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Abstract

Communicative behaviors are a very important
aspect of human behavior, and deserve special
attention when simulating groups and crowds of
virtual pedestrians. Previous approaches have
tended to focus on generating believable ges-
tures for individual characters and talker-listener
behaviors for static groups. In this paper, we
consider the problem of creating rich and varied
conversational behaviors for data-driven anima-
tion of walking and jogging characters. We cap-
tured ground truth data of participants convers-
ing in pairs while walking and jogging. Our styl-
ized splicing method takes as input a motion cap-
tured standing gesture performance and a set of
looped full body locomotion clips. Guided by the
ground truth metrics, we perform stylized splic-
ing and synchronization of gesture with locomo-
tion to produce natural conversations of charac-
ters in motion.
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1 Introduction

While it may be a challenge for some to walk and
chew gum at the same time, people frequently
and effortlessly talk while they walk. This impor-
tant behavior is missing, however, from most vir-
tual character systems. Crowd simulations gener-
ally lack communicative behavior and miss nat-
ural eye, head and gesture movements of people
walking. Systems focused on gesture and non-
verbal communication are targeted almost exclu-
sively at standing or sitting characters.

In general, motion capture databases consist of
motions specific to a particular domain, e.g., lo-
comotion, conversation, fighting. For combina-
tions of motions, such as walking and talking, it
would be impractical to try to capture every pos-
sible combination of both types of motion. Simu-
lating conversational behavior for virtual charac-
ters while in locomotion is not as trivial as simply
compositing separate gesture and locomotion be-
haviors. Gestures must be adapted to fit the natu-
ral arm swings and cadence of walking or jogging
behavior. While in locomotion, attention patterns
differ compared to standing as people have to pay
attention to their walking path, to their conversa-
tional partner and towards points of interest.

There is a general dearth of previous research
on how people adjust their gesturing behavior
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while they walk or jog. We therefore began by
conducting a study to obtain ground truth data
on how people communicate during locomotion.
Multiple subjects were video recorded standing,
walking and jogging while engaged in different
types of discussions and debates. According to
our empirical observations, people tend to exe-
cute fewer and smaller gestures and gaze shifts
toward their conversational partner while walk-
ing or jogging than they do while standing.

We take a data-driven approach to create nat-
ural animations of talking while walking or jog-
ging. We take as input two sources of data: (i)
a pre-existing locomotion database that contains
various walking and jogging motions of multi-
ple actors (without gesture); and (ii) gesticulation
data from three-way standing conversations.

With our stylized splicing method, locomotion
animation is automatically spliced with motion
from the gesture database, which is intelligently
adapted to match the style of the locomotion ac-
tor. For example, we temporally realign gesture
emphasis to the locomotion tempo, and synthe-
size the typical bounce of arms seen in jogging.

Furthermore, we use an addresser-addressee
relationship (AAR) to describe orientation be-
havior for characters engaged in a conversation
with each other. In this way, we can convert
standing group conversations into walking or jog-
ging ones, by adding attention behavior and re-
pairing the conversational partner relationship.
The basis for the orientation behavior, and other
conversational parameters, is derived from our
annotated ground truth video. By transferring
and adapting gesticulation data, our system is ca-
pable of creating conversational behaviors for in-
dividual characters and groups in locomotion.

2 Related Work

Generating conversational behaviors such as ges-
ture, facial expressions and gaze has been a very
active area of research. Utterance planning [1],

prosody [2, 3], probabilistic modeling from in-
put text [4] or real human performance [5] and
rule-based systems [6] have all been used. Head
movement and eye gaze of a virtual conversa-
tional partner may be used to communicate infor-
mation about their internal states, attitudes, atten-
tions and intentions [7] or to actively influence
the conversation [8]. Ennis et al. [9] found that
synchrony of the body motions of the conversing
partners in a standing group was very important.
However, the combination of conversational be-
haviors (e.g. gestures and gaze) for groups while
walking, jogging and talking has not been ex-
plored.

Motion graphs and motion blending tech-
niques have been proposed to reuse and combine
existing motions into new motion sequences [10,
11, 12], where potential transition points in mo-
tion sequences are chosen based on a posture
similarity metric and used to construct a graph
structure. New sequences can be produced by
stitching together the motion segments from a
graph walk. Fernández-Baena et al. [13] con-
struct a Gesture Motion Graph (GMG) from a la-
beled gesture database and select the graph walk
that best matches the accompanying prosodic ac-
cent and the gesture timing slot. Stone et al. [5]
build a linguistic network based on a character’s
utterance and choose optimized edges by penal-
izing the match of utterance and gesture, the con-
nection of neighboring utterances and adjacent
gestures. However, these approaches all treat the
character state vector as a monolithic whole, tak-
ing all the Degrees of Freedom (DOFs) of data
from a single clip at a time.

When splicing motions together, naive DOF
replacement can produce unrealistic results as it
ignores the physical and stylistic correlations be-
tween body parts [14, 15]. Mousas et al. [16]
overcome the synchronization problem by using
velocity based temporal alignment. Partial-body
motion graphs can also be generated to splice and
synchronize arm or hand motions with full-body
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clips [17, 18, 19]. For example, Majkowska et
al. [20] integrate separately captured hand mo-
tions into full body animation and find the cor-
responding splicing points using a two-pass dy-
namic time warping (DTW) algorithm. Our
method not only adapts gesture performance spa-
tially to the styles of the locomotion arm swing,
it also temporally aligns the gesture stroke peak
to the locomotion tempo.

3 Ground truth data

While there are many studies of conversational
behaviors conducted with sitting or standing par-
ticipants, we wish to explore how gesture and
gaze behaviors differ in the case of conversers in
motion. For this paper, we focus on walking and
jogging scenarios.

We recorded real video footage of two sets of
male and two sets of female participants, aged
between 21 and 39, talking together while stand-
ing, walking and jogging. To encourage a natu-
ral and lively discussion we selected participants
who knew each other and chose conversation top-
ics that were of interest to them. Video and au-
dio were recorded with a Sony HDR-AS100V ac-
tion camera with a resolution of 1920x1080 and
a frame rate of 29. In all conditions, the partic-
ipants were placed next to each other and orien-
tated toward the camera. The video camera was
placed in front of the participants capturing the
whole upper body for later annotation of the head
rotation and gesture (see Fig. 2). In the walk-
ing and jogging conditions, a continuous path of
approximately 200 meters was chosen with the
camera moving in front of the subjects.

To create conversations with varying dynam-
ics, we recorded two different conditions: dom-
inant speaker conversations and debates (as
in [9]). In the debates, each participant expressed
their opinion on the topic being discussed with
interruptions from the conversational partner. An
informative topic was chosen for the dominant

speaker conversations, where one speaker did the
majority of speaking, while the other politely lis-
tened with only occasional responses or ques-
tions. In total 24 dominant speaker conversations
(3 for each of the 8 participants) and 12 debates
(3 with each of the 4 groups of participants) were
recorded. Dominant speaker conversations lasted
approximately one minute, while debates lasted
between one and two minutes.

3.1 Annotation

We annotated every fifth frame of the video
footage to capture all important information,
such as head turns and gestures. To approximate
head rotation and to compensate for camera and
participants’ movement, the x and y pixel coordi-
nates of a center point on the body and the tip of
the nose were marked. The participants’ verbal
behavior was noted as talking or listening. For
each gesture, we reported the type and magni-
tude (0.5 and 4, with 1 being the relaxed hand
position of the participant); the elbow bend (0 to
3, with 0 representing no bend and 2 a bend of
90 degrees); the arm displacement (0 represent-
ing the arm close to the body and incrementing
steps thereafter); the facing direction of the palm
(up, down, in or out) and the peak of the gesture.

For the type of gesture, we used the taxon-
omy proposed by McNeill [21]: ‘Beat’ - a rhyth-
mic flick of finger, hand or arm to highlight
what is being said; ‘Deictic’ - a pointing ges-
ture with direction; ‘Iconic’ - a representation
of a concrete object, or drawing with the hand;
and ‘Metaphoric’ - a representation of an abstract
concept. We also noted ‘Adaptor’ motions, such
as crossing arms and touching the face or hair.

Each gesture is divided into 4 phases: prepa-
ration, stroke, hold, and retraction. During the
stroke phase, the gesture normally peaks. The
locomotion contact or flight information was an-
notated relative to this peak. During walking, a
contact occurs when the front foot is close to or
touching the ground, whereas one leg passing the
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other represents a flight (see Fig. 3). For jogging,
flight occurs when both legs are in the air and for
contact at least one foot is on the ground.

According to empirical observations, we hy-
pothesized that individuals would use more ges-
tures when standing compared to walking or jog-
ging. Similarly, we suspected the range and du-
ration of gestures to be higher during a standing
conversation. We also hypothesized that personal
style would persist across gaits, and that the peak
of a gesture would occur during the contact phase
of locomotion.

3.2 Analysis

Frequency and duration of gaze shifts: For
each participant, we averaged over the number
of times they gazed at or away from their con-
versational partner for all conversation types. An
Analysis of Variance (ANOVA) was conducted
with factors gait, and gaze direction. We found
an interaction effect between gait and the gaze di-
rection (F (2, 12) = 72.834, p ≈ 0). Participants
gazed at their conversational partners more of-
ten while standing than while walking or jogging.
We also conducted an ANOVA with dependent
variable gaze duration and independent variables
gait, and gaze direction, which showed an inter-
action effect (F (2, 12) = 17.611, p ≈ 0). With
increasing intensity of body motion, the average
gaze duration toward the conversational partner
decreases. Both of these results suggest that it
is harder and at times not feasible to initiate and
maintain eye contact during physical activities.

Frequency and duration of gestures: An
ANOVA with the percentages of different types
of gestures as the dependent variable and within
factors gait, conversation type, and type of ges-
ture was conducted. The categorical predictor
was the sex of the participant. A main effect
of gait (F (2, 12) = 6.154, p = 0.015) showed
that participants gestured significantly less when
jogging, and a main effect of conversation type
showed that fewer gestures were used during

debates than in dominant speaker conversations
(F (1, 6) = 13.172, p = 0.011). However, an in-
teraction between the sex of the participant and
the conversation type (F (1, 6) = 6.194, p =
0.047) indicated that the male participants ges-
tured significantly less during debates than domi-
nant speaker conversations, whereas women ges-
tured equally for both. Previous studies have also
found that females gesture more during conver-
sation [22].

A main effect of gesture type (F (3, 18) =
14.907, p ≈ 0) indicated that the most common
gesture type used was beat, followed by adap-
tor. There was also an interaction between ges-
ture type and gait (F (6, 36) = 2.979, p = 0.007)
showing that adaptors were used much more in
standing than walking or jogging. An analysis on
the duration of gestures gave an interaction ef-
fect between gait and participant sex (F (2, 12) =
4.379, p = 0.037), as male gestures were shorter
during jogging, whereas the gesture duration for
woman was the same for different gaits.

Gesture peaks: An ANOVA on the num-
ber of gesture peaks, with independent variables
gait and locomotion phase found a main effect
of locomotion phase (F (1, 6) = 268.44, p ≈
0), where significantly more gesture peaks hap-
pened during the contact phase. No main effect
of gait was found suggesting that gesture peaks
were similar across gaits. However, an interac-
tion occurred between locomotion phase and gait
(F (1, 6) = 9.070, p = 0.024), which shows that
the percentage of gesture peaks in locomotion
contact phase is significantly higher than in flight
phase for both gaits.

Elbow bend: As hypothesized, an ANOVA
showed a main effect of gait on the gesture space
(F (2, 12) = 10.563, p = 0.002). During jog-
ging, most gestures were made with the elbow
bent by 90 degrees. The average elbow bend
while standing and walking was significantly
lower and ranged between 0 and 76.5 degrees.

From these results we can conclude that people
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make fewer and smaller gestures and gaze mo-
tions with increasing body motion intensity. We
also conducted a short post-experiment survey
and most participants rated the question: “How
engaged in the conversation do you think your
partner was in the following situations?” the
lowest for jogging. It seems reasonable to assume
that the physical exertion, reduced eye-contact
and gestures led to this assessment. We used
these results to guide our stylized splicing and
synchronization algorithms in order to generate
natural conversational behaviors for conversing
characters while walking or jogging.

4 Coordinated Gesture and Lo-
comotion

In this section, we present our method for gener-
ating natural conversational behavior for pedes-
trians in motion, given locomotion clips from a
variety of actors and standing conversational mo-
tion clips with gestures.

We use two existing motion corpuses: (i) 19
standing conversations with three male (9) or
three female (10) actors, each approximately 160
sec. long, for a total performance time of 8,403
sec. [9]; and (ii) normal walking and jogging mo-
tions captured from 16 male and 16 female ac-
tors, with varied styles of arm expansion, elbow
bend and swing amplitude [23]. All motions are
retargeted to a 22-joint 69-DOF skeleton. All the
captured motions are re-sampled to 30 fps to give
a common time base.

Naively splicing two such clips generates un-
natural results, thus the gesture performance
needs to be customized before being spliced with
the locomotion. Figure 4 illustrates the general
work flow: (1) we ensure stylistic consistency
between the clips by adjusting the gesture per-
formance to match a particular locomotion style;
(2) we temporally micro-synchronize the ges-
ture phase with the locomotion cycle, and sim-
ulate arm disturbances resulting from the body’s

ground interaction; (3) we fully exploit the func-
tions of gesture preparation and retraction for
smooth splicing; (4) for conversations with two
or more participants, we coordinate their pair-
ings by adding head and torso orientations. Our
method builds on previous splicing approaches,
such as [14], by handling stylization, synchro-
nization and conversational pairings.

To extract temporal information from the
gestures, we performed the following an-
notation of the gesture databases. Each
gesture phrase is temporally composed of
preparation, stroke, hold and retraction
phases [24, 25, 26], where (gesture →
[preparation] [hold] stroke [hold]). The main
meaning of the gesture is carried in the stroke
phase [26, 27]. The preparation phase places
the arm, wrist, hand and fingers in the proper
configuration to begin the stroke [26]. The
retraction phase returns the arm to a resting posi-
tion. During the annotation, we label the timing
of gesture phrases and phases (tPb, tPe, tSb,
tSe, tRb and tRe), corresponding to beginning
and end of Preparation, Stroke and Retraction.
The annotated gesture types are based on the
taxonomy proposed by McNeil [21], as in the
ground truth study. We also annotate gesturing
handedness and the addresser/addressee in the
group.

To extract locomotion tempo, we use a stan-
dard breakdown of locomotion into four phases,
as previously mentioned in Section 3.1 (see
Fig. 3). Typically, during flight the root altitude
increases, whereas it decreases during contact.
All our locomotion data clips are between 1.5 and
2 seconds long, starting from phase left contact,
consisting of two full locomotion cycles and can
be seamlessly looped to be any given length.

4.1 Stylization

As mentioned before, naively splicing gestures
onto locomotion clips produces unrealistic re-
sults as it does not take into account the differ-
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ences between gestures while standing or in mo-
tion. For example, low gestures with straight el-
bows are common for standing characters, but
are unnatural in a jogging situation as our ground
truth analysis shows that most of the gestures are
made with the elbow bent to around 90 degrees.
Furthermore, variation in the styles of locomo-
tion should be transferred to the gesture style.
For example, pedestrians with a larger arm swing
are more likely to perform broader gestures. The
goal of our stylization process is to adjust ges-
tures to be consistent with the locomotion arm
shape and swing. We consider gestures to be
auxiliary actions on base motions like standing or
jogging, and use the statistics of the base motions
to offset the gestures.

For every locomotion clipML, we compute its
mean arm pose BL as a base pose, including the
shoulder, elbow and wrist DOFs. Similarly for
gesture performance MG, we use its rest pose as
the base BG. BL and BG thus reflect the overall
correspondence between the arms and the torso
(see Fig. 5). The difference between the base
poses, BD = BL − BG, is then used to adjust
the original gesture motionMG. Gestures are ex-
tracted from the standing character as an offset
from the base pose and then layered onto the base
pose of the desired locomotion clip, which gen-
erates M ′G = MG +BD.

To incorporate the dynamic features of the lo-
comotion arm swing, we compute the standard
deviation of arm DOF di in the locomotion clip.
Arm rotations inM ′G are constrained within±ci∗
STD(di), where ci is a user specified constant,
typically three. Joint rotations exceeding this ac-
tive range are linearly rescaled to the allowable
range. To avoid altering the pointing direction,
stylization is not applied to deictic gestures.

4.2 Synchronization

Temporally, a gesture has its preparation, stroke,
hold and retraction phases, while locomotion
repeats its flight/contact cycles with a certain

tempo. From the ground truth study, we
found that both are linked, in that significantly
more stroke peaks happen during contact phases.
Pedestrians are therefore likely to align their
stroke peaks to the locomotion contact phase.
Some stroke emphases are actually caused by the
arms being shaken due to ground impact during
locomotion, which produces an effect of gestur-
ing to the tempo of the locomotion cycle. We
synthesize this effect to make the gesture per-
formance more realistic during locomotion, es-
pecially for joggers.

Alignment: Unlike previous splicing research
that uses Dynamic Time Warping (DTW) align-
ment [14] or velocity based synchronization [16]
to align arm motion with the locomotion, we
align gestures based on the timing of the utter-
ance and locomotion phase. The gesture ‘syn-
chrony rules’ referred to in [21] indicate that ges-
ture strokes have been observed to consistently
end at or before, but never after, the prosodic
stress peak of the accompanying syllable. User
studies in [28, 29] have indicated that gestures
that are performed 0.2 to 0.6 second earlier w.r.t
the accompanying utterance are rated highly for
their naturalness. This provides us with an exact
time window for gesture alignment: for a given
gesture, if it has a stroke peak and does not align
with the locomotion contact phase based on the
utterance timing, we search 0.6 seconds behind to
find the first contact phase point. We then align
the stroke peak with this contact phase. We do
not perform re-alignment for gestures with mul-
tiple stroke peaks, to avoid conflicts in alignment
and also to preserve the original time gaps be-
tween these peaks.

Synthesis: During the contact phase of loco-
motion, the body hits the ground and suddenly
changes its velocity. It is unlikely that a person
could hold their arms as steady in this condition
as a standing character could, especially for jog-
gers. Some stroke emphases are actually caused
by the shaking arms resulting from locomotion,
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the effect of which could vary, due to different
arm firmness and also the vigor of the jogging.
To synthesize arm shake to the beat of the loco-
motion, we use the motion of the root to adjust
the elbow. Using R′elbow = Relbow + k ∗∆Hroot,
on top of the original elbow rotation Relbow, we
layer the influence of root height change ∆Hroot

due to the ground impact. For a walking mo-
tion, ∆Hroot is negligible, but for jogging mo-
tions, ∆Hroot is large and the elbow bounce is
very obvious. If k is an adjustable parameter that
rescales the height changes to the elbow rotation
space, then by increasing k we can synthesize
jogging on a bumpy road with loose arms.

4.3 Splicing

The goal of our splicing method is to add the
gesture performance MG to locomotion clip ML

given the gesture timing, and to generate the out-
put spliced motion MS that naturally combines
the two. We further segment the skeleton into
torso, lower-body, left arm and right arm. A
full-body motion sequence Mfb can thus be de-
scribed by the union of the motion of its four
parts: left arm M la, right arm M ra, torso M ts

and lower body M lb, where each part should
maintain close correlation with each other. As
the lower-body motion is the dominant factor in
locomotion, and the torso swivels to its tempo,
we preserve M lb

L (t) and M ts
L (t) throughout time

t ∈ [0, N ] (Eq. 1).

M lb
S = M lb

L , t ∈ [0, N ]
M ts

S = M ts
L , t ∈ [0, N ]

(1)

The stroke and hold phases carry the semantics
of the gesture, thus M la

G (t) and M ra
G (t) are pre-

served in the spliced motion from the beginning
of the stroke tSb to the end tSe.

Our method takes the gap between the begin-
ning of the gesture preparation tPb and the end of
the preparation tPe, and applies spherical linear
interpolation (slerp) to the arm joint rotations to
transition from the locomotion swing to the ges-

ture performance. Similarly, slerp is applied dur-
ing the gap between the beginning of the gesture
retraction tRb and its end tRe to transition gesture
performance back to locomotion swing (Eq. 2).

Marm
S =
Marm

L , t ! ∈ [tPb, tRe]
Marm

G , t ∈ [tSb, tSe]

slerp(Marm
L ,Marm

G , t−tPb
tPe−tPb+1

), t ∈ [tPb, tPe]

slerp(Marm
L ,Marm

G , t−tRb
tRe−tRb+1

), t ∈ [tRb, tRe]

(2)

5 Interaction

Using the motion splicing and gesture stylization
methods described above, we are able to syn-
thesize multiple gesturing characters in locomo-
tion. To make these characters appear plausi-
bly engaged in a conversation, head and torso
orientations need to be added to generate ap-
propriate gaze behavior. This is done based
on an ‘addresser-addressee relationship’ (AAR)
that defines the conversational interaction, where
the addresser gazes toward the addresee. This
AAR specification includes high level informa-
tion such as labeling the addresser, addressee and
the timing of gaze behavior. The system supports
multiple ways of generating the AAR, including
random specification, manual specification, re-
specting AAR from the original motion captured
group conversation, or generating it based on the
statistics from our ground truth study.

Gaze Generation: Gaze is implemented by
first dynamically retrieving the positions of the
addresser and addressee in the scene at the spec-
ified time, and then computing the θyaw that
would fully rotate one character’s head to look at
the other, in the horizontal plane. Since gaze also
involves eye movement, a complete head rotation
is not always necessary. We use a distribution to
determine the torso yaw angle as r ∗ θyaw where
r is randomly chosen from [.6, 1]. The rotation
is implemented with a combination of spine and
neck DOFs. If the addressee is in front of or
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behind the addresser, exceeding a threshold dis-
tance (one meter in the current implementation),
a small adjustment of forward/backward lean up
to 15◦ is added to the spine joint of the addresser.
After stylized splicing, M torso

Spliced is directly de-
rived from locomotion MLoco, which preserves
the natural motion of the torso, timed with the
locomotion tempo. The newly synthesized AAR
head and torso orientations are layered on top of
this torso movement.

AAR Specification: There are several ways
to generate the AAR. Firstly, it may be inferred
from the motion clip by assuming that the charac-
ter performing a gesture is the addresser and the
others are addressees. Gesture timing is used for
head and torso rotation whereby the gaze direc-
tion is achieved by the start of the stroke and re-
turns to neutral with the retraction. This method
allows an originally captured standing group con-
versation to be transformed into one with loco-
motion, or any gesture specification to generate
gaze behavior. Alternatively, we allow a user
to fully author the AAR such that the user has
complete control at the cost of some added up
front labor. This flexible specification can help
to pair participants from different conversations
in the database to simulate a new group con-
versation. Our system can also randomly se-
lect addresser and addressees and pair them into
AAR. This method facilitates simulating plausi-
ble crowd conversations during locomotion, with
minimal user intervention.

Synthesize AAR from Ground Truth: Fi-
nally, our ground truth data may be leveraged
to create more complex and realistic gaze behav-
ior. Data analysis suggests that both the addresser
and addressee will gaze at and away from each
other during the conversation and that the dura-
tion of this behavior is not necessarily the same
as the duration of a gesture. We analyzed the du-
ration of the gaze at and away behavior for each
of our subjects for both walking and jogging and
used this for some of our experiments. Gaze be-

havior during the conversation is thus determined
for each addresser and addressee based on the
statistics of the subject model assigned to them
(selected from the ground truth data). When a
particular behavior is chosen, say gaze-at, it is as-
signed a duration based on the subject model with
a small random variation. If subsequent selec-
tions of the same gaze behavior exceed a total du-
ration greater than the average duration plus one
standard deviation, the gaze behavior is forced to
switch to the opposite type. Experiments were
conducted with different sampling strategies, and
this method was found to generate a pattern of
gazing at and away behavior that appeared natu-
ral and non-repetitive.

6 Result and Applications

To evaluate the effectiveness of our method, we
apply them in a number of different scenarios.
Please see the supplemental videos for full ani-
mated results.

Stylized Splicing: To demonstrate the advan-
tage of stylistic splicing, we select five distinct
jogging types, detailed in Table 1. We exper-
iment with different gesture types, varied wrist
positions and stroke amplitudes.

Fig. 6 compares the results of splicing a low
gesture from a standing posture on five different
jogging motions. As mentioned before, low ges-
tures with straight elbows are common for stand-
ing characters; however, splicing them directly
into a locomotion clip can generate unrealistic
artifacts as the base pose of jogging is quite dif-
ferent from the standing rest pose. In Fig. 6(a),
naı̈ve splicing not only produces an inconsistent
straight arm configuration in the middle of a jog-
ging arm swing, it also generates an identical ges-
ture performance for the different jogging styles.
Fig. 6(b) demonstrates how stylized splicing can
effectively fix these problems by transferring the
jogging base poses, resulting in a more believable
gesture performance for the jogging locomotion.
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Jogger J1 has a large elbow bend, small arm ex-
pansion and a positive swing, so the spliced ges-
ture is also performed high and narrow in front
of the body. J2 has a larger arm expansion during
the jogging swing, so the gesture is also wider.
J3, J4 and J5 have less elbow bend with different
variances. Their elbows are more straight when
performing the gesture, but J4 has narrower arm
expansion for the gesture, and J5 preserves his
asymmetric style.

Conversation Simulation: Based on the AAR
information from the gesture database annota-
tion, our method converts the motion captured
standing conversations into locomoting ones.
Figure 1 shows the same group conversation in
different locomotion conditions. Head and torso
orientation is calculated according to the new po-
sition of the addressee in the scene. For this ex-
periment we used gaze timing profiles extracted
from the ground truth study.

Our method can also simulate conversational
relationships that vary from the original motion
captured group structures. Figure 7 shows a sim-
ulated group conversation, using the same ges-
ture and locomotion input as above, but in this
case, no AAR specification is necessary from
the user. By default, we randomly pick one ad-
dressee in the audience and pair it with the ad-
dresser to establish their conversational relation-
ship. Cross-group communication different from
the original motion capture data is highlighted.
We allow further specification from the user for
detailed control.

7 Conclusion

We have presented a novel method for generat-
ing conversational gestures for virtual pedestri-
ans. Animators can fully reuse existing clips of
locomotion and standing conversations. “Styl-
ized splicing” flexibly adjusts gesture behavior
in time and space to the locomotion style. Us-
ing AAR specification, virtual pedestrians can be

dynamically paired into conversational groups,
which allows the simulation of crowd conversa-
tions. Our ground truth data can also be used as a
solid reference for animators to generate gestures
for pedestrians.

Currently, the gesture performance and
head/torso orientation ground truth is extracted
from videos. In the future, analyzing motion
capture data of conversations during locomotion
could help to more precisely quantify the data.
Our method is capable of splicing gestures into
any synthesized locomotion. Integrating the
technique with a general motion graph would
support a larger variety of scenes and different
locomotion paths. Given the extracted ground
truth information, a motion retrieval algorithm
could be used with our method to efficiently
search the gesture database and find the most
ideal performance for the sequence. We hope
that our work can contribute to a new body of
research on gesture synthesis for a wide set of
naturalistic activities.
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Figure 1: Standing conversation (l) converted to
walking (m) and jogging (r) groups.

Figure 2: Two participants walking

Figure 3: Locomotion Cycle: jogging

Figure 4: Overall work flow for performing styl-
ized splicing and synchronization of conversing
characters when walking or jogging.

Figure 5: Base arm poses for standing and 5 jogging
styles (Table 1)

ID Expansion(y) Swing(z) Bend(z)

J1 (13.8± 1.1) (27.3± 4.5) (113.8±3.1)

J2 (30.6± 3.5) (−6.4±13.7) (109.9±6.3)

J3 (21.5± 0.9) (−3.5±14.6) (82.7±11.8)

J4 (9.9± 3.1) (−3± 8.6) (68.4± 7.5)

J5 (22.5± 1.8) (−2.9±13.9) (74.7±13.9)

Table 1: Quantized Jogging Styles (approx. mean
and stdev in deg.)
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(a) Without stylization, the spliced arm strokes look stiff and
inconsistent.

(b) Gestures consistent with locomotion styles

Figure 6: Comparison demonstrating the effect
of gesture stylization.

Figure 7: Simulated large group of joggers con-
versing with random AARs: original (blue),
cross group (red).
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