
1

Lecture 2

Read Shiffman Chpts. 1 and 2

Writing Clean Code

Syntax

 Computers are a bit like an uptight grammar 
teacher
 If everything is not stated precisely, they will not 

understand you

 Really, computers are stupid!
 Computer design is quite brilliant

 Difficult to make computers understand ambiguity

Syntax

 Semicolons end a command

e.g. rect();

Syntax
Braces

 ( ) for commands 

e.g. rect();

 { } for blocks of code

void draw()

{

//commands

}

 [ ] for arrays (coming later)

(Human) Readability

 Whitespace
 Leave blank lines between blocks

 Comments
 Helps you and others to read and understand code

 //Single line

 /* multiple lines

line 2*/



2

(Human) Readability

 Indent all blocks for readability (4 spaces)
 edit->autoformat

void setup()

{

stroke(4);

for(int i = 0; i<10; i++)

{

//do something in a loop

}

}

Color

What are the primary colors?

 It depends…

 Subtractive primaries:
 Cyan, Magenta, Yellow

 e.g. used for print

 Additive primaries:
 Red, Green, Blue

 Used when mixing light e.g. a computer display

RGB Colour Model

WHITE

MAGENTA (1,0,1)RED (1,0,0)

BLACK

GREEN (0,1,0) CYAN (0,1,1)

BLUE (0,0,1)

YELLOW (1,1,0)

Color Gamut

Source: American Institute of  Physics

Source: Wiki Commons



3

Convention in Notes

 <name> indicates a value you must specify for a 
command

 e.g. line(<startX>, <startY>, <endX>, 
<endY>);

Coding Color in Processing

 Color is defined by a tuple (<R>, <G>, <B>)

 0 is none of a color

 255 is max color

 Examples:
 Bright Red: (255, 0, 0)

 Bright Yellow: (255, 255, 0)

 Dull Yellow: (100, 100, 0)

 Mid Grey: (120, 120, 120)

 e.g. fill(0,0,200); //To draw mid blueshapes

Alpha

 Fourth parameter that defines transparency

 (<R>, <G>, <B>, <A>)

 0 transparent

 255 is opaque

 255 is default value

Why 255?

 Computers represent all 
data combinations of bits

 Bit can be 0 (off/false) or 
1 (on/true)

 Numbers represented by 
multiple bits

22  =  4 21  =  2 20  =  1 #

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

Bits, Bytes and Pretzels

 Computer hardware designed to work with 
particular “group sizes” of bits:
 4, 8, 16, 32, 64

 1 Byte is 8 bits

 1 Byte can hold 28 = 256 values
 0 – 255

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

0

255

Moving Objects
 This is another form of state

 transformation state

 translate(<x>, <y>);

 rotate(<angle>);
 <angle> must be in radians (more on this later)

 For now, just use angles in degrees and wrap with 
the radians() method

 e.g., to rotate 20 degrees, use rotate(radians(20));

 Pivot is the relative origin of the object
 i.e. the point the <x>, <y> offset in say rect() is applied 

from



4

Saving Images

 save(“image.jpg”);
 Can associate with a mouse click or button press

void mousePressed() 

{

save(“myImage.jpg”);

}

Saving Images

 To save a sequence:

 saveFrame(“image###.jpg”);
 ### will be automatically replaced by the image 

number

 Can add to draw

More on 
Transformation State

Transformation State
 If you think of “stroke” as setting the color of 

pen that an outline is drawn with, similarly 
translate and rotate set the state of the origin
 translate updates the position of the origin

 rotate updates the orientation of the origin

 By default, the origin is the upper left corner
 x increases left to right

 y increases as you move down

 translate and rotate update this
 All later commands are effected

Problems

 translate( , );

 fill(0, 0, 255);

 rect(0, 0, 100, 200);

 translate(100,100);

 translate(   ,   );

 fill(0, 0, 255);

 rect(0, 0, 100, 200);

0   1   2   3    4  …
0
1
2
3
4…

Problems

 translate(   ,   );

 rect(200, 100, 100, 200);

 translate(    ,    );

 rotate(radians(   ));

 rect(0, 0, 200, 100);

0   1   2   3    4  …
0
1
2
3
4…



5

Saving State

 Commands like rotate() and translate() set a state 
that effects all future drawing commands
 Current transformation state

 These commands act relative to the current state

 e.g.

 Calling “translate(100, 0);” followed by 
“translate(50, 0);” is the same as just calling 
“translate(150,0);”

Saving State

 pushMatrix();  saves the current state on the 
stack
 Stack: type of pile where the last thing added is the 

first removed, like a stack of plates

 popMatrix(); removes the top state from the 
stack
 Sets this as current state

Saving State

 To save the default state (no translation, no 
rotation)

pushMatrix(); //save the default state

translate(…); //do any transformations/drawing

rotate(…);

rect(…);

…

popMatrix(); //restore the default state


