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Abstract. Hand-over animation is the process by which hand animation
is added to existing full-body motion. This paper proposes a technique
for automatically synthesizing full-resolution, high quality free-hand mo-
tion based on the capture of a specific, select small number of markers.
Starting from a large full-resolution hand motion corpus, our technique
extracts a finite pose database and selects the marker sets offline, based
on user-defined inputs. For synthesis, capture sequences that include this
marker set drive a reconstruction process that results in a full-resolution
of the hand through the aid of the pose database. This effort addresses
two distinct issues, first how to objectively select which is the best marker
set based on a fixed number of desired markers and, second, how to per-
form reconstruction from this data set automatically. Findings on both
of these fronts are reported in this paper.
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1 Introduction

Hand-over is a term used in the animation industry to refer to the process of
adding hand animation to pre-existing full-body motion. Hand motion is a criti-
cal part of many animations in which a full-body character is present. However,
animation of the hand can be difficult especially where realism is important.
While high-quality, full-body motion capture is a popular means for animating
realistic characters, hand animation is most often not recorded at the same time
as the motion of the full-body for a number of reasons. Foremost, hands are rel-
atively small in contrast to the whole body and thus, unless a specialize capture
device is used, sheer size complicates the simultaneous capture of both full-body
and hand data. Further, hand recordings can be plagued with occlusion, which
makes a clean capture of a full dataset for the hand difficult, especially in large
capture areas. As a result, in production, hand-over animation is applied to
full-body capture sequences through a manual post process.

As an alternative to capturing the full-hand motion at the same time as
the body or adding it afterwards manually, we propose an automatic hand-over
technique that captures a select set of markers at the time of the full-body
capture and use this to automatically guide a data-driven model for hand-over
animation. To this end, we propose a simple process that accomplishes hand-over
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in an efficient and straightforward manner. By using a pre-recorded database to
animate the hand, the quality of the motion can be controlled and can look as
good as a full-resolution capture. However, because we only use a small number of
markers at the time of capture, recording and clean-up are much less troublesome
than a full-resolution capture.

We focus on free-hand motions, those that do not include manipulation of
the hand within the environment. Animations of free hands are prevalent in
gesture, communication, and many other activities. In contrast manipulation
tasks are more constrained, which affords a unique set of pros and cons. For
example, techniques such as [1] exploit contact constraints to construct hand
motion when recorded data for the hand is not available. In contrast, free-hand
motion must derive its shape from other sources to remain natural. OQur approach
takes advantage of a rich database to produce natural free-hand movement.

1.1 Overview

As a preprocessing step, we record a repository of motion data which has the
characteristics of the motion of the hand that we wish to animate. This is
recorded in a small capture area with a tight camera set-up. We construct a
rich pose database from the recorded full-resolution hand marker corpus. Then,
from this database, the best representative group of markers are found based
on the target number of markers. At the time of capture, this found marker
set is recorded for the actor’s hand (along with full-body motion.) The select
hand marker data informs a reconstruction process to produce a full-resolution
version for the data of the hand. Then, the synthetic full resolution marker set
is fit to a skeleton rig for the hand and added to the full body. The result is an
automatically generated hand animation that is synchronized and semantically
meaningful based on the full-body motion and appears perceptually similar to
capturing the full-resolution marker set for the hand.

1.2 Related Work

There has been a great deal of previous work in the domain of hand anima-
tion. Most of which has investigated the problems of grasp shape, interaction,
and control. Although there are specialized techniques for capturing hand data
as [2], the hand-over animation problem has been largely ignored save a select
set of exceptions [3, 4, 1]. Much of the previous work in graphics and robotics has
been on developing controllers (as [5-7]). Because designed hand controllers can
lead to unnatural hand movement, researchers have looked into incorporating
human examples [8] as well as the perception of various hand models [9,10].
Another approach seen in previous research has been to address realism through
anatomical modelling of the hand [11-13], but this work does not address the
problem of generating motion for hand-over animation.

In comparison to the technique we propose, research on grasping is the closest
to our own (in computer graphics) because it includes the selection of appropriate
poses, for example [14-17]. Similar work appears in robotics as well [18]. Unlike
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this work, we are interested in more continuous sequences of expressive poses
for free-hand animation while grasping techniques typically focus on isolated
poses that lead to holds for different objects. Other related work focuses on
specialized systems for interaction such as [19, 20, 1] to position the hand in a
proper method for manipulation. But only a select group of efforts have focused
on the problem of automatic hand-over for free-hand movement [3, 4]. In contrast
to these efforts, we present a hand-pose approach as opposed to the motion-
warping techniques presented previously. Our motivation for this approach is to
maintain high quality poses at all points in the sequence, exploiting the low-
dimensionality present in hand animation [21].

2 Full-resolution Analysis

A stand-alone goal of this work is to objectively determine which is the best
set of m markers to use for the hand, given that m is the size of the small
number of representative hand markers to be used. Choosing a small number
for m alleviates issues related simultaneous hand/full-body capture. We set our
sights on determining the best set of m markers from the total M markers used
for the full resolution hand. Rather than selecting this set by hand as others
have [10], we determine which marker set is best based on specific criteria.

Along with discerning the best marker sets for each value of m, we also wish
to find the smallest sufficient full-resolution pose database from which to produce
motion efficiently. Our hypothesis is that by using such a pose database and the
best m-marker set, high-quality full-resolution data can be constructed from new
test signals.

2.1 Selecting marker sets

To frame the problem of selecting the m-marker set, we will assume that we
start from a given database of full-resolution markers and that some subset of
the full M-markers will be employed for the production of the hand motion in
the absence of the full marker set. To prepare the data, we automatically align
each frame of the dataset such that the lower arm (wrist) is placed at the origin
and at a common “zero” rotation. We employ three markers to do this, one on
the lower arm and two at the sides of each wrist. We assume these markers will
be recorded as part of the full body capture as is done in standard capture set-
ups. This alignment step removes all wrist and arm movement and isolates the
hand movement.

For comparing frames, we define an error metric as the sum of Euclidean
distances (ED) between a given set of markers. We test every permutation of
m marker configurations by computing the nearest neighbor error from the pose
database to each frame of a test sequence of motion. We rank these trials to find
the best m-marker set based on the average error for each permutation. Note,
this test sequence is not a part of the original corpus, likewise for all subsequent
query motions, etc. in the paper. By rank ordering the error associated with
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each m-marker combination, we find the best marker set for the given inputs.
We summarize the algorithm in Figure 1.

marker_set_search( m, p, database ){
for (i = every permutation of m markers) {
for (k= every frame from test sequence){

i’ = extract_marker_set(i,k)

for (j =1 to p poses){
J ' =extract marker set(i,)
Jerr=ED(i’,j")
if (j_err<best j err) then best j =

!
s

i err+=EDC(i’, extract_marker_set(i,best j)

!
s

if (i_err < best i _err)then best i =i

1
i

return(best i)

}

Fig. 1.

2.2 Database construction

One assumption built into our approach is that we start from a database that
encodes the full, rich expression of the hand that we expect to see in the final
animation. While a very large database affords this assumption, clearly the size
of the database is at odds with the efficiency and utility of the algorithm.

To produce a database of representative poses, we apply a selection process
which picks unique poses from a large source database. To this end, we employ
clustering on the large “raw” set of motion capture frames from a full-resolution
capture of the hand and whittle the large corpus (of over 10,000 samples in our
case) to a small but sufficient database of a select number of p poses. This clus-
tering operation removes redundancy from the raw data. In practice, we found
that k-means clustering [22] worked sufficiently for the purposes of splitting the
data into like p groups and we then take a representative pose from each cluster.
We use this pose in the final dataset. The algorithm computes distances between
poses via ED of the full M-marker set and clusters into p € {50,100, 500, 1000}
groups. In the results, we find a p-pose dataset of 500 to work sufficiently, al-
though for more rich data captures, a larger number of poses may be desirable.

3 Hand reconstruction

We produce the hand-over animation from low-resolution marker sequences through
a straightforward reconstruction process. Starting from a sequence of low res-
olution data, the process finds the nearest example in the pose database using
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the wrist-aligned ED error metric. The best pose replaces the original data as a
complete substitution for the low-resolution marker set for that frame. We opt
to replace the full-hand to maintain pose fidelity.

Since the synthesized full-resolution marker data is computed pose-by-pose,
it will be discontinuous over time. We perform a filtering pass on the marker
data to smooth the individual marker trajectories and make them continuous
over time. We employ a cone-filter for this process. We took some care to choose
a width of the kernel to preserve features and found that a 15-sample width was
acceptable for our 120 hz sampling rate. Finally, we perform the mapping of the
filtered data employing the procedure described by [23]. Note, our motivation
for this choice is to create synthetic virtual marker dataset and separate this
process from the fitting approach used as this method is likely specific to existing
pipelines. Sample results appear in Figure 2.

1XIXIN],

Fig. 2. A selection of frames contrasting the output of our system (right - each frame)
with the original data (withheld from the database for testing.)

4 Results

We employ a Vicon 12-camera system for capture. To construct our corpus,
the cameras are brought in to allow good coverage of a small capture space
of approximately a one-meter cube. Within this space, using a sixteen-marker
hand configuration, we recorded a wide range of free-hand movements. From this
dataset we produced the pose database. We assess the choice of the number of
poses p and the number of markers m based on their average ED marker error for
all markers. Table 1 summarizes our findings with the average error per marker
for various database sizes.

To assess the quality of the poses found in contrast to the marker selection,
we include the full marker set which subsequently finds the best pose in the
database using the full-resolution marker set and computes average ED for that
pose. This measure provides a baseline and lower bound for the error for the
pose database. As we can see from the table, the number m converges to this
lower bound quickly and we conclude a marker set of 6 markers is sufficient,
and the sets of 2 and 4 are even surprisingly good. From Table 1 we also see
that the smaller pose databases are not as good as the larger ones. We conclude
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lp / m] 2 | 4 [ 6 [ Ful |
50 [1.2 (¢ = .38)[1.1 (.31)[1.1 (.32) [1.0 (.27)
100 | 1.1 (.32) [1.3 (.40)[.88 (.21)[.86 (.19)
500 | 1.0 (.57) [1.0 (.54)].68 (.23)].65 (.21)
1000 | .88 (.27) [.80 (.35)].65 (.23)[.62 (.20)

Table 1. Average error and standard deviation (cm) based on number of poses and
number of markers chosen.

that 500-1000 appears to be sufficient based on the input corpus to obtain high-
quality results with our approach. Figure 3 shows the results of the marker sets
for best m of two, four, and six markers. Based on these results, we conclude
a marker set of three is a compromise between the number of markers and the
error realized. For the remaining results we adopt the best marker set of three
markers with the 1000-pose database as the basic result and use it for further
comparison.

To assess the quality of the best marker set found, we compare our results
against the ground truth as well as the heuristically chosen marker set proposed
in [10]. In Figure 4, we compare results on the 1000-pose database with the orig-
inal data mapped for our test sequence. We treat the original as ground truth
and showcase our found best-six marker set against the six-marker set suggested
by Hoyet and colleagues. The plot also shows our marker set of best three which
out performs their manually selected marker set in most cases. Note, while Hoyet
and his colleagues produced the remaining animation heuristically for their re-
sults, we employ our reconstruction technique on their marker set as a control.
(See the corresponding video at http://graphics.cs.ucr.edu/projects/handover/
for visual assessment of quality differences.)

One observation we draw empirically from working with the system is that
the technique appears to act well with many markers sets. That is, the top n
marker sets all appear to have comparable quality for a given pose database. As
such, we consider a second criteria by which to judge the marker sets. Namely,
considering our original goal of recording the low-resolution marker set in the
full-body capture space, it seems important to keep the markers as far away from
each other on the hand as possible, to avoid occlusion and marker swapping. So,
we conduct an additional experiment that adapts the set selection by modifying
the objective function to maximize the average distance between the markers on
the hand and we apply this new search to the top-ranked markers sets based on
our previous findings. Specifically, the previous top fifty marker sets are ranked
based on the spread (ED) of the included markers on the hand, taken from a
representative set of reconstructed poses. The top “distance” marker set for six
markers is compared to the “best error” marker set and Hoyet’s marker set in
Table 2. As shown, the found marker set improve the distance measurement
substantially with minimal reduction in quality.

In the video, we include two “stress tests.” In the first, we use data for a
different hand, showing the original motion compared to the best three and
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Fig. 3. Placement of best marker sets selected by our algorithm compared to the orig-
inal marker set (left). The video compares the performance of each, we showcase here
their placement on the hand. The markers shown indicate the position of the marker
set relative to the hand.
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Fig. 4. Position of representative marker (base of index finger) for various marker sets
in contrast with the original data. The Hoyet et al’s set is the manually selected set of
six markers suggested for hand capture based on their findings [10].
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l Best Dist|Best Err[Hoyet et al.l

Marker Error .68 .65 .67
Marker Distance 8.4 6.0 5.3
Table 2. Comparison of three marker sets with 6 markers each for average marker error
in resconstruction and average distance between markers (both in cm). The latter is a
measure of how spread out the markers are on the hand.

the full marker set both reconstructed by our approach. The full marker set
acts as a baseline from which to judge the pose database and to contrast the
quality difference derived from the reduction of markers. The accompanying
video reveals little perceptual difference between the full marker set and the
best three marker set using our method but some discrepany between the full
and the original, indicating the pose database may be the weakest link of the
proposed approach. In the second stress test, we use our free-hand database on a
grab action. We see that the animation reconstructed is highly dissimilar to the
input motion. This is due to the fact that the poses simply do not appear in the
set of poses in the database. We conclude from this ‘failure’ that the approach is
best when a representative set of motions are used in constructing the database.
We suggest that, in practice, good pre-made databases for specific sets of actions
(e.g. free-hand gestures) might be used universally across subjects and capture
sessions.

5 Conclusions

We propose a straightforward approach for automatically producing free-hand
hand-over animation. Our technique is simple and we show its results in com-
parison to recent findings.

There are several limitations of the current system. First, we are making
the assumption that the motion of the hand is free of obstacles, as we are not
investigating the behaviors of grasping and manipulation and there are many
challenging aspects of this class of behaviors that have been addressed in previous
publications. Second, we assume we have examples of all the movements we might
like to employ in the pose database. Third, we expect that the pose dataset is
fairly densely sampled and therefore the resulting motion will not be overly
jumpy. This assumption is likely to be the weakest of the paper, as the results
do reveal periodic jumping, especially as the result dithers between two poses
and the hand appears to pulse in an undesired manner between the two solutions.
In practice, we did not follow any special procedures to make the result smooth.
Since the capture data itself coming from the actor is continuous, we assume its
temporal consistency will lead to the appearance of smooth final motion. The
weakness of this assumption should be addressed in future work. However, as
is, the quality of our automatic technique should be considered in comparison
to other techniques (as [3]) and we anticipate that there will be need for post-
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clean up, but our results provide a much better starting point than complete
animation synthesis.

The contributions of this work are both practical and fundamental. First,
we outline a straightforward procedure by which hand animation can be gener-
ated by first producing a representative pose database and then accessing that
database to create high-resolution motion for new sequences of data using a
simple input marker set. We provide insight about how large the pose database
needs to be and note that this database need not be recreated for every capture
or every actor depending on quality requirements of the application. We address
fundamental questions about how many and which markers should be recorded
when a small set of markers is desired for recording of the hand. We provide our
results on a comprehensive search of the best marker sets for various numbers of
markers and compare them to a complete (full) and hand-selected marker set.
As an added benefit, our method is straightforward and requires no special tools
or expertise.

Given our discussions with several motion-capture industry specialists, this
work appears to be addressing an important concern related to full-body capture
and hand-over animation. Our technique is a step up both in quality and ease
of use in contrast to existing processes in production today which are often
labor intensive and subject to animator biases (which can reduce consistency
and thereby quality.) As such, the strength of this work is truly in its simplicity
and we anticipate it and follow-up work will be an asset to professionals that
include hand-over in their animation pipeline.

Acknowledgments. The authors wish to acknowledge Karen Liu and the GVU
Center for use of and help in capturing the hand animation database.
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