
1

Lecture 2

Read Shiffman Chpts. 1 and 2

Writing Clean Code

Syntax

 Computers are a bit like an uptight grammar
teacher
 If everything is not stated precisely, they will not

understand you

 Really, computers are stupid!
 Computer design is quite brilliant

 Difficult to make computers understand ambiguity

Syntax

 Semicolons end a command

e.g. rect();

Syntax
Braces

 () for commands

e.g. rect();

 { } for blocks of code

void draw()

{

//commands

}

 [] for arrays (coming later)

(Human) Readability

 Whitespace
 Leave blank lines between blocks

 Comments
 Helps you and others to read and understand code

 //Single line

 /* multiple lines

line 2*/

2

(Human) Readability

 Indent all blocks for readability (4 spaces)
 edit->autoformat

void setup()

{

stroke(4);

for(int i = 0; i<10; i++)

{

//do something in a loop

}

}

Color

What are the primary colors?

 It depends…

 Subtractive primaries:
 Cyan, Magenta, Yellow

 e.g. used for print

 Additive primaries:
 Red, Green, Blue

 Used when mixing light e.g. a computer display

RGB Colour Model

WHITE

MAGENTA (1,0,1)RED (1,0,0)

BLACK

GREEN (0,1,0) CYAN (0,1,1)

BLUE (0,0,1)

YELLOW (1,1,0)

Color Gamut

Source: American Institute of Physics

Source: Wiki Commons

3

Convention in Notes

 <name> indicates a value you must specify for a
command

 e.g. line(<startX>, <startY>, <endX>,
<endY>);

Coding Color in Processing

 Color is defined by a tuple (<R>, <G>,)

 0 is none of a color

 255 is max color

 Examples:
 Bright Red: (255, 0, 0)

 Bright Yellow: (255, 255, 0)

 Dull Yellow: (100, 100, 0)

 Mid Grey: (120, 120, 120)

 e.g. fill(0,0,200); //To draw mid blueshapes

Alpha

 Fourth parameter that defines transparency

 (<R>, <G>, , <A>)

 0 transparent

 255 is opaque

 255 is default value

Why 255?

 Computers represent all
data combinations of bits

 Bit can be 0 (off/false) or
1 (on/true)

 Numbers represented by
multiple bits

22 = 4 21 = 2 20 = 1 #

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

Bits, Bytes and Pretzels

 Computer hardware designed to work with
particular “group sizes” of bits:
 4, 8, 16, 32, 64

 1 Byte is 8 bits

 1 Byte can hold 28 = 256 values
 0 – 255

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

0

255

Moving Objects
 This is another form of state

 transformation state

 translate(<x>, <y>);

 rotate(<angle>);
 <angle> must be in radians (more on this later)

 For now, just use angles in degrees and wrap with
the radians() method

 e.g., to rotate 20 degrees, use rotate(radians(20));

 Pivot is the relative origin of the object
 i.e. the point the <x>, <y> offset in say rect() is applied

from

4

Saving Images

 save(“image.jpg”);
 Can associate with a mouse click or button press

void mousePressed()

{

save(“myImage.jpg”);

}

Saving Images

 To save a sequence:

 saveFrame(“image###.jpg”);
 ### will be automatically replaced by the image

number

 Can add to draw

More on
Transformation State

Transformation State
 If you think of “stroke” as setting the color of

pen that an outline is drawn with, similarly
translate and rotate set the state of the origin
 translate updates the position of the origin

 rotate updates the orientation of the origin

 By default, the origin is the upper left corner
 x increases left to right

 y increases as you move down

 translate and rotate update this
 All later commands are effected

Problems

 translate(,);

 fill(0, 0, 255);

 rect(0, 0, 100, 200);

 translate(100,100);

 translate(,);

 fill(0, 0, 255);

 rect(0, 0, 100, 200);

0 1 2 3 4 …
0
1
2
3
4…

Problems

 translate(,);

 rect(200, 100, 100, 200);

 translate(,);

 rotate(radians());

 rect(0, 0, 200, 100);

0 1 2 3 4 …
0
1
2
3
4…

5

Saving State

 Commands like rotate() and translate() set a state
that effects all future drawing commands
 Current transformation state

 These commands act relative to the current state

 e.g.

 Calling “translate(100, 0);” followed by
“translate(50, 0);” is the same as just calling
“translate(150,0);”

Saving State

 pushMatrix(); saves the current state on the
stack
 Stack: type of pile where the last thing added is the

first removed, like a stack of plates

 popMatrix(); removes the top state from the
stack
 Sets this as current state

Saving State

 To save the default state (no translation, no
rotation)

pushMatrix(); //save the default state

translate(…); //do any transformations/drawing

rotate(…);

rect(…);

…

popMatrix(); //restore the default state

