximation of muscle, proportional-derivative
(PD) control has long been a popular actuator in physics-based
animation (e.g. [20]). The most common approaches apply a PD
actuator at each degree of freedom in every joint in order to provide
the torques that drive the character. As well as being computation-
ally simple, the main advantage of focusing on point-based control
instead, as is done here, is that it allows a derivation of the response
function. This supports a more intuitive parameterization of the
controller with two terms, steady state error and a quantity called
zeta, that make it straightforward to generate desired expressive
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effects. This is the main contribution of the work and described
in Sec. 3. In addition, the paper reports on two user studies. One
validates that this modulation of arm motion is sufficient on its own
to alter the perceived tension in gesture animation. The second
explores the impact of the steady state error and zeta parameters
more deeply, providing useful guidance to agent designers.

2 BACKGROUND
Early work demonstrated the expressive importance of tension
variation for computer animation, and proposed an antagonistic
formulation that supported motion shaping, but provided limited
guidance on how to tune controllers for specific effects [32]. Allen et
al. [3–5] proposed novel methods for accurately tuning PD control
for animation, but focused on critically dampedmotion.We focus on
using simple physical simulation to control the oscillations present
in underdamped motion, as this regime is particularly expressively
rich. Other work has focused on using tension control to modulate
reactions, for example to being hit or falling [41–43]. Still other
work has focused on using physical parameters in an optimization
framework to adjust style [31].

Wiggly splines share a similar goal to this work in allowing ani-
mators to directly control oscillatory behavior [21]. An advantage
of this proposed work is that it can directly inherit variation from
the already existing dynamics of the character’s motion. Tension-
Continuity-Bias (TC) splines [24] implement a different notion
of tension: how tightly a trajectory moves from point to point.
They do not directly support oscillation and the locations for the
splines knots must be identified, which is not straightforward when
working with a continuous motion representation, such as motion
capture data.

A different body of work has advanced increasingly realistic
biomechanical models for animation(e.g. [28–30]). While such ap-
proaches are impressive and may well eventually support the most
realistic character animation models, they are challenging to tune
and do not offer easy animator control, as targeted here.

Gesture animation has a long research history (e.g. [9]). Early
work often focused on providing expressive control of motion,
e.g. [11, 13, 18, 19], some using TCB splines [18, 19]. Other work
applied physical simulation to the gesture space [33, 39], but these
works did not provide an easy way to tune the simulation for ex-
pressive effects. Much recent work has focused on applying ma-
chine learning techniques to try to synthesize gesture sequences
(e.g. [14, 16, 25]). While some of this work has specifically tar-
geted gesture style [1, 2], control remains limited and is difficult to
fine tune the expressive qualities of an embodied agent. The tech-
nique provided here could be layered on top of machine learning
approaches to provide additional control. It can also be used to
smooth output.

3 TENSION CONTROL
People change their muscular tension as their emotions change,
generating significant and salient variation in their motion. As dis-
cussed above, we will develop a technique called “mass trackers" to
provide an effective, computationally lightweight method to cap-
ture this variation for gesture animation. The approach attaches
a mass to the input wrist position using a proportional derivative

controller. The location of the mass, rather than the original wrist
point, is used as the IK end-effector constraint for the corresponding
arm. Forward simulating the movement of the mass as the target
wrist moves generates various momentum effects that can be con-
trolled by adjusting the gain and damping of the controller. Below
we derive guidance on how to tune these parameters for specific
effects.

Ignoring gravity, the PD controller acting on the mass is defined
by Eq. 1:

𝐹 = 𝑘𝑠 (𝑥𝑑 − 𝑥) − 𝑘𝑑 ¤𝑥 =𝑚 ¥𝑥 (1)
where 𝑘𝑠 is the proportional gain, 𝑘𝑑 is the damping gain, 𝑥 is the
mass position and 𝑥𝑑 is the desired position (input wrist position
in the animation sequence). 𝑥𝑑 is also called the “set point".

There are three basic response realms for a PD controller. If it
is overdamped, it will fail to reach the set point. If it is critically
damped, it will reach the set point as quickly as possible without
overshoot. Underdamped will reach the set point more quickly, but
oscillate around it before settling. For expressive control, we are
generally most interested in underdamped motion as the nuance of
the oscillations is what we wish to capture. Key character animation
parameters are the number of oscillations, the frequency of the
oscillations, the amount of overshoot and the overall smoothness
of the motion. It is desirable to have more direct control of these
parameters.

Equation 1 defines a prototypical second order system. In control
theory, it is common to analyze the behavior of systems by looking
at their response to a test function (e.g. [17]). Since this is a tracking
controller, a ramp function 𝑟 (𝑡) = 𝑣𝑡 is an appropriate test function,
where 𝑣 is a real constant that in this case corresponds to the velocity
of the input. By the method of Laplace transforms, the response of
the system due to a ramp function is:

𝑥 (𝑡) = 𝑣

[
𝑡 − 2𝜁

𝜔𝑛
+ 1
𝜔𝑛

√︁
1 − 𝜁 2

𝑒−𝜁𝜔𝑛𝑡 sin(𝜔𝑛

√︃
1 − 𝜁 2𝑡 + 𝜃 )

]
(2)

where the natural frequency𝜔𝑛 =

√︃
𝑘𝑠
𝑚 , the damping ratio 𝜁 =

𝑘𝑑
2𝑚𝜔𝑛

and 𝜃 = cos−1 (2𝜁 2 − 1), 𝜁 < 1. 𝜁 = 1 provides critical damping
(fastest rise time without overshoot). By subtracting out the input
(𝑣𝑡 ), the error 𝜙 is given as:

𝜙 (𝑡) = 𝑣

[
2𝜁
𝜔𝑛

+ 1
𝜔𝑛

√︁
1 − 𝜁 2

𝑒−𝜁𝜔𝑛𝑡 sin(𝜔𝑛

√︃
1 − 𝜁 2𝑡 + 𝜃 )

]
(3)

A number of useful relations can be derived from this. The error
will have peaks when 𝑑𝜙

𝑑𝑡
= 0. The times of the peaks are:

𝑡𝑝𝑒𝑎𝑘 =
𝑛𝜋 − 1

2𝜃

𝜔𝑛

√︁
1 − 𝜁 2

for 𝑛 = 1, 2, . . . , (4)

so the peaks are a constant time apart for a particular set of param-
eters. The maximum overshoot occurs at the first peak and is given
by:

𝜙𝑚𝑎𝑥 = 𝑣

[
2𝜁
𝜔𝑛

+ 1
𝜔𝑛

√︁
1 − 𝜁 2

𝑒

−𝜁√
1−𝜁 2

(𝜋− 1
2𝜃 ) sin(𝜋 + 1

2
𝜃 )
]

(5)

It depends on the input velocity, 𝜁 and 𝜔𝑛 , which in turn depends
on the stiffness of the tracker. The maximum overshoot as function
of 𝜁 and stiffness is plotted in Figure 2.
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Figure 2: Maximum overshoot as a function of stiffness and
zeta.

For animation, the number of oscillations in the error response
has a strong visual impact, and this can be estimated for the ramp
test function. The settling time is defined as the time at which the
transient error response is within some threshold of the final value.
If 𝑐𝑡𝑠 is the percent transient error at settling time (often 0.05 or
5%), the following relation envelopes the response:

−2𝑣𝜁
𝜔𝑛

+ 𝑣

𝜔𝑛

√︁
1 − 𝜁 2

𝑒−𝜁𝜔𝑛𝑡 = −(1 + 𝑐𝑡𝑠 )
2𝑣𝜁
𝜔𝑛

(6)

This yields the settling time:

𝑡𝑠𝑒𝑡𝑡𝑙𝑒 ≈ 1
𝜁𝜔𝑛

𝑙𝑛(2𝑐𝑡𝑠𝜔𝑛

√︃
1 − 𝜁 2) (7)

Equating 𝑡𝑠𝑒𝑡𝑡𝑙𝑒 and 𝑡𝑝𝑒𝑎𝑘 yields the following relation for the num-
ber of oscillations before settling, which depends solely on 𝜁 :

𝑛 ≈ −1
𝜋

[√︁
1 − 𝜁 2

𝜁
ln

(
2𝑐𝑡𝑠𝜁

√︃
1 − 𝜁 2 + 1

2
𝜃

)]
(8)

This is shown in Figure 3. In practice, we suggest 𝜁 ≥ 0.3, with 0.2
or 0.15 sometimes being useful in high tension cases. We find that
too much oscillation can look unnatural. See also Figure 5.
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Figure 3: Approximate number of peaks (oscillations) vs. 𝜁 .

Taken together, these relations give guidance on the features we
have found most salient for animation: the amount of overshoot,
the number of oscillations, the period of these oscillations and the

lag, as summarized in Table 1. The steady state error is 𝜙𝑠𝑠 =
−2𝑣𝜁
𝜔𝑛

.

If we assume a constant input velocity 𝑣 , this yields 𝑡𝑙𝑎𝑔 =
−2𝜁
𝜔𝑛

,
which can be applied as an offset to the start time of the input to
approximately maintain the desired timing.

When the input stops moving and the transient effects have
dissipated, there will be a vertical rest error, 𝑟𝑒𝑟𝑟 , due to gravity:

𝑘𝑠 (𝑥𝑦𝑑 − 𝑥𝑦) =𝑚𝑔 ⇒ 𝑟𝑒𝑟𝑟 = 𝑥𝑦𝑑 − 𝑥𝑦 =
𝑚𝑔

𝑘𝑠
(9)

This is also called the steadystate error. To avoid this error, we sim-
ply add 𝑟𝑒𝑟𝑟 to the vertical component of the input desired position
of the wrist. We also find it convenient and more intuitive to param-
eterize stiffness in terms of 𝑟𝑒𝑟𝑟 instead of 𝑘𝑠 . This gives a natural
frequency 𝜔𝑛 =

√︃
𝑔

𝑟𝑒𝑟𝑟
. In practice, we find 𝑟𝑒𝑟𝑟 ∈ [30𝑐𝑚..1𝑚𝑚]

yields a range from a very loose to a very stiff character.
To provide more intuitive control. we parameterize the mass

tracker by (𝑟𝑒𝑟𝑟 , 𝜁 )1 instead of (𝑘𝑠 , 𝑘𝑑 ). The impact of changing
stiffness (𝑟𝑒𝑟𝑟 ) is illustrated in Figure 4. Notice the impact on both
the amount of overshoot and the period of the oscillations. The
impact of changing 𝜁 is shown in Figure 5. This also impacts the
amount of overshoot, but most significantly, controls the number of
oscillations. Too many oscillations will look unnatural on a charac-
ter, but a small number (often 0.3 ≤ 𝜁 ≤ 0.5) can add useful nuance
to an animation.
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Figure 4: Tracking error as a function of variation in stiffness

4 MASS TRACKER IMPLEMENTATION
To implement mass trackers, the parameters of the mass and PD
controller must be defined. We set𝑚 = 0.4𝑘𝑔 as a rough approxi-
mation of the weight of a hand. The gains of the PD controller are
calculated from the user input (𝑟𝑒𝑟𝑟 , 𝜁 ). From Eq. 9,

𝑘𝑠 =
𝑚𝑔

𝑟𝑒𝑟𝑟
. (10)

The damping gain is simply 𝜁 times the critical damping, or:

𝑘𝑑 = 2𝜁
√︁
𝑚𝑘𝑠 . (11)

1The letter 𝜁 is sometimes written out as zeta in the paper.
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Table 1: Parameter changes to impact the behavior of the
tracking controller.

Desired Change 𝜻 Stiffness Input
Velocity

Increase Overshoot decrease decrease increase
Increase Oscillation
“Frequency”

decrease
(lim-
ited)

increase

Increase Number Oscil-
lations

decrease no
effect

no effect

The wrist positions are calculated in the character’s chest frame,
which allows the gestures to naturally move with the character if
body motion is edited. It is of course possible to use other frames,
depending on the needs of the application. The vertical 𝑦 set point
has 𝑟𝑒𝑟𝑟 added to it in order to compensate for the steady state error
due to gravity. This ensures that the wrist position in the output
animation is the same as that in the input when the wrist comes
to rest and the mass has settled. Our prototype implementation
employs Euler integration to update the mass trackers. This has
worked fine in practice, but it would be possible to replace this with
a more efficient integration technique if desired.

It is straightforward to integrate this technique into an existing
animation pipeline. Animation systems output a new skeleton poses
at each frame. The point masses should be initialized to the location
of the wrists in the first frame of animation. Then the following
steps should be added to the frame update:

(1) Take the existing output pose and express the wrist positions
in the chest frame.

(2) Update point mass positions: Use the current wrist positions
and specified controller parameters as input and forward
integrate the acceleration from Eq. 1 to obtain the new point
mass position (add the force from gravity,𝑚𝑔, to Eq. 1).

(3) Use IK to position the wrists at the locations of the masses.
(4) Use this new pose as the output pose of the animation system.

We found a simple IK chain that goes from the shoulder to the wrist
is sufficient and set the swivel angle to match the input data. There
are freely available IK routines (e.g. [38]).

5 RESULTS
The accompanying video (https://youtu.be/6WbdI9ZPHjY) contains
numerous examples of gesture sequences created using the tech-
niques described above, demonstrating both loose and tense motion
(e.g.Fig. 1). In order to generate a gesture animation, it is necessary
to first have an initial specification of the trajectory of the wrists.
This will in turn be refined by the mass trackers to produce the final
animation. This trajectory can be obtained either through keyfram-
ing, using motion capture data or taking the output of a machine
learning algorithm. For the demonstrations shown here, we selected
two motion capture clips from a publicly available dataset2 [15] in
order to provide the base motion.

When using keyframes as the motion representation, fewer keys
can be used as simulation can fill in some of the dynamic subtleties
of the motion. Motion capture presents a different challenge as the
dynamics of the original motion are baked into the recorded data. It
may be obvious that a motion can be made more loose – reducing
the stiffness of the tracker will cause it to track the original motion
less closely, leading to smoother and more free looking motion –
but it is less obvious that a motion can be made to look more stiff
as a stiff tracker will try to closely replicate the original trajectory.
To see what is possible, it is necessary to understand a little of the
grammar of gesture. Gestures consist of phases [22]. The stroke is
the main meaning carrying portion of the gesture and generally the
portion that we wish to most maintain in the final animation due
to its relation to semantics. On either side of strokes, there may be
holds, moments of stillness. Retractions bring the hands to rest and
preparations connect between strokes or rest poses and strokes.

If an originally loose motion is recorded, the loose dynamics are
baked into the data, including oscillations. If a stiff tracker repro-
duces these oscillations, the motion can look relaxed even though
the simulated tension is high. However, the soft oscillatory behavior
associated with such loose dynamics is largely contained in the
hold phase following a stroke. If this short portion of the motion is
simply replaced with a constant hold – the hand is held at the end of
the stroke, something that does occur in real gesture – the dynamics
of the mass tracker can then add subtle variation in this portion
of the motion. This could be high frequency vibration to create a
more stiff motion or a loose continuation and oscillation to create
more relaxed motion. These small dynamic nuances communicate
important expressive information about the state of the character.
Additional edits can also be layered on top of tension changes, such
as changing stroke speed which will increase overshoot.

In many gesture applications, the phase information will be
present (e.g. it is included in the Behavior Markup Language [40]).
It can be annotated if not present. This is a relatively small amount
of work compared to say trying to hand animate physically plausible
oscillations, a taskwe have found challenging. In applicationswhere
it is not desirable to provide this annotation, the approach can still
be used. In these cases, it will generally still perform well for low
tension settings which tend to soften any oscillations in the input

2https://trinityspeechgesture.scss.tcd.ie/

https://youtu.be/6WbdI9ZPHjY
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motion. For increased tension, it may not perform as well since the
tracking can replicate oscillations from lower tension input motion
and the stop in the motion provided by the static hold is helpful for
producing high tension oscillations.

Many of the examples in the high tension animations use a very
small 𝜁 , as low as 0.15, for illustrative purposes to make the edit
more easily noticed. In practice, such high oscillation is most ef-
fective if reserved for extreme situations where there is a moment
of great tension, such as in heightened anger. The most effective
animations will fluctuate between different levels of tension and
relaxation to create texture and reflect changing mood and empha-
sis. As illustrated in the video, any level of oscillation is possible by
adjusting zeta, including completely removing the oscillation.

For gesture, the most effortful portion of the motion is the stroke
phase [23]. In practice, we therefore generally use higher stiffness
for this phase and lower stiffness for retractions. During retractions,
people are generally relaxing as they move to a rest pose and added
pendular swing of the arms as they come to a character’s side
is often visually desirable. A good starting point for a fairly stiff
character is to use steady state error and zeta values of (5mm, .3)
for the stroke to provide high frequency vibrations and (1cm, .4)
for controlled retractions. For a more loose character, (10cm, .5) can
be used for strokes with limited oscillation and (15cm, .4) for loose
retractions with more arm swing. Again, the richest animation will
vary tension for different gestures throughout a sequence.

An added benefit of mass trackers is that they can inherit motion
from the body since they are not rigidly attached to it. Using loose
tension for relaxed characters can add pleasing natural arm swing
when a character turns or shifts weight.

6 EVALUATION
Two different evaluations were conducted. The first establishes that
the changes enacted by the mass trackers are indeed perceived as
changes in tension. The second explores the parameter space and
naturalness of the resulting motion to provide guidance on using
mass trackers in practical character work.

6.1 Validation of Perceived Tension Changes
An initial study aimed to establish that the changes enacted by the
mass trackers are perceived as changes in tension, as desired.

6.1.1 Stimulus. Five short gestural animations were selected from
the clips in the video (Sec. 5). In all cases, the original input mo-
tion was optical motion capture of a single speaker. All clips were
between 8 and 13 seconds and contained several gestures. New
versions of each clip were generated using high and low tension
settings. Similar settings were used for all clips. For high tension in
clip one, error and zeta values of (.3cm, .15) were used and (.5cm, .2)
were used for the rest of the high tension clips. Clip two used low
tension settings of (15cm,.5) and the remaining clips used (30cm,
.4). These ten clips were used in the study and each included the
original audio.

6.1.2 Method. An online survey was created using Amazon Me-
chanical Turk. Participants rated each of the ten animations for
how much tension they perceive in the motion on an 11-point scale,

Figure 6: Tension ratings for each clip generated with high
and low tension settings.

where 0 corresponds to “Very Loose" and 10 “Very Tense". Partici-
pants were shown an instruction screen, an example of a range of
animations and then each of the ten animations, one-by-one. Ani-
mations played once, full screen, in random order and could not be
scrubbed. The answer entry appeared after each video completed.

A total of 36 participants took part in the study. They were
required to be “Master" workers (a Mechanical Turk designation
based on past work), have an approval rating above 97% on previous
work, live in the United States and use a desktop computer. Mean
age was 41.9 (SD 9.9, max 71, min 24). Participants were paid two
USD and the study had a median duration of 5.2 minutes.

6.1.3 Results. Survey results are shown in Figure 6. For every clip,
there is a clear difference in the perceived tension between the
version synthesized with high tension parameters and the one with
low.

Statistical analysis was performed by fitting a linear mixed-
effects model to the data using the lmer() function in R (similar to
an ANOVA) [7, 8], with tension ratings as the dependent variable,
Tension settings and Sequence as the fixed effects and participant
ID as a random effect. The significance of main effects and interac-
tions was calculated with Wald tests (Anova). Post-hoc tests were
performed using estimated marginal means ([34, 35]) to conduct
pairwise comparisons using the Tukey method for correction.

Both the tension settings (𝜒2 (1) = 93.27, 𝑝 < 2.2𝑒 − 16) and
motion clip (𝜒2 (4) = 21.01, 𝑝 = 0.00032) have significant main
effects on the ratings, but there is no significant interaction (𝜒2 (4) =
4.59, 𝑝 = 0.33). The low tension settings produced motion that was
seen as significantly more loose than the high tension settings
for every clip. This confirms that the model supports effective
modification of perceived motion tension.

6.2 Exploration of Parameter Space
The second study was designed to understand the impact of param-
eter choice on achieving particular tension effects, in particular, the
impact of zeta. This was guided by several hypotheses based on
experience with the approach:

• H1: The perception of increased tension relies on oscillation,
so will only be present for small zeta.

• H2: Very low zeta may appear less natural with high tension.
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• H3: Too much oscillation in loose motion can appear unnat-
ural, so higher zeta is preferred for loose motion.

• H4: The technique is not overly sensitive to parameter selec-
tion, and in particular, some range of steady state errors will
be acceptable for a desired effect.

6.2.1 Stimuli. Given the large set of parameter levels for each clip,
it is necessary to keep the number of clips small in order to not
fatigue participants with the total combinations. We chose two base
clips. The first was clip three in the initial study above. The second
was clip two from the first study, but in order to more fully explore
the gesture space, the velocity of every gesture in this clip was
doubled. This created a higher tempo clip that would also react
differently to tracking, providing two different base points.

For high tension, a base error of 5mm was selected and for low
tension, 15cm. To explore the impact of zeta, each of these clips was
generated with zeta values of .15, .2, .3, .45 and .6. To explore the
impact of error changes, two additional error levels were generated
at .3 zeta for low and high tension: 3mm and 1cm for high tension
and 30 and 50cm for low tension. In addition, the kinematic (no
mass trackers) input clips were included. This produced a total of
30 clips: 2 base motions x 2 tension levels (high and low) x (5 zeta
levels + 2 additional error levels) + 2 kinematic clips.

6.2.2 Method. The study was deployed on Mechanical Turk, fol-
lowing the same general method as Experiment 1 (Sec. 6.1.2). After
each clip, participants rated the perceived tension as before, and
also their agreement to the statement “The motion in the clip ap-
pears natural." on an eleven point scale from 0 (Strongly Disagree)
to 10 (Strongly Agree). Since there could be a relationship between
the audio and the tension of the gesture which might bias natural-
ness ratings, the audio was not included in this experiment. Again,
36 people partook in the experiment, with mean age 44.0 (SD 10.6,
min 29, max 69). They had to meet the same qualifications as study
1. They were paid 5 USD for the study with a median duration of
12.9 minutes.

We felt it was important for each participant to see the full range
of high and low tension clips to avoid any tendency to artificially
inflate the range of ratings as might occur if they only saw high
tension clips, for instance. There is no reason, though, to expect
the parameters to have the same effect at high and low tension nor
across the two base clips, so we used a set of eight planned com-
parisons in order to test the hypotheses: all zeta levels + kinematic
for each tension level and each clip (4 groups of 6 stimuli) and the
three different error levels for zeta=.3 + kinematic, again for each
tension level and clip (4 groups of 4 stimuli). These comparisons
were done for both tension and naturalness ratings.

6.2.3 Results and Discussion. As in Study 1, a linear mixed effects
model was fit to the data for every planned comparison. The statis-
tical results are listed in Table 2. Figure 7 shows the ratings for high
tension motion at different levels of zeta. For the fast clip, tension is
perceived as significantly higher at zeta = .15 (p=0.0044) and zeta =.2
(p=0.0078). For the normal speed clip, the zeta=.15 (p=.0010) is seen
as significantly more tense. This provides evidence confirming H1,
the additional oscillation provided by low zeta appears important
for increasing the perception of tension. It can also be observed
that the overall tension level appears higher in the fast clip. This

Figure 7: Tension ratings for high tension (5mm error) with
varied zeta. Significant differences from the kinematic base-
line are marked with a *.

Figure 8: Naturalness ratings for high tension (5mm error)
with varied zeta. Significant differences from the kinematic
baseline are marked with a *.

could be related to people correlating speed and tension, the greater
overshoot or perhaps to the particular gesture forms.

Figure 8 shows the naturalness ratings for the high tension clips
as zeta is varied. There is a significant decline in naturalness for
zeta of .15 (p<.0001) and .2 (p=0.0011) for the fast clip and zeta
of .15 (<.0001) for the normal clip, the same levels that lead to a
significant increase in perceived tension. This drop was anticipated
at the .15 level, but not at .2, partially confirming Hypothesis 2. It
is worth remembering that people are judging these clips with no
context and this type of tension increase would correspond to fairly
extreme emotions, e.g. “shaking with anger", so what might seem
unnatural without context might be believable with the correct
context cues. This should be confirmed and people may want to
reserve this heightened tension for high impact situations.

Tension ratings for the low tension parameters and varied zeta
are shown in Figure 9. For both the fast and the normal clip, all the
zeta levels produce motion that is perceived as significantly looser
than the kinematic motion. In addition, there were no significant
differences between the different levels of zeta.

Naturalness ratings for the low tension parameters are shown in
Figure 10. There were no significance differences for the fast motion,
but zeta of 0.15 and 0.2 were rated less natural for the normal speed
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Tension Rating Parameter Fast Clip Normal Clip
high tension zeta 𝜒2 (5) = 52.6, 𝑝 < .0001 𝜒2 (5) = 22.05, 𝑝 = .0005
high naturalness zeta 𝜒2 (5) = 64.0, 𝑝 < .0001 𝜒2 (5) = 43.6, 𝑝 < .0001
low tension zeta 𝜒2 (5) = 83.7, 𝑝 < .0001 𝜒2 (5) = 23.8, 𝑝 = 0002
low naturalness zeta 𝜒2 (5) = 18.5, 𝑝 = .0024 𝜒2 (5) = 86.1, 𝑝 < .0001
high tension error 𝜒2 (3) = 3.1, 𝑝 = .38 𝜒2 (3) = 10.6, 𝑝 < .014
high naturalness error 𝜒2 (3) = 13.3, 𝑝 = .0040 𝜒2 (3) = 9.19, 𝑝 < .027
low tension error 𝜒2 (3) = 80.7, 𝑝 < .0001 𝜒2 (3) = 28.8, 𝑝 < .0001
low naturalness error 𝜒2 (3) = 0.164, 𝑝 = .98 𝜒2 (3) = 9.29, 𝑝 < .026

Table 2: Significance of main effects, Exp. 2.

Figure 9: Tension ratings for low tension (15cm error) with
varied zeta. Significant differences from the kinematic base-
line are marked with a *.

Figure 10: Naturalness ratings for high tension (15cm error)
with varied zeta. Significant differences from the kinematic
baseline are marked with a *.

motion. This provides partial support for Hypothesis 3, confirming
it for the normal clip, but disconfirming it for the fast clip. Unlike
with high tension, the low tension effect can be achieved across the
range of tested zeta values. There is therefore no reason to use the
very low zeta values for low tension and it is recommended to stay
with zeta above .3 for this application (.4 and .5 were used in the
low tension example clips in Sec. 5).

The error (stiffness) variants were decided a priori, and the se-
lected zeta of .3 is above what was found in the zeta comparisons
to trigger an impression of high stiffness. It is not surprising, there-
fore, that most clips were not seen as significantly more tense than

kinematic. Perceived tension for both clips increased as the error
increased (from 3mm, to 5mm, to 1cm), although only the 1cm nor-
mal clip was seen as significantly more tense than kinematic (mean
perceived tension of 5.89 for 1cm compared to 4.78 for kinematic,
p=.0010). This illustrates another method of increasing perceived
tension: lowering stiffness, while still keeping it relatively high,
will increase the size of the overshoot, making the oscillations more
visually salient. There were no significant differences in naturalness
between the stiffness levels.

For the low stiffness error variations, all error levels (15, 30 and
50cm) appeared significantly looser than the kinematic motion.
There were no significant differences in perceived tension for the
tracked variants (there was a tendency for 15cm to be perceived as
more tense than 30cm (p=0.072) and 50cm (p=0.054)). For no clip
did the naturalness level vary significantly from the kinematic clip,
although for the normal base motion, 50cm error was perceived
as significantly less natural than 15cm error (7.11 to 5.86, p=0.031).
This is a very loose controller, so it is surprising that it performed
this well.

For low tension in particular, similar perceptual results can be
obtained for a range of parameters, which offers partial support for
H4, that the approach is not overly sensitive to parameter choice.
High tension is more sensitive, however. Two constellations have
been identified that increase perceived tension: high stiffness with
very low zeta (e.g. 5mm and .15) or slightly lower stiffness with
higher zeta (e.g. 1cm and .3). The first produces higher frequency
oscillations and the second larger oscillations. Other constellations
may be possible, but it appears clear visual manifestation of oscilla-
tions are key in increasing the perceived tension.

It should be noted that all the test scenarios focused on tense or
loose motion. We anticipate that the intermediate range of tension
levels can be invoked by using intermediate parameters (e.g. errors
between 1 and 15cm).

7 DISCUSSION AND CONCLUSION
Mass trackers provide agent designers with an effective additional
control to edit the style of gesture animation. The derivation pre-
sented here provides clear guidance on how to tune the controllers
to achieve desired effects. The impact of both 𝑟𝑒𝑟𝑟 and 𝜁 are much
easier to understand than 𝑘𝑠 and 𝑘𝑑 . This dramatically reduces the
amount of tune and test iteration required with many previous
simulation approaches. The studies provide further guidance on
appropriate parameters to use in practice. In addition, mass track-
ers are computationally light weight and can be used to smooth
motion if needed. The approach does not require implementing
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a full skeletal simulation or determining moments of inertia for
the model, etc. There is no need to solve the balance problem. The
only added computation is to update two point masses and solve a
simple IK problem.

The technique has limitations. It is only a partial model, focusing
on control of the position of the wrists. While effective in practice,
there are important cases that this does not handle. For example,
rapid radial rotation of the forearm will not be impacted by loosen-
ing tracking. In some cases, it might also be useful to add dynamic
oscillations of the wrist for floppy movements. While the technique
has been used in practice for several years (e.g. [10, 37]), only a
small number of examples clips were tested in the studies discussed
here. Finally, while the torso tends to exhibit little oscillatory move-
ment during gesture, a model that reflected the impact of tension
on posture would be a useful addition.
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