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ABSTRACT

Embodied conversational agents benefit from being able to accom-
pany their speech with gestures. Although many data-driven ap-
proaches to gesture generation have been proposed in recent years,
it is still unclear whether such systems can consistently generate
gestures that convey meaning. We investigate which gesture prop-
erties (phase, category, and semantics) can be predicted from speech
text and/or audio using contemporary deep learning. In extensive
experiments, we show that gesture properties related to gesture
meaning (semantics and category) are predictable from text features
(time-aligned FastText embeddings) alone, but not from prosodic
audio features, while rhythm-related gesture properties (phase) on
the other hand can be predicted from audio features better than
from text. These results are encouraging as they indicate that it is
possible to equip an embodied agent with content-wise meaningful
co-speech gestures using a machine-learning model.
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1 INTRODUCTION

Verbal and nonverbal communication are important and comple-
mentary components of embodied human communication. In hu-
man communication, speech is typically accompanied by co-speech
gestures or gesticulation, performed by the hands, head, and occa-
sionally the body. Automatically generating such co-speech ges-
tures is an important task in character animation and human-agent
interaction, because a substantial fraction of our communication
takes place through co-speech gestures [23, 39]. Furthermore, gestic-
ulation has also been shown to enhance interactions with embodied
agents [5, 37], e.g., to help with learning tasks [5], and to lead to a
higher sense of co-presence [51].
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Figure 1: An illustration of the problem we study.

While early hand gesture-generation systems mainly relied on
rule-based approaches [7, 25, 38, 41], data-driven gesture generation
has become an important research area in recent years [1, 13, 27,
53, 54]. Both paradigms have advantages and disadvantages. Rule-
based systems produce gestures with clear communicative function,
but lack diversity and require much manual effort to design. Data-
driven systems, on the other hand, need less manual work and are
more flexible, since they can generalise and generate new gestures
on the fly. They may also scale better to large datasets. However,
despite several attempts [1, 27, 53], there have in our view been
no convincing demonstrations of recent data-driven approaches
consistently generating gestures with a clear semantic relation to
the speech content. For example, in terms of subjective gesture
appropriateness for the speech, no system in the 2020 GENEA
gesture-generation challenge [28] surpassed a bottom line that
simply paired the input speech audio with mismatched excerpts of
training data motion, completely unrelated to the speech.

It would be desirable to develop approaches that combine the
strengths of both paradigms, enabling systems to be built from
data yet producing gestures that fulfil a communicative function
together with the speech. This has led us to investigate whether
the communicative attributes of gesture can be modelled directly
using recent data-driven methods.

The goal of this paper is to analyse to what extent modern deep-
learning approaches are able to predict important communicative
properties of hand gestures from the co-occurring speech. As such,
this work should not be read as a machine-learning paper, since our
focus is not to propose new architectures or advance the numerical



performance on some pre-existing benchmark, nor as a gesture-
generation paper, since no gesture synthesis is performed. Instead,
this is intended as a work on gesture analysis that studies the
predictability of important gesture properties. Apart from being
an interesting question in its own right, developing the ability to
predict semantic aspects of gesticulation is a key element in driving
future gesture-generation systems [29] to produce more meaningful
and appropriate gesticulation. This work can therefore be seen as
a continuation of recent efforts [13, 47, 57] towards imbuing data-
driven systems with greater control over communicative function.
The specific contributions of our work are:

e We conduct extensive gesture-property prediction experi-
ments on a direction-giving dataset with a high fraction of
representational gestures, for which gesture properties have
been extensively hand-annotated. Specifically, we predict
13 distinct property labels — 8 relating to communicative
function - which is significantly more than any prior work.

e We analyse which modalities of speech — audio and/or text —
are useful for predicting which gesture properties.

e We investigate how individual or general different gesture
properties are, by experimenting with gesture-property pre-
diction for both known and previously unseen speakers.

Despite the highly individual and stochastic nature of gestures,
we find that numerous gesture properties can be predicted from
speech, both for speakers inside and outside the training data. We
also find that speech text and audio differ in their uses, where time-
aligned text enables predicting gesture category and semantics,
while prosodic audio features help predict gesture phase. More
information, including dataset and code, will be released on our
project page at: svito-zar.github.io/speech2properties2gestures .

2 RELATED WORK

Since this paper considers the predictability of different properties
of human gesticulation from multimodal representations of speech,
our review of related work covers two aspects: first the prediction
of various gesture properties, and then the use and combination
of speech modalities for gesture generation. In general, the pre-
dictability of gesture properties has not been extensively studied,
and most current gesture-generation systems do not integrate ex-
plicit gesture-property prediction, but there is nonetheless some
prior work on predicting various gesture properties from speech.

2.1 Gesture presence/absence prediction

Ferstl et al. [14] used a statistical method based on speech prosody
peaks to predict where a gesture should be placed. They set the
timing so that gesture strokes were 55% complete at the pitch peak.
Yunus et al. [56] predicted gesture presence and timing based on
speech audio using a recurrent neural network (RNN). In this work,
we likewise explore using a neural network for this, but we use
a convolutional neural network (CNN) instead of an RNN and
consider a more extensive set of gesture properties.

2.2 Gesture lexeme prediction

Many gesture synthesis approaches predict gesture lexemes, or
tags, that encapsulate both gesture form and semantics. For exam-
ple, a cup or conduit gesture involves a curved handshape, with

the palm facing up and a forward motion of the hand from the
speaker outward (gesture form) and is used to indicate an offering
or conveyance (semantics). Systems of this type include [8, 10, 21,
31, 32, 38]. Some of these were rule-based, and predicted gesture
semantics from input text based on a set of rules [8, 31, 32]. Other
research applied statistical methods to learn probabilistic mappings
from semantic concepts to gestures [16, 24]. Later, deep learning
was applied to predict a fixed set of semantic gestures based on
audio, text, and part-of-speech tags [10]. Our work, in contrast,
does not consider a codified set of lexemes and instead predicts
gesture properties that captures different elements of semantics,
such as gesture categories and semantic gesture features.

2.3 Gesture kinematics prediction

Ferstl et al. [13] considered predicting kinematic gesture prop-
erties (specifically velocity, initial acceleration, gesture size, arm
swivel, and hand opening) from speech. They trained multiple re-
current neural networks to predict these gesture parameters from
the speech audio signal, and found that some parameters, such as
path length, were predicted more accurately than others, for exam-
ple velocity. Instead of kinematics, we consider the predictability
of gesture properties related to gesture semantics and phase.

2.4 Gesture phase and category prediction

Kendon [22] defined the following gesture phases: preparation, hold,
stroke, and retraction. All phases are optional except for the stroke,
which is the expressive phase of the gesture. It has been shown
that gesture stroke is strongly correlated with pitch accentuation in
speech [12, 18]. Furthermore, McNeill [39] defined different gesture
categories, or dimensions, such as deictic, iconic, and metaphoric
(all related to the spoken message) gestures and beat gestures (which
are more strongly related to speech prosody and rhythm).

This paper investigates how well gesture phases (as defined by
Kendon), gesture semantic meaning, and gesture categories (as
defined by McNeill) can be predicted from speech audio and text in
a data-driven manner. The most similar prior work is due to Yunus
et al. [56, 57], where a restricted set of gesture phase and category
were predicted based on acoustic features only. Our study differs in
that we consider additional gesture properties and also study the
effect of different speech modalities as input.

2.5 Effect of the speech input modality

Many data-driven systems have only considered a single speech
modality — either audio recordings or text transcriptions thereof —
as input to the gesture generation, e.g., [4, 26, 40, 54]. However, the
field is now shifting to use both audio and text together [1, 10, 27, 53].
This is, among other things, based on recent ablation studies of
end-to-end gesture-synthesis systems in [27, 53], that compared
gesture generation models which used only one modality against
models using both. These studies found that using both speech
modalities (audio and text) improved the synthesised gestures. This
paper delves further into the effects of the different input modalities,
and addresses the question of which speech modalities are useful
for predicting particular properties of human gesticulation.
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3 DATA
3.1 Corpus

There are two principal ways to obtain data for 3D gesture synthesis:
optical motion capture [19, 30] and 3D pose estimation from videos
[1, 53]. Among existing datasets, almost all are monologues, with
only [19] involving interactions of more than one person.

Our present work aims at modelling iconic gestures, which are
rare in all the previously cited datasets. Despite their important
role in enabling meaningful gesticulation, these gestures only occur
occasionally during social conversations. Hence we decided to focus
on a dataset that contains a large proportion of iconic gestures, the
Bielefeld Speech and Gesture Alignment corpus (SaGA) [35]. This is
the largest and newest database we are aware of with detailed and
accurate gesture-property annotations. Larger gesture databases
exist, e.g., [1], but do not have the annotations necessary for our
research. We believe the SaGA dataset is sufficiently large for our
purposes, since it has been previously used for generating iconic
gestures [4], albeit based on information that cannot be extracted
from speech.

The SaGA dataset contains a total of 280 minutes of recordings of
25 different participants speaking and gesturing to an interlocutor.
Each recording lasted around 10 minutes, with durations ranging
from 4 to 19 minutes. All recordings are in German. A key goal
of SaGA was to capture a large number of iconic gestures. This
was accomplished through a specific data collection procedure in
which participants first saw a virtual reality bus tour and then
described the route, and the prominent visual landmarks placed
along that route, to another person. Both the navigation task and
the landmarks provided natural visual grounding upon which iconic
gestures are based. All participants followed the same route, thus
maximising the degree of consistency between the recordings and
simplifying the task of grounding gesture prediction in language
by considering a tightly restricted semantic domain. Audio and
video were recorded of each interaction [35] and every gesture
was manually annotated according to a detailed labelling scheme.
We use a subset of their annotation categories for our study, as
described in Section 3.3.

Dataset partitioning. Following previous works in gesture-synthesis

research [2, 27, 50], the dataset was encoded at 20 fps. This resulted
in 261,909 frames in total, out of which 127,581 frames were anno-
tated as containing a gesture. For our research, we replaced time-
frames annotated as interlocutor speech with silence, in order to
concentrate on the gesturing person’s own speech. We used 22 out
of 25 recordings for training and cross-validation. The remaining 3
recordings (numbers 7, 8 and 10) were held out for future research,
so that future models can be evaluated without data leakage from
the experiments reported here.

We used two different data partitions for cross-validation, to
avoid tuning hyperparameters and evaluating on the exact same
data splits. For choosing hyper-parameters, we performed classical
10-fold cross-validation. For evaluating the model, we use 20-fold
cross-validation, set up such that every fold contains 5% of the data
from each of the 22 subjects in the recordings we consider. Training
and validation sequences never overlapped.

3.2 Speech modalities and their encoding

We used two different speech modalities from the dataset, each of
which is described below.

Text. Each recording was transcribed in German. Transcriptions
contain the written form of every word and its timing (onset and
offset), but no punctuation or other sentence delimiters due to the
spontaneous and continuous nature of the speech.

We experimented with two commonly used word embeddings
for German: DistilBERT [46], which encodes each word together
with context, and FastText [20], which does not take context into
account. FastText outperformed DistilBERT when predicting the
semantics property (where the text modality has the most impact)
and was hence chosen as the text embedding for our experiments.

The FastText tokeniser produces one 300-dimensional feature
vector (a.k.a. “embedding”) per word-piece token. These were con-
verted to a single feature vector per word by computing the arith-
metic average of the feature vectors of all word pieces within that
word. When predicting gesture properties, each vector was sup-
plemented with one extra number about word timing, namely the
time-difference from the word onset to the prediction target frame
(negative for words starting before the target point and positive
for future words). Text-based gesture-generation commonly uses
timing information [16, 54], even though that information cannot
be derived from text alone.

Audio. We extracted the audio tracks from each video and con-
verted them to mono waveforms with a 48 kHz sampling rate. We
then used Parselmouth [17] to compute five prosodic features as
the audio feature set of our experiments: voiced/unvoiced binary
flag, log fundamental frequency (linearly interpolated in unvoiced
regions), log energy, and the derivatives of the last two computed
with finite differences. Such prosodic features are commonly used
in speech emotion analysis as well as for gesture-property predic-
tion, e.g., [56]. Specifically, we transformed pitch and intensity like
in [9, 26]: the pitch values were adjusted by taking log(x + 1) — 4
and setting negative values to zero, and the intensity values were
adjusted by taking log(x) —3. The audio features were first extracted
at 200 fps and then resampled to 20 fps by averaging, to match the
resolution of the gesture annotations.

We also experimented with using spectrograms instead of prosodic
features, but found no difference between the two when predict-
ing gesture phase (where the audio modality has the most impact).
Prosodic features were chosen since they have the benefit that they
are more anonymous, enabling us to release audio features.

3.3 Gesture properties and their encoding

The SaGA corpus contains detailed annotations of the properties of
the gestures in the recordings. We made use of the following ges-
ture properties in our experiments: R.G.Left Semantic, R.G.Right
Semantic, R.G.Left Phrase, R.G.Right Phrase, R.G.Left.Phase, and
R.G.Right.Phase. The Semantics property indicates which semantic
information is contained in the gesture. Phrase indicates gesture
category. Phases are sub-units of gestures that indicate: if the hands
are preparing to gesture, meaning is currently being conveyed, etc.
For details about the data collection and annotation scheme we
refer the reader to Liicking et al. [36] and Bergmann and Kopp [3].
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Figure 2: The frequency of each gesture-property label in the
SaGA dataset. Note that frequencies may sum to more than
127,581 since most categories are not mutually exclusive.

To simplify modelling, we merged the features for the left and right
hand into a single feature using a per-frame logical OR. Each feature
was encoded into a vector of binary values, which is one-hot for
Phase since phases are mutually exclusive.

Gesture-property representations. We encoded gesture properties
at a rate of twenty frames per second (20 fps). As described in
Section 4.2, our system first predicts if a gesture is needed and then
what kind of gesture it should be. For the latter gesture-property
prediction task, we only consider time-frames where a gesture was
present in the data, i.e., frames where any of the annotations we
considered were present and nonzero. This amounted to 127k out of
261k total frames. We list the gesture-property labels we considered
and the number of frames they were present at in Figure 2. As can
be seen, most of the gesture-property labels only apply to a small
fraction of the gesture-containing frames in the data.

We encoded the gesture properties as binary vectors. For this,
we first created an ordering of the different labels relevant to each
property. For example, for Gesture Category we ordered the dif-
ferent possible labels as follows {1: ‘deictic’, 2: ‘beat’, 3: ‘iconic’, 4:
‘discourse’}. A frame with Category annotation “beat-iconic” would
then be encoded by the vector [0, 1,1, O]T. As the example shows,
gesture categories are not mutually exclusive, and several labels can
be present simultaneously. The same applies to gesture semantics
labels. Gesture phase, on the contrary, is exclusive — only one label
can be applicable at a time — and we take this mutual exclusivity of
gesture phases into account during modelling and evaluation.

Note that the work in this paper does not make use of the videos
captured during the SaGA corpus recordings, only transcriptions,
gesture annotations, and anonymous audio features (prosody) de-
rived from those recordings. We will release the extended and
anonymized version of the SaGA dataset at our project page: svito-
zar.github.io/speech2properties2gestures .

4 EXPERIMENTAL SETUP

This section describes the experimental setup for our experiments
on predicting gesture properties from speech text and audio.
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Figure 3: The shared multimodal architecture of our two net-
worKks. First, the two modalities are independently encoded
using dilated temporal CNNs, using zero-padding as neces-
sary. Then, the two encodings are concatenated and fed into
an MLP decoder, which returns the final output.

4.1 Problem formulation

We frame the problem of gesture-property prediction as follows:
given a sequence of speech features s = [s;];=1.7 the task is to
generate a sequence of corresponding binary gesture properties
P = [pt]i=1.7- Here, t = 1 : T denotes indexing into a sequence of
vectors for integer t in 1 to T. Each speech segment s; is represented
by several different features, specifically acoustic features (e.g.,
prosody), semantic features (e.g., word embeddings), or both.

4.2 Gesture-property prediction model

Our gesture-property prediction model consists of two components
that take speech audio and text as input: Speech2GestExist, which
predicts the probability of making a gesture, and Speech2GestProp,
which predicts the probabilities of different labels for a given ges-
ture property. Such hierarchical models have been successful on
other sequence-prediction tasks such as text-to-speech intonation
generation, where first predicting the presence or absence of voic-
ing, and then predicting voicing frequency, worked better than
predicting the two aspects jointly at once [49].

Detailed model specification. We implemented the Speech2GestProp
and Speech2GestExist components using the same architecture based
on dilated convolutions [55] for information aggregation along the
time dimension. We have chosen convolutions instead of recur-
rency because no long-term memory is needed for this task, since
what was said one minute ago is irrelevant for the present gesture.
Dilated CNNs [55] are a widely-used neural-network architecture
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for sequence modelling, used in WaveNet [48] and WaveGlow [45],
and recently also adapted to human motion modelling [15].

The model inputs are sequences of audio frames and transcribed
spoken words in a sliding window centred on the current time
frame. Based on findings regarding the temporal synchrony be-
tween speech and gesture [34, 44], we consider the current, three
past, and three future word-token feature vectors and the current
and twenty past and twenty future audio frames (i.e., 1 s to ei-
ther side). By sliding these windows over the input speech-feature
sequences, we can make predictions for the selected gesture prop-
erties frame by frame for all times ¢ in the sequence. (For this paper,
we only considered frames sufficiently far from sequence edges
for all model inputs to be well defined, to avoid edge effects.) This
setup makes use of future speech, which is standard in gesture gen-
eration and rarely considered a limitation since most applications
do not depend on live speech. For example, the utterance-based
TTS systems used by many social robots and virtual agents require
the entire utterance text to be available before audio synthesis can
begin.

As illustrated in Figure 3, speech audio and text are first encoded
into the intermediate text window embedding and audio window
embedding representations using two separate neural networks,
each of them containing several layers of dilated convolution. The
two embeddings are then concatenated and passed into a simple
fully-connected neural network (MLP). At the final layer, we map
the values onto the unit interval [0, 1], since the output should indi-
cate the probability that each relevant gesture property is present.
For that, a sigmoid output nonlinearity is applied to Gesture Cate-
gory and Gesture Semantics and a softmax output nonlinearity is
applied to the Gesture Phase outputs. The softmax is used since
different phase labels, unlike the other property categories, are
mutually exclusive. From a probabilistic perspective, the use of a
sigmoid for each binary property corresponds to the assumption
that each property is statistically independent of the others, given
the input features. This is a common modelling assumption for
binary variables that are not mutually exclusive.

Since any given gesture property is present in just a fraction
of the time frames, any gesture-property predictor training data
will be highly imbalanced. To mitigate this, we experimented with
upsampling underrepresented classes to balance the data and also
considered several different loss functions: not only the standard
cross-entropy loss, CE(p;) = —log(p;) (where p; is the model prob-
ability of the correct class at time t), but also the focal loss [33], de-
veloped to address the rarity of positive labels in common datasets,
and a class-balancing version of the focal loss from [11]. The results
are reported in Section 5.3. Each loss function is aggregated for
sequences and minibatches by summing over constituent frames.

Hyperparameters. For each experiment and each model in Sec-
tion 5, we conducted a separate hyperparameter search using ran-
dom search [6]. Each random search consisted of 50 runs. For each
run, we randomly sampled all the key hyperparameters over a
predefined range for each value and trained the model for a fixed
number of epochs dependent on the task. We found no significant
difference in the validation scores in the latter half of training,
therefore no early stopping was used and the weights from the final
epoch were used. During the hyperparameters search we varied:

hidden dimensionality, number of layers, kernel size, dropout, and
output embedding dimensionality for each encoder; hidden dimen-
sionality, number of layers, and dropout for the decoder; learning
rate, batch size, and other optimisation parameters.

We selected the best hyperparameters based on the average
Macro F; [52] score of 10-fold cross-validation, and used these
settings to compute the results reported in Section 5. Hyperparam-
eters for all models in the paper are publicly available on FigShare:
doi.org/10.6084/m9.figshare.15134076.

4.3 Baseline systems

For the majority of the properties we predict, no previous base-
line systems or benchmark performance exist. Instead, our main
starting point for baselining is the finding from [28] that no gesture-
generation system beat a mismatched bottom line that paired speech
with unrelated training-data motion. Inspired by this, we create
and compare against a number of simple bottom-line systems that
similarly have no dependence on the input speech. These include
two constant-output systems (AlwaysZero and AlwaysOne), and
two systems based on random output, either uniformly random
(system UniformRandom) or random draws with the same distribu-
tion as the a-priori class abundances in the training data (system
InformedRandom). Any system can be said to be better than chance
if it surpasses all four of these bottom lines. Moreover, any time that
happens, we say that the corresponding property is predictable from
the given input features. (This is very different from being perfectly
predictable, which arguably is an unrealistic goal for problems that
involve human behaviour.)

4.4 Evaluation metrics

It is well known that standard classification accuracy (one minus
the error rate) does not capture overall system performance well
when the data is highly unbalanced, since it may then be possible
to achieve high accuracy by always predicting the majority class,
regardless of the input features of the given instance. Instead, we
use the F; score as our main performance indicator. This measure
is the harmonic mean of precision and recall, and is a popular
evaluation measure for classification of unbalanced classes. More
specifically, we use the Macro F; score [43], which is simply the
arithmetic average of F; scores for all possible, mutually exclusive
classes ¢: Macro F; = % chzl Fi(c).

Note that since phase labels are mutually exclusive, while other
gesture-property labels are not, phase is evaluated differently. For
gesture categories and semantics we calculate separate Macro Fy
scores for each label, since they are not mutually exclusive and are
treated as independent. For the gesture phase, on the contrary, we
evaluate only the Fy scores for each label, and not the Macro F;
score, which averages over all possible labels.

To get a better understanding of generalisation ability on our
limited dataset, we used cross-validation. For each of our experi-
ments, we report the mean and standard deviation of of the selected
performance measure across 20 cross-validation folds. These folds
were set up such that every fold contained 5% of the data from each
of the 22 people in the recordings we considered. This means that
the cross-validation quantifies within-person generalisation perfor-
mance, although we also looked at across-person generalisation by
holding out one individual at a time (see Section 5.5).
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Accuracy  Precision Recall F; for 1 F;for0 MacroF;

AlwaysZero 87% + 10% 0% + 0% 0% + 0% 0% = 0% 92% + 2% 46% + 1%
AlwaysOne 13% + 5% 13% + 5% 100% + 0% 22% + 8% 0% + 0% 11% + 4%
UniformRandom 50% + 1% 13% + 5% 50% + 2% 20% + 6% 64% * 5% 42% * 3%

InformedRandom 77% + 4% 12% + 5% 12% + 1% 12% + 3% 86% + 2% 49% + 1%

ourresult 86% + 4% 44% + 12% 35% * 9% 39% + 9%  92% * 3% 67% * 5%

Table 1: A comparison between various evaluation metrics for
gesture property prediction for the gesture semantic property
“shape”. The baselines are italicised; “our result” refers to
our multimodal dilated CNN (BothModalities). Red colour
highlights issues with the associated metrics.

5 RESULTS AND DISCUSSION

We conducted several experiments, first comparing different per-
formance metrics, and then evaluating 1) how well we can predict
gesture presence, 2) which modalities are essential for predicting
which gesture properties, 3) how well predictions generalise to
new speakers, and more. In this section, we report and discuss the
results of these experiments.
In each experiment, we vary one aspect while keeping everything
else the same. Our default settings are:
o using both speech modalities, instead of only audio or text;
e evaluating generalisation within known speakers, instead of
generalisation to new speakers;
e training individual models for each gesture property, instead
of training a single model of all properties simultaneously.

5.1 Comparison of evaluation metrics

In order to put the evaluation metric used into context, Table 1
reports the accuracy, precision, recall, F; and Macro F; scores for
predicting the presence/absence of (as an example) the gesture
semantics property label “shape”.

Overall, Macro F; is the most preferable evaluation metric. Accu-
racy is misleading because it can be very high for primitive baselines
(such as AlwaysZero) simply because one class is dominant over the
other. Using only precision or recall is not sufficient, as each focuses
only on either false negatives or false positives. As the F; score for
label presence is the harmonic mean between precision and recall,
it tends to be closer to the lower of the two values (see, e.g., Uni-
formRandom). However, the F; score is not symmetric and strongly
focuses on true positives. The Macro F; score is computed as the
arithmetic average between the F; scores for label presence (F; for
1) and for label absence (F; for 0). This me