Spring Rigs for Skinning

Nicholas Toothman
University of California, Davis
California State University, Bakersfield
njtoothman@ucdavis.edu

Michael Neff
University of California, Davis
mpneff@ucdavis.edu

Figure 1: Left: LBS artifacts from skin weights (top) resolved with spring forces (bottom). pose without surface edits (top) and
with (bottom). Middle: hip and knee bend with LBS (left) and spring forces (right). Right deferred rendering output for surface
normals (top left), positions (bottom left), and primitive IDs (top right), used to draw accurate strokes directly on the mesh
surface (bottom right).

ABSTRACT

Animation tools have benefited greatly from advances in skinning
and surface deformation techniques, yet it still remains difficult
to author articulated character animations that display the free
and highly expressive shape change that characterize hand-drawn
animation. We present a new skinning representation that allows
skeletal deformation and more flexible shape control to be com-
bined in a single framework, along with an intuitive, sketch-based
interface. Our approach offers the convenience of skeletal con-
trol and smooth skinning with the functionality to embed surface
deformation and animation as a core component of the skinning
technique. The approach binds vertices to attachment points on
the skeleton, defining a vector from bone to surface. Three types
of springs are defined: intervertex springs help maintain surface
relationships, springs from vertices to the attachment point help
maintain appropriate bone offsets, and torsion springs around these
attachment vectors help with deformation control as bones rotate.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MIG ’19, October 28-30, 2019, Newcastle upon Tyne, United Kingdom

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6994-7/19/10...$15.00
https://doi.org/10.1145/3359566.3360074

Edits to the mesh surface can also be represented by varying the
radial length and direction of these vectors, enabling a new range of
expressive power. Use of sketch-based interfaces and graphics hard-
ware make both skeletal and mesh deformation simple to control
and fast enough for interactive use.

CCS CONCEPTS

« Computing methodologies — Animation; Shape modeling;
Mesh geometry models.

KEYWORDS
skinning, binding, surface deformation, animation

ACM Reference Format:

Nicholas Toothman and Michael Neff. 2019. Spring Rigs for Skinning. In
Motion, Interaction and Games (MIG ’19), October 28-30, 2019, Newcastle
upon Tyne, United Kingdom. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3359566.3360074

1 INTRODUCTION

One of the strengths of hand-drawn character animation is the
free shape change that it allows. Consider how classic characters
ranging from Snow White to Aladdin freely change form to max-
imize the clarity of their communication. This expressive shape
change empowers their impact. Creating fluid shape change for 3D
digital characters is possible, but difficult due to the nature of the
medium; a 3D character mesh may contain thousands of vertices,

https://doi.org/10.1145/3359566.3360074
https://doi.org/10.1145/3359566.3360074
https://doi.org/10.1145/3359566.3360074

MIG ’19, October 28-30, 2019, Newcastle upon Tyne, United Kingdom

and manually adjusting them over a series of frames to achieve a
desired shape change is infeasible. Instead, shape is largely con-
trolled with abstract handles, such as lattice deformers for free-form
deformation and skinning for anatomical deformation. Skinning
is the process of discretely associating a mesh’s vertices with the
skeleton’s bones and defining the algorithm that translates the
skeleton’s motion to the mesh. While powerful, these techniques
do not provide the easy specification of arbitrary shape achieved
by pencil on paper.

Skeleton rigs have long been a useful abstraction for posing char-
acters. However, skeleton-based representations lead to rigid 3D
characters with limited deformation that is concentrated around
the joints, and adding more deformers requires significant rigging
work. In this paper, we present an extension of skeleton-based
techniques designed to support easy shape change while still main-
taining the advantages of skeletal abstraction. In particular, we
wish to support shape change that may or may not be physically
correct, as the artist desires, but enhances the artist’s expressive
power. Our approach consists of: a new skinning representation
that addresses classic skinning artifacts while also allowing shape
changes to be encoded; a set of tools for controlling shape change;
and a sketch-based interface to make it intuitive to author skeleton
and surface deformations in a single framework. Employing GPU
acceleration, the approach is suitable for real-time use.

The basic idea of our skinning approach is to extend traditional
techniques to allow radial and other forms of scale that are not
aligned with the direction of the bones. Recent work extended
traditional skinning to allow bone stretching [16], but not off-axis
scale. We achieve this by making explicit the connection between
each mesh vertex and an attachment point on a bone. The vector
between a surface vertex and its attachment point defines a scale
vector that can be used to deform the mesh. See Figures 3 and 2 for
a glimpse at attachment points and scale directions.

As the skeleton moves, our skinning method updates vertex
locations using a combination of two techniques: first, a rigid trans-
formation that tracks the motion of the bone, followed by an itera-
tive solver that removes discontinuities between adjacent vertices
through the use of torsion, linear, and prismatic springs. In addition
to eliminating common skinning artifacts, this approach enables
configurable shape control and surface-level deformations that
compose nicely with anatomical deformations from the skeleton.

Introducing scale vectors as a free parameter in the skinning
formulation affords two main benefits: the shape of the mesh can be
better controlled around a bending joint and a large range of off-axis
deformations can be achieved to support free shape change. Pa-
rameterized controls adjust the performance of joint deformations.
We present tools for authoring significant surface deformations
and combining them into animations. A sketch-based approach is
used to unify the skeleton and surface deformations into a single,
coherent and intuitive workflow.

2 RELATED WORK
2.1 Skinning

Skinning allows the movement of a high-resolution character mesh
to be controlled by a comparatively low degree of freedom skele-
ton, with joint rotations providing an intuitive control abstraction.

Nicholas Toothman and Michael Neff

Linear blend skinning (LBS), also known as skeletal subspace defor-
mation (SSD) and smooth skinning, allows vertices to be associated
with multiple bones by specifying weight values indicating their
influence [31]. The skinned position of each vertex is the weighted
average of the transformation associated with each bone. Despite
the artifacts caused by linearly blending transformation matrices,
including the “candy wrapper" collapse from twist rotations and
increasing volume loss for large bends, LBS remains a dominant
technique because of its speed and simplicity. Dual Quaternion skin-
ning (DQS) represents joints with screw transformations, which
prevents the artifacts encountered in LBS, but can introduce unde-
sired spherical bulge around large joint bends and tightly-packed
twist rotations around joints [20].

Extensive work has been done to alleviate skinning artifacts.
Rigging additional support joints can mitigate volume loss for large
bends, at the cost of recomputing skinning weights when the skele-
ton topology changes. For DQS, bulge artifacts can be corrected
with a post-processing stage in the animation pipeline to restore
original distances between vertices and bones [24]. Computing skin
weights of a higher quality is a popular approach. Accounting for
surface or volume when calculating skin weights improves the dis-
tribution of joint influence across the mesh [4, 9, 15]. Employing
finite element models to compute skin weights can also result in
more elastic behavior [21]. Leveraging example mesh poses to com-
pute skin weights yields results that accurately reproduce the poses,
but requires iterations of pose modeling and weight computation
until the desired fit is achieved [32].

Besides changing skin weights, another strategy is to change the
skinning algorithm. Le and Hodgins precompute optimized centers
of rotation for clusters of similar skin weights, then uses a decom-
posed LBS algorithm to enforce more consistent transformations
for each cluster [27]. These centers of rotation are similar to our
attachment points, but they are not interchangeable: the centers
are optimized for blend-based skinning, not for even distribution
along the skeleton, and will not produce satisfactory deformations
if used as attachment points.

Stretchable, twistable bones (STB) addresses artifacts caused
by changing bone lengths and allows twist to be spread along a
bone [16]. An extension of LBS, STB decomposes joints into sep-
arate rotation, translation, and scale transforms, then skins the
mesh using traditional skinning weights as well as endpoint weights,
which map a vertex to a parameterized position along the length of a
bone. Our method uses similar endpoint weights to compute attach-
ment points for each vertex. It is worth mentioning the use of mesh
contraction for computing attachment points, where attractive and
repulsive surface forces “deflate” a mesh until it approximates a
skeleton [3]. However, this technique is best suited for meshes
without any skeleton, and our contribution makes use of rigs with
skeletons already built.

Traditionally, skinning alone does not support mesh-level or
secondary edits. Volumetric or cage-based methods aim to support
character posing and a degree of elastic deformation. Harmonic
coordinates rig a mesh to a bounded cage volume for deformation
using generalized barycentric coordinates, but mesh editing is lim-
ited by the cage resolution, and achieving a particular mesh pose
can require unwieldy cage transformations [17]. Related approaches

Spring Rigs for Skinning

use mean-value coordinates [18] or higher order barycentric coor-
dinates [26]. Another approach is to estimate a pose space of mesh
deformations from examples [29, 43] that can then be interpolated.
Implicit skinning achieves real-time elastic deformation by trans-
forming and compositing isosurfaces made from mesh partitions,
then using them to adjust vertex positions and produce natural
features, such as contact bulges on joint bends. [46, 47]. Implicit
surfaces have also been for surface authoring, such as sketch-based
editing [2] and making plausible volumetric deformations alongside
skinning [36].

Other work has proposed methods to provide skeletal control
over characters while supporting elastic deformations. Capell et
al. achieve skeletal control and secondary motion from physical
forces by use of a volumetric mesh with bones confined to edges
in the control lattice [7]. This method aims to strike a balance
between skeleton-driven and secondary animation. This method
depends on physical simulation, although the use of a skeleton
helps to localize and reduce the computation cost. Other approaches
calculate a deformation energy over the mesh that controls how
much it can bend (e.g. [5, 6, 39, 49]). While powerful, physics-based
approaches do not accommodate the full range of unrealistic, free
shape deformations often used in more cartoony animations, as
favored by our method. However, our strategy of using position-
based dynamics to correct artifacts from other skinning methods
has been previously applied to meshes using stretch and position
constraints on tetrahedra [1, 35, 37].

The idea of radial offset has been used with spline-based skeletal
animation with impressive results [11]. Here, the authors apply
spline-aligned deformation to circumvent LBS artifacts [40] and
attach radial FFD grids to each joint, which allows for frontal, lateral,
and radial scaling to be applied as deformation styles. Skeletal
animation with deformation styles is possible, but the deformation
style itself is static. Our method enables both animated surface and
joint deformations to occur.

The technique most similar to our method is projective skin-
ning, which also employs dynamics (projective rather than position-
based), avoids skin weights, and connects the surface and skele-
ton [25]. Here, the authors volumize the skeleton and resolve con-
tacts with the surface, while we project the surface onto the skeleton.
Their approach to deformation involves least-squares energy mini-
mization to manage elastic strain, skin stretch, and collision, while
ours is to simulate springs of varying stiffness between the mesh
and skeleton until a desired shape is achieved.

2.2 Deformation

In contrast to skeleton-based deformation, mesh deformation schemes
offer superior control over arbitrary mesh regions. Free-form de-
formation (FFD) lattices are well established, simple to create, and
powerful tools for deforming space [30, 38]. However, such tech-
niques lack the high-level, anatomic structure of skeletons. Per-
forming edits like adding muscle bulges or creases becomes easier,
but bending an elbow or posing fingers becomes more difficult.
While it is possible to hierarchically assign FFD lattices to bones
for simultaneous mesh deformation and skeletal animation, they
fail to adhere to skinning constraints. Keyframing lattice control
points can generate animation, but using even small lattices in 3D

MIG ’19, October 28-30, 2019, Newcastle upon Tyne, United Kingdom

(4 X 4 x 4) quickly raises the number of controls the animator must
manage. Lattices also lack the ability to preserve local geometry
over a mesh, so features like wrinkles may get lost if the deforma-
tion is extreme. In comparison, Laplacian surface editing (LSE) is
capable of deforming the mesh while preserving such features by
minimizing changes to a point’s world and differential coordinates
[42]. This technique depends on the user specifying a region of
interest (ROI) to deform. Recent work has explored methods to
automatically specify ROIs with minimal effort by the user [50].
As with lattices, LSE-based approaches lack the articulated order
of rigged models. As our chosen method for surface deformation,
we supply LSE with ROIs created by drawing directly on the mesh
surface.

2.3 Sketch

Sketch-based methods for posing and animation have matured con-
siderably in recent years, as part of a growing interest in sketch as
a flexible input modality ([12, 14, 19, 28, 33, 45]). Using sketch in-
terfaces is appealing for a number of reasons. Aside from providing
a natural interface for user input, sketch systems excel in situations
where coarse input and speed are favored. Kho and Garland [22]
controlled free-form mesh deformations by sketching over a region
and then sketching a new position for the region. Our approach also
uses sketch for region definition and deformation, but operates on
existing skeletons and enables explicit region selection for precise
control.

The line of action concept from traditional hand-drawn ani-
mation works particularly well for defining a character’s overall
pose and has been explored in recent work [13, 34]. When used
for 3D applications, inferring depth values for 2D input can be
ambiguous. Avoiding this ambiguity has proven to be a challeng-
ing problem with approaches varying depending on the problem
domain, from assisted methods that predict and suggest options
as the user sketches [44, 45], to computational methods that rely
on constraints to find a suitable answer [8]. In our case, strokes
defining regions for deformation are placed precisely on the surface
with the use of deferred rendering and framebuffer objects, which
we will cover in the Implementation section.

We employ a sketch interface for both skeletal posing and mesh
deformation. This provides a unified workflow across the full range
of operations supported in our system. Sketch allows rapid explo-
ration of ideas with minimal effort, allowing users to remain in
“flow", rather than having to resort to options and menus for every
action. It provides control that is both accessible for novices and
sufficiently precise for experts.

3 SKINNING

To enable expressive deformation, we present a new skinning for-
mulation (Sec. 3.2) that is designed to easily accommodate free
shape change (Sec. 4) using sketch-based interfaces (Sec. 5).

3.1 Attachment binding

Our skinning method operates by directly connecting each vertex
to a bone, resulting in a scale vector between each mesh vertex and
its attachment point on the skeleton. Formally, for a vertex v;, the
attachment point a; = p + ti(c — p) is a position along the bone

MIG ’19, October 28-30, 2019, Newcastle upon Tyne, United Kingdom

Figure 2: Orthographic cross-section of character mesh
showing attachment binding on edge vertices. Left: direct
projection produces gaps that causes discontinuity when
joints rotate. Right: 6 iterations of smoothing and reprojec-
tion resolve most of the gaps.

between parent and child joint positions p and ¢ parameterized by

€ [0, 1]. The scale vector s; = v; — a; defines the vertex relative
to its attachment point. For the best skinning results, attachment
points should be chosen to minimize the length of s;, and adjacent
vertices should have similarly adjacent attachment points. A direct
projection test onto each bone may produce results that satisfy the
first requirement, but in many cases, can also create large gaps on
the skeleton between points (see Figure 2-left). If the mesh already
has skinning weights, these can be used to speed up attachment
point computation: v; is projected onto each of the bones immedi-
ately attached to the joint with the greatest skin weight, and the
closest projection is chosen for a;. While these results are sufficient
for skinning, they can be improved to reduce deformation time.
Applying Laplacian smoothing ([10]) on the attachment points sets
a; to the average of its neighbors, a; = m 2 jeN(i) aj; follow-
ing this step, re-projecting a; onto the nearest bone closes gaps
between points and maintains adjacency (see Figure 2-right). This
can be repeated a number of times, but is best used sparingly, as
excessive smoothing can draw attachment points too close together
on long bone chains. In practice, we use 6 iterations of projection
and smoothing.

3.2 Skinning Formulation

Skinning is calculated in two stages. First, the vertex v;’s attach-
ment point a; is rigidly transformed by its bone. Computing the
skinned attachment point a] = p” + t;(¢’ — p’) permits changes in
bone position and length. Next, the rigid skinned vertex position v;
is found as: v] = a] + R(p)(s;) = a; + 5], where R(p) is the rotation
component of p’s transform. This form of rigid skinning allows
the vertices to track the bone movements, but introduces rotation
discontinuities around joint bends (see Figure 3-left). These are
resolved in the second stage through the use of spring forces to
minimize differences between vertices and remove the discontinu-
ities. The second stage iterates until convergence, resulting in a
smooth deformation (Figure 3-right).

To resolve discontinuities and smooth out shapes, we use up to 4
types of spring-driven forces. Spring forces are computed according
to Hooke’s law, F = kx, where x is the displacement from rest and
k is a stiffness coefficient. For two of the forces, the springs used to

Nicholas Toothman and Michael Neff

=l Al

=
e —

P e,

Figure 3: Top: Applying spring forces to 2D cross-section.
Surface vertices are red, bones and attachment points are
green, and scale vectors are blue. Spring forces are illus-
trated for the vertex highlighted in yellow. Left column:
bone torque Fj, has no effect on rigidly-skinned meshes, but
attachment torque F, and surface edge F; are computed to
close the gap between a vertex and its neighbors. Middle:
Fy, Fq, and Fs resolve gaps, but leave a pointed outer bend.
Right: increasing Fs and decreasing F; help the vertex reach
equilibrium without collapsing too close to its attachment

point on the skeleton.

Figure 4: Controlling shape change during skinning. Left: us-
ing only Fs diminishes muscle features. Right: including F;
with F; helps preserve features.

relax the mesh act between neighboring vertices, so the net force
computed for v; is a sum of forces between vertex i and its one-
ring neighbors j € N(i). Thus, the displacement x is the difference
between a measure for the current and bind values of v; and v;. The
first of these neighborhood forces is called the attachment torque
force, F; = kqxg, where xg is the change in angle between s; and

Spring Rigs for Skinning

sj from their angle at bind. By itself, F, rotates a vertex around
its attachment point to minimize angles with its neighbors, which
can introduce skewing across the mesh when the skeleton bends.
To counter this, a bone torque force F;, attempts to restore the
bind angle between s; and its attaching bone. If the mesh has been
rigidly skinned and F}, is the only acting force, |Fj| = 0, but when
joined with Fg, the two forces act to drive anatomical deformation.
However, because these two forces are constructed to not change
|si], they may produce artifacts on joint rotations where the outer
bend region develops a pointed crease (Figure 3-middle).

Removing this artifact requires two additional forces. First, a
linear spring force Fs is added to restore relative edge lengths
between adjacent vertices, resolving overstretch and compression
(Figure 3-right). In this case, x is the difference of the current and
bind edge length between v; and v;. Because there is no relation
between the mesh surface and the skeleton in Fs, by itself it is likely
to reduce mesh volume on large deformations, which can also lead
to loss of surface details (see Figure 4). This is addressed with a
final linear force F; that attempts to restore s; to its bind length.

To compute the net force on a vertex, Fj, and F, are converted
from angular forces to linear. The magnitude of these forces is com-
puted as kx|[s;|, where x is either the displacement angle between
neighbors for F, or between s; and its bone for Fj,. The force direc-
tions are assumed to be orthogonal to s; and use the cross product
between s; and s; for Fg, or between s; and the bone direction for
Fy, as the axis of rotation. With the forces all in linear form, the
net force on v; is:

Fnet(i):Fa+Fb+Fs+Fl (1)

On each solver iteration, the vertex position is updated as:

v = v] +dt X Fnet(i),)

where dt is a time step parameter. Equation 2 behaves in the
same manner as used by Wilhelms and Van Gelder [48], in that
the force value computed is not used for full physical simulation,
but instead to help vertex positions converge to a rest state. In
implementation, however, it is possible to use semi-implicit Euler
integration with the forces instead, and adding a damping term for
velocity can generate effects such as force propagation along the
surface. For stability and memory requirements, the approach in
Equation 2 is preferred.

To some degree, the system’s timestep and epsilon variables can
influence the solver’s behavior and final shape. We find it most ap-
propriate to keep the timestep fixed at % seconds. Increasing this
may cause larger discontinuities to resolve in fewer iterations, but it
can also introduce oscillations before convergence. The solver’s iter-
ation and convergence behavior is flexible. Our system is configured
to repeat execution until a maximum count of 50 has been reached,
or when the largest vertex position change between solves is below
a threshold initially set to AABB,in X 1e—4, where AABB,;p is the
smallest dimension of the model’s axis-aligned bounding box. In
practice, the timestep and threshold variables may require adjusting
at initialization, but then may be left intact. While the timestep
and threshold do impact the final mesh deformation, the primary
choices for shape control are further discussed in Section 4.

MIG ’19, October 28-30, 2019, Newcastle upon Tyne, United Kingdom

3.3 Skinning Features

Applications requiring fast, simple skinning have generally relied
on linear blend (LBS) or dual quaternion (DQS) skinning, or combi-
nations and variations thereof. Each of these techniques computes a
weighted average of multiple transformations in order to determine
the final coordinates of each mesh vertex. The artifacts caused by
this blending are well-known. The “candy-wrapper artifact" is a
collapse of volume at the center of rotation that occurs with LBS
for twist rotations. It peaks at 180 degrees when rotating a vertex
in the child frame transforms it to be on the opposite side of the
joint to the same vertex in the parent frame. Blending these two
locations leads to collapse of the mesh. DQS avoids the collapse,
but the spacing of twist around the joint depends primarily on
skin weights, so further shape control requires weight editing. Our
approach avoids both issues, allowing arbitrarily large axial rota-
tions without collapse (Figure 5). Both DQS and LBS reset for large
rotations, whereas our method will continue to accumulate the
rotation.

Figure 5: Axial rotation on a cylinder with LBS (red), DQS
(green) and springs (blue). Where LBS begins to collapse on
large twists, DQS better preserves vertex-skeleton distance,
but can change twist direction as the twist increases. Spring
forces avoid collapse and diffuse the twist across the mesh
length.

Blended transform skinning also creates errors for large swing
rotations. LBS will create a narrowing of the mesh, known col-
loquially as “macaroni elbow", while DQS creates a bulge. These
artifacts are noticeable in Figure 6. Particularly noteworthy, the
artifacts depend significantly on the skin weight distribution. Our
approach avoids these artifacts and offers parameters to control the
deformation behavior around joint bends.

MIG ’19, October 28-30, 2019, Newcastle upon Tyne, United Kingdom

Figure 6: A 90 deg. rotation of a cylinder is shown. The top
row shows LBS (red), DQS (green), and rigid skinning (blue).
The bottom row shows the results of applying spring forces
on the skinned mesh above it. The spring force results are
relatively consistent regardless of initial skinning choice.

4 SHAPE CONTROL

Our skinning formulation supports a variety of techniques for ,
including skeleton and surface-based deformations. For blended-
based skinning, shape control is mainly found through the act
of creating and editing the skeleton and skin weights, but doing
so to create subtle details in animation can be limited or tedious.
Instead, we support a range of handles to determine the deformation
behavior and final shape.

k=200, i=25 k=200, i=100

Rigid k=20, i=25

II
HH

Figure 7: Altering stiffness coeflicients (k) for F, and itera-
tion counts (i) to produce different shapes.

Stiffness coefficients are essential for computing the spring forces
in Equation 1. Coeflicients can be distinct for each vertex pair
(k(i, j) = k(j, 1)) as well as for each force type. For example, increas-
ing the coefficient for F, can lower the iteration count necessary to
reach a desired shape, and lowering the coefficient for F; can allow
the surface to contract over large bends, allowing a range of shapes
beyond classical skinning as shown in Figure 7. The choice of stiff-
ness coefficients for each force provides some dimensions of shape

Nicholas Toothman and Michael Neff

control for the deformation. Our method supports individual coef-
aj+a;
lvi—v;[**
where aj, aj are the areas of the two triangles sharing the edge
between i and j. This is shown to provide more accurate elastic

behavior than uniform stiffness [48]. By default, the same stiffness

ficients for each adjacent vertex pair. For Fg, we use k =

coefficient is used for F,. For Fj,, we set k = |%|, where 0 is the
bind angle of s; and its bone, to enforce greater stiffness for vertices
whose s; is orthogonal to the bone run. For Fj, k = 1. Finally, for
overall shape control, each force type has a global coefficient scale
that can be used to change the dominating forces.

Conditional coefficients can further add control over the final
shape. Wilhelm and Van Gelder scale coefficients differently when
edge lengths are lower than their bind values [48]. For Fs, this
allows vertices near a joint’s outer bend to continue relaxing while
the inner bend quickly converges. Similarly, we can scale k(i, j) for
F4 or Fs when vertices i and j are attached to different bones.

Scale vectors are implicitly defined to run between vertices and
their attachment points. This representation allows us to author
surface-level deformations by altering scale vector magnitudes
and directions between poses. With this system, we can designate
specific vertices as kinematic (where their pose and animation is
decided by the user), and then configure the solver to more strongly
maintain their scale vector lengths and/or directions. Then the
kinematic vertices will not get deformed by the solver as much as
the non-kinematic neighbors, but will still drive relaxation across
the surface. Over a number of iterations, the solver will effectively
diffuse the kinematic edits to the nearby regions until it drops off.
This behavior is further controlled by designating boundary and
in-between vertices as well as kinematic vertices using regions
of interest (ROIs), a popular technique commonly associated with
surface editing techniques [41, 42].

4.1 Surface deformations

To produce surface deformations compatible with the spring force
system, we select a sparse set of vertices to serve as kinematic
handles by drawing a baseline stroke directly on the mesh surface.
The region of interest is automatically computed around the handles
using the mesh’s adjacency data and a maximum neighbor distance
set by the user. For example, if the distance is 4, then all vertices up
to 4 edges away from the handles are included in the ROL Drawing
a baseline stroke also generates an offset stroke, which defines how
the handles should deform. For each handle, we compute the change
in scale vector length necessary to move it onto the offset stroke.
The solver then applies F; to the handles for their new lengths and
runs normally for the rest of the ROI. Allowing a small fraction
(10%) of Fs to the handles helps to soften the edit and help it blend
with its neighbors. Through this technique, we can support surface
deformation automatically in the skinning process as an extension
of the spring forces. Each surface deformation is thus represented as
a set of alternate scale vectors for the chosen region. Given multiple
edits on the same mesh, we can interpolate between the sets of scale
vectors to produce transitional surface animations. By updating
the mesh’s s; values with these edits on each frame, we can drive
mesh-based animations alongside the usual skeleton animations
(Figure 8).

Spring Rigs for Skinning

Figure 8: Surface editing with strokes. Top left: the baseline
(red) is drawn down the spine and automatically produces
an offset (blue). Top right: the region of interest defines kine-
matic vertices (green) which are deformed by the stroke, and
passive vertices (red) which are deformed by springs. Bot-
tom left: after applying the edit. Bottom right: after apply-
ing joint rotations in the spine.

5 SKETCH-BASED INTERFACE

Achieving a desired character shape may require numerous itera-
tions and fine-tuning before the result is satisfactory. To encourage
fast and easy exploration of ideas, we offer sketch-based controls
for both skeleton posing and surface deformation.

5.1 Skeleton

Posing involves drawing a stroke across the skeleton to select
nearby joints and establish a baseline reference, then drawing an
offset curve to approximate the target shape. This input style re-
sembles the line-of-action stroke mapping presented by Kho and
Garland [23] and seen in differential blending [34], but with more
explicit user control over the mapping. Each 2D coordinate of the
stroke is projected from screen-space back into the 3D scene using
a plane with its normal set opposite to the camera’s view direction
and its center at the camera’s look-at position. The user can edit the
plane position and normal to fit their needs, and after projection,

MIG ’19, October 28-30, 2019, Newcastle upon Tyne, United Kingdom

the baseline can be adjusted to revise placement. Because user input
is numerous and somewhat noisy, the screen-space stroke coor-
dinates are reduced using the Ramer-Douglas-Peucker algorithm,
and the remaining points serve as input for computing a composite
Bézier curve.

The baseline selects skeleton joints by their screen-space distance
from the stroke, then it compute a scalar t-value € [0, 1] for each
joint to represent its closest point on the stroke. It also tracks the
offsets between the joints and their closest points. When the user
draws another stroke, it is also converted into a composite Bézier
curve, and then used to calculate transforms between the two curves
at each joints’ t-values. Then, we sequentially transform each joint
to produce the best fit along the new stroke while preserving the
joints’ offsets from the baseline. The user may continue drawing
strokes until achieving the desired shape, or they can optionally
transform control knots on the strokes for fine-tuning existing
poses. Figure 9 depicts the process.

Figure 9: Posing the character with input strokes. The base-
lines (green) select joints and serve as references for the off-
set curves (blue). The process can be repeated and layered as
needed.

5.2 Surface

Surface deformation requires the user to specify both a region of
influence and the desired transformations of a subset of points
within the region. We have experimented with several techniques
for interacting with the 3D surface and developed a method based
on direct mesh sketching. A previous sketch-based approach auto-
mates detecting and deforming silhouette vertices in screen-space,
then using LSE to deform the surrounding area [50]. This is a pow-
erful technique, but is limited to vertices that can be detected on
clear edges. In our system, we permit the user to interactively create
ROIs directly on the mesh surface. This required a new method for
vertex selection, which we accomplish with a deferred rendering
pipeline, described in Section 6.

6 IMPLEMENTATION

The skinning technique can be made very fast by appropriately
leveraging graphics hardware. Because the spring forces run on
iterations, using the standard vertex shader pipeline stage for this
would require transform feedbacks to store and access the results
of each pass. In addition, there is a fixed limit to the attributes per
vertex accessible in the vertex shader. Instead, we implement our

MIG ’19, October 28-30, 2019, Newcastle upon Tyne, United Kingdom

skinning technique using compute shaders for OpenGL. Compute
shaders can access as much data as the GPU can store through
shader storage buffer objects (SSBOs). Mesh vertices are stored in
SSBOs as structs containing vectors for position, attachment, and
force. To avoid redundant computation, a preliminary compute
shader runs before each iteration to compute and store the distance
and angle between every unique edge pair. Then, the spring force
solver looks up these edge values when computing forces for vertex
neighbors. Because the solver runs in iterations, we use a double
buffer to separately read and write results on each iteration, then
the output buffer for each pass becomes the input buffer for the
next pass. This design permits rapid iteration execution, as only
the input and output bindings have to change between each pass.
We also designed the solver to optionally restart if any parameters
change, allowing the user to interactively adjust them until satisfied
with the final shape.

For blend-based skinning, vertex normals are transformed by the
vertex’s weighted transform in the vertex shader stage. However,
our use of a non-linear spring-based solver for mesh and surface
deformations makes this approach unsuitable. To resolve this, we
run a compute shader to update face normals, then a second com-
pute shader to average these for vertices based on a dihedral angle
threshold, which allows the mesh to portray both smooth surfaces
and sharp edges. This GPU-accelerated approach for computing
normals is sufficiently fast and negligible in cost compared to the
deformation compute shader.

Because mesh deformation is decoupled from rendering, the ac-
tual rendering time is fast regardless of the deformation size, on
the same order as rendering a static mesh with the same geome-
try count. After skinning with compute shaders and recomputing
normals, we bind the contents of the SSBO as vertex attributes and
render using typical shader stages. We also exploit a deferred ren-
dering pipeline to query surface data needed for drawing strokes
directly on arbitrary surfaces. In the fragment shader, we output
surface color, vertex position, normal, depth, primitive IDs, and
barycentric coordinates (generated in a geometry shader) to sep-
arate texture channels attached to a framebuffer. This leverages
the rendering pipeline’s rasterizing, interpolating, and z-buffering
to save visible surface data for any camera and pose without ad-
ditional effort or computation. This also makes it fast and simple
to access these channel textures on the CPU, so creating a surface
stroke then becomes a matter of querying texture values under the
input device’s screen coordinates. The result is a set of 3D positions,
normals, and directions used to create Frenet frames and define a
smooth stroke along the surface, which is used to create regions of
interest and transformation handles. The deferred rendering output
and examples of surface strokes are shown in Figures 1 and 8.

7 RESULTS

The deformation and rendering systems have been designed to
support real-time deformations. With the default parameters, the
spring force solver is capable of reaching convergence within 50
iterations while maintaining at least 24 frames per second. Consider-
ing the normal re-computation and deferred rendering that are also
occurring in each frame, we find this acceptable for real-time use.
Unlike LBS or DQS systems, our solver must access and compute

Nicholas Toothman and Michael Neff

Table 1: Compute times (in milliseconds) for different iter-
ation counts across input meshes. For reference, LBS per-
formed in a compute shader completes in < 0.01 ms for all
meshes.

Mesh Bones | Vertices Tris 1=25 | I=50 | I=100
Chibi 36 16314 32624 | 0.53 | 0.91 | 1.78
Box 4 1802 3600 0.28 | 0.54 1.10
Plus 17 5634 11264 0.34 | 0.59 1.27
Human 85 10774 21204 0.42 | 0.84 1.50
Armadillo 19 90000 180000 | 0.77 | 1.59 3.04

more data than is possible in a typical vertex shader environment.
Due to the iterations and overhead, spring skinning can take one or
two orders of magnitude longer to compute than than typical GPU
skinning; however, it still achieves acceptable rates for real-time
animation for meshes of various sizes.

Table 1 presents a comparison of deformation compute times
across various mesh sizes. The spring force solver executes until
25, 50, and 100 iterations have been reached. The software ran on a
machine with an Intel i7-6700K (4.0 GHz) processor, 32 GB DDR4,
and an nVidia Geforce GTX 1070 (8GB) graphics card. Although
our method has much higher compute times than LBS, its imple-
mentation on graphics hardware enables it to achieve interactive
framerates. Adding user-authored surface deformations introduces
overhead on each frame due to buffer writes from the CPU to the
GPU, but this tends to be a comparatively small set of vertex data to
update. Making static, one-time mesh edits likewise has negligible
effect on performance. As expected, the time needed for computing
these edits is on the order of milliseconds and directly dependent
on the region of interest size; larger regions and meshes take longer
to compute than smaller ones.

8 DISCUSSION AND CONCLUSION

This approach to skinning offers anatomical and surface-level con-
trols for mesh deformation in a single framework in real-time. The
spring force solver’s parameters enable a variety of final mesh
shapes ranging from naturalistic to exaggerated cartoon styles,
with performance comparable to established methods. It performs
quite well with or without bone stretch, twist, length adjustment,
or surface edits, and it can readily use rigs with existing skeletons
and skin weights. The examples shown in Figures 1 demonstrate
its value as a skinning techniques as well as its flexibility. This
method behaves well for meshes of various thickness and skeleton
configurations, and it is highly customizable for the expression
of a wide range of visual effects, although it may require some
tuning from the user to receive the best quality. The deformation
quality is comparable to LSE and ARAP, but for sufficiently large
surface deformations, these solvers do not account for a skeleton
rig, and the resulting shape may not conform to the skeleton’s pose.
Our approach supports believable surface accommodation for both
natural and exaggerated character posing.

Issues to be aware of include the reliance on vertex attachment
points. This is similar to how LBS depends primarily on skin weight
quality. The compensation for this issue is finer shape control

Spring Rigs for Skinning

Figure 10: LBS without spring forces (top) and with (bottom).
Note the development of features along the spine and in the
shoulder.

around joints, which is reconfigurable during execution, unlike
traditional skin weights. Despite the dependency on attachment
quality, spring force skinning performs well in a variety of mesh
configurations. However, manual culling of helper bones may be
necessary for more complex rigs before computing attachment
points. For rigs composed of separate meshes for body, clothes, hair,
etc., it may be preferred to selectively use spring forces on a chosen
subset of geometry.

Spring forces grants more control than traditional skinning, pro-
ducing high-quality results and flexible shape control, provided the
system parameters are suitable for the geometry. The default values
for our timestep, convergence threshold, and spring coefficients
help prevent the mesh from diverging or otherwise deforming in an
undesirable manner. Further work on this technique may explore
automatic parameter adjustment during animation. For example,
the iteration count might be reduced for small deformations, or
increased to accommodate larger anatomical changes.

There are opportunities to improve performance for the spring
force solver. Presently, the system performs rigid skinning followed
by the solver execution on every frame. This has the potential of in-
troducing popping artifacts between frames, but the default param-
eters we provide make popping artifacts largely avoidable. We have
experimented with structuring the deformer pipeline to use one
frame’s solution as the next frame’s initial guess, a technique used

MIG ’19, October 28-30, 2019, Newcastle upon Tyne, United Kingdom

with elastic implicit skinning for the same concern [47]. This can
significantly reduce convergence time and improve performance,
but at the cost of frame independence, which has consequences for
batch rendering. Using a variation of STB instead of rigid skinning
as our first stage may also improve convergence by supplying a
smoother initial guess before the solver runs, but as with LBS and
other smooth skinning methods, this can limit the solver’s ability
to control how the final shape appears. Further work is necessary
to explore this option.

Using spring forces and scale vectors to drive mesh shape is the
most appealing features of our technique. These enable shape con-
trol for skinning and surface deformations in the same framework,
and the implementation on graphics hardware makes it interactive
for the artist and appropriate for controlling animation in real-time.
There are many opportunities to further exploit this, such as en-
abling inertia and momentum effects on the surface, accelerated col-
lision detection between opposing surfaces, and interactions with
external physical forces. In its present form, our method partially
resolves colliding regions and enables some degree of secondary
motion. In future work, we plan to develop more implicit behaviors
between the solver’s forces to create more deliberate secondary
effects, emphasizing bulge and contraction on bone stretches and
impact propagation for collision detection.

REFERENCES

[1] Nadine Abu Rumman and Marco Fratarcangeli. 2015. Position-based skinning for
soft articulated characters. In Computer Graphics Forum, Vol. 34. Wiley Online
Library, 240-250.

[2] Baptiste Angles, Marco Tarini, Brian Wyvill, Loic Barthe, and Andrea Tagliasacchi.
2017. Sketch-based implicit blending. ACM Transactions on Graphics (TOG) 36, 6
(2017), 181.

[3] Oscar Kin-Chung Au, Chiew-Lan Tai, Hung-Kuo Chu, Daniel Cohen-Or, and
Tong-Yee Lee. 2008. Skeleton Extraction by Mesh Contraction. In ACM SIGGRAPH
2008 Papers (SSIGGRAPH "08). ACM, New York, NY, USA, Article 44, 10 pages.
https://doi.org/10.1145/1399504.1360643

[4] Tlya Baran and Jovan Popovi¢. 2007. Automatic Rigging and Animation of 3D
Characters. ACM Trans. Graph. 26, 3, Article 72 (July 2007). https://doi.org/10.
1145/1276377.1276467

[5] Mario Botsch, Mark Pauly, Markus Gross, and Leif Kobbelt. 2006. PriMo: Coupled
Prisms for Intuitive Surface Modeling . In Symposium on Geometry Processing.
11-20.

[6] Mario Botsch, Mark Pauly, Martin Wicke, and Markus Gross. 2007. Adaptive
space deformations based on rigid cells. In Computer Graphics Forum, Vol. 26.
Wiley Online Library, 339-347.

[7] Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popovi¢. 2002.
Interactive Skeleton-driven Dynamic Deformations. ACM Trans. Graph. 21, 3
(July 2002), 586-593. https://doi.org/10.1145/566654.566622

[8] James Davis, Maneesh Agrawala, Erika Chuang, Zoran Popovi¢, and David Salesin.
2003. A Sketching Interface for Articulated Figure Animation. In Proceedings of
the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA
’03). 320-328. http://dl.acm.org/citation.cfm?id=846276.846322

[9] Olivier Dionne and Martin de Lasa. 2013. Geodesic voxel binding for produc-

tion character meshes. In Proceedings of the 12th ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. ACM, 173-180.
David A Field. 1988. Laplacian smoothing and Delaunay triangulations. Commu-
nications in applied numerical methods 4, 6 (1988), 709-712.
[11] Sven Forstmann, Jun Ohya, Artus Krohn-Grimberghe, and Ryan McDougall. 2007.
Deformation Styles for Spline-based Skeletal Animation. In Proceedings of the
2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA "07).
141-150. http://dl.acm.org/citation.cfm?id=1272690.1272710

[12] C. Grimm and P. Joshi. 2012. Just Drawlt: a 3D sketching system. In Proceed-
ings of the International Symposium on Sketch-Based Interfaces and Modeling.
Eurographics Association, 121-130.

[13] Martin Guay, Marie-Paule Cani, and Rémi Ronfard. 2013. The Line of Action:

An Intuitive Interface for Expressive Character Posing. ACM Trans. Graph. 32, 6,

Article 205 (Nov. 2013), 8 pages. https://doi.org/10.1145/2508363.2508397

Takeo Igarashi and John F. Hughes. 2001. A Suggestive Interface for 3D Drawing.

In Proceedings of the 14th Annual ACM Symposium on User Interface Software and

=
2

=
et

https://doi.org/10.1145/1399504.1360643
https://doi.org/10.1145/1276377.1276467
https://doi.org/10.1145/1276377.1276467
https://doi.org/10.1145/566654.566622
http://dl.acm.org/citation.cfm?id=846276.846322
http://dl.acm.org/citation.cfm?id=1272690.1272710
https://doi.org/10.1145/2508363.2508397

MIG ’19, October 28-30, 2019, Newcastle upon Tyne, United Kingdom

Technology (UIST °01). 173-181. https://doi.org/10.1145/502348.502379

Alec Jacobson, Ilya Baran, Jovan Popovi¢, and Olga Sorkine. 2011. Bounded
Biharmonic Weights for Real-time Deformation. ACM Trans. Graph. 30, 4, Article
78 (July 2011), 8 pages. https://doi.org/10.1145/2010324.1964973

Alec Jacobson and Olga Sorkine. 2011. Stretchable and Twistable Bones for
Skeletal Shape Deformation. ACM Trans. Graph. 30, 6, Article 165 (Dec. 2011),
8 pages. https://doi.org/10.1145/2070781.2024199

Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007.
Harmonic Coordinates for Character Articulation. ACM Trans. Graph. 26, 3,
Article 71 (July 2007). https://doi.org/10.1145/1276377.1276466

Tao Ju, Scott Schaefer, and Joe Warren. 2005. Mean value coordinates for closed
triangular meshes. ACM Transactions on Graphics 24, 3 (July 2005), 561-566.
O.A. Karpenko and J.F. Hughes. 2006. SmoothSketch: 3D free-form shapes from
complex sketches. In ACM Transactions on Graphics (TOG), Vol. 25. ACM, 589-
598.

Ladislav Kavan, Steven Collins, Ji{ Zara, and Carol O’Sullivan. 2007. Skinning
with Dual Quaternions. In Proceedings of the 2007 Symposium on Interactive 3D
Graphics and Games (I3D ’07). 39-46. https://doi.org/10.1145/1230100.1230107
Ladislav Kavan and Olga Sorkine. 2012. Elasticity-inspired deformers for charac-
ter articulation. ACM Transactions on Graphics (TOG) 31, 6 (2012), 196.

Y. Kho and M. Garland. 2005. Sketching mesh deformations. In Proceedings of the
2005 symposium on Interactive 3D graphics and games. ACM, 147-154.
Youngihn Kho and Michael Garland. 2005. Sketching mesh deformations. In
Proceedings of the 2005 symposium on Interactive 3D graphics and games. ACM,
147-154.

YoungBeom Kim and JungHyun Han. 2014. Bulging-free Dual Quaternion Skin-
ning. Comput. Animat. Virtual Worlds 25, 3-4 (May 2014), 323-331. https:
//doi.org/10.1002/cav.1604

Martin Komaritzan and Mario Botsch. 2018. Projective skinning. Proceedings of
the ACM on Computer Graphics and Interactive Techniques 1, 1 (2018), 12.

T. Langer and H.P. Seidel. 2008. Higher order barycentric coordinates. In Computer
Graphics Forum, Vol. 27. Wiley Online Library, 459-466.

Binh Huy Le and Jessica K. Hodgins. 2016. Real-time Skeletal Skinning with
Optimized Centers of Rotation. ACM Trans. Graph. 35, 4, Article 37 (July 2016),

Nicholas Toothman and Michael Neff

Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible Surface Modeling. In
Proceedings of the Fifth Eurographics Symposium on Geometry Processing (SGP
’07). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 109-116.
http://dl.acm.org/citation.cfm?id=1281991.1282006

O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. R6ssl, and H.-P. Seidel. 2004.
Laplacian Surface Editing. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH
Symposium on Geometry Processing (SGP "04). 175-184. https://doi.org/10.1145/
1057432.1057456

Robert W. Sumner, Matthias Zwicker, Craig Gotsman, and Jovan Popovi¢. 2005.
Mesh-based inverse kinematics. In ACM SIGGRAPH 2005 Papers (SIGGRAPH "05).
488-495.

Matthew Thorne, David Burke, and Michiel van de Panne. 2004. Motion Doodles:
An Interface for Sketching Character Motion. ACM Trans. Graph. 23, 3 (Aug.
2004), 424-431. https://doi.org/10.1145/1015706.1015740

Steve Tsang, Ravin Balakrishnan, Karan Singh, and Abhishek Ranjan. 2004. A
Suggestive Interface for Image Guided 3D Sketching. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI "04). 591-598. https:
//doi.org/10.1145/985692.985767

Rodolphe Vaillant, Loic Barthe, Gaél Guennebaud, Marie-Paule Cani, Damien
Rohmer, Brian Wyvill, Olivier Gourmel, and Mathias Paulin. 2013. Implicit
skinning: real-time skin deformation with contact modeling. ACM Transactions
on Graphics (TOG) 32, 4 (2013), 125.

Rodolphe Vaillant, Géel Guennebaud, Loic Barthe, Brian Wyvill, and Marie-Paule
Cani. 2014. Robust iso-surface tracking for interactive character skinning. ACM
Transactions on Graphics (TOG) 33, 6 (2014), 189.

Jane Wilhelms and Allen Van Gelder. 1997. Anatomically based modeling. In
SIGGRAPH, Vol. 97. Citeseer, 173-180.

Weiwei Xu, Jun Wang, KangKang Yin, Kun Zhou, Michiel Van De Panne, Falai
Chen, and Baining Guo. 2009. Joint-aware manipulation of deformable models.
In ACM Transactions on Graphics (TOG), Vol. 28. ACM, 35.

[50] Johannes Zimmermann, Andrew Nealen, and Marc Alexa. 2007. SilSketch: Au-

tomated Sketch-based Editing of Surface Meshes. In Proceedings of the 4th Eu-
rographics Workshop on Sketch-based Interfaces and Modeling (SBIM °07). 23-30.
https://doi.org/10.1145/1384429.1384438

10 pages. https://doi.org/10.1145/2897824.2925959

[28] Y.J.Lee, C.L. Zitnick, and M.F. Cohen. 2011. ShadowDraw: real-time user guidance
for freehand drawing. In ACM Transactions on Graphics (TOG), Vol. 30. ACM, 27.

[29] J.P. Lewis, M. Cordner, and N. Fong. 2000. Pose space deformation: a unified

approach to shape interpolation and skeleton-driven deformation. In Proceedings

of the 27th annual conference on Computer graphics and interactive techniques.

165-172.

Ron MacCracken and Kenneth I. Joy. 1996. Free-form Deformations with Lattices

of Arbitrary Topology. In Proceedings of the 23rd Annual Conference on Computer

Graphics and Interactive Techniques (SSGGRAPH 96). 181-188. https://doi.org/

10.1145/237170.237247

[31] N. Magnenat-Thalmann, R. Laperrire, and D. Thalmann. 1988. Joint-dependent

local deformations for hand animation and object grasping. In In Proceedings on

Graphics interface '88.

Alex Mohr and Michael Gleicher. 2003. Building efficient, accurate character

skins from examples. In ACM Transactions on Graphics (TOG), Vol. 22. ACM,

562-568.

[33] Luke Olsen, Faramarz F. Samavati, Mario Costa Sousa, and Joaquim A. Jorge.
2009. Sketch-based modeling: A survey. Computers & Graphics 33, 1 (Feb. 2009),
85-103.

[34] A.Cengiz Oztireli, Ilya Baran, Tiberiu Popa, Boris Dalstein, Robert W. Sumner, and
Markus Gross. 2013. Differential Blending for Expressive Sketch-based Posing.
In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (SCA ’13). 155-164. https://doi.org/10.1145/2485895.2485916

[35] Junjun Pan, Lijuan Chen, Yuhan Yang, and Hong Qin. 2018. Automatic skinning

and weight retargeting of articulated characters using extended position-based

dynamics. The Visual Computer 34, 10 (2018), 1285-1297.

Valentin Roussellet, Nadine Abu Rumman, Florian Canezin, Nicolas Mellado,

Ladislav Kavan, and Loic Barthe. 2018. Dynamic implicit muscles for character

skinning. Computers & Graphics 77 (2018), 227-239.

[37] Nadine Abu Rumman and Marco Fratarcangeli. 2016. State of the art in skinning
techniques for articulated deformable characters. In Proceedings of the 11th Joint
Conference on Computer Vision, Imaging and Computer Graphics Theory and Ap-
plications: Volume 1: GRAPP. SCITEPRESS-Science and Technology Publications,
Lda, 200-212.

[38] Thomas W. Sederberg and Scott R. Parry. 1986. Free-form Deformation of Solid
Geometric Models. SIGGRAPH Comput. Graph. 20, 4 (Aug. 1986), 151-160. https:
//doi.org/10.1145/15886.15903

[39] Xiaohan Shi, Kun Zhou, Yiying Tong, Mathieu Desbrun, Hujun Bao, and Baining

Guo. 2007. Mesh puppetry: cascading optimization of mesh deformation with

inverse kinematics. In ACM Transactions on Graphics (TOG), Vol. 26. ACM, 81.

Karan Singh and Eugene Fiume. 1998. Wires: a geometric deformation technique.

In Proceedings of the 25th annual conference on Computer graphics and interactive

techniques. ACM, 405-414.

w
)

[32

[36

[40

https://doi.org/10.1145/502348.502379
https://doi.org/10.1145/2010324.1964973
https://doi.org/10.1145/2070781.2024199
https://doi.org/10.1145/1276377.1276466
https://doi.org/10.1145/1230100.1230107
https://doi.org/10.1002/cav.1604
https://doi.org/10.1002/cav.1604
https://doi.org/10.1145/2897824.2925959
https://doi.org/10.1145/237170.237247
https://doi.org/10.1145/237170.237247
https://doi.org/10.1145/2485895.2485916
https://doi.org/10.1145/15886.15903
https://doi.org/10.1145/15886.15903
http://dl.acm.org/citation.cfm?id=1281991.1282006
https://doi.org/10.1145/1057432.1057456
https://doi.org/10.1145/1057432.1057456
https://doi.org/10.1145/1015706.1015740
https://doi.org/10.1145/985692.985767
https://doi.org/10.1145/985692.985767
https://doi.org/10.1145/1384429.1384438

	Abstract
	1 Introduction
	2 Related Work
	2.1 Skinning
	2.2 Deformation
	2.3 Sketch

	3 Skinning
	3.1 Attachment binding
	3.2 Skinning Formulation
	3.3 Skinning Features

	4 Shape Control
	4.1 Surface deformations

	5 Sketch-based Interface
	5.1 Skeleton
	5.2 Surface

	6 Implementation
	7 Results
	8 Discussion and Conclusion
	References

