
1

Math, Angles and
Randomness

Shiffman Chpt 13

Basic Math

 Addition: +

 Subtraction: -

 Division: /

 Multiplication: *

 Assignment: =

float a = 6 + 5 * 4 /2 - 1;

 Follow standard order of operations (result is
15)

Math with Integers

 When working with integers, floating point
values will round down

 Examples:

 3/4 = 0 (integer)

 2.5 + 2 +. 1 = 4 (integer)

 (This only holds if you are doing integer math.
The above would be .75 and 4.6 respectively if
you are doing floating point math.)

(Surprising) Results from Integer
Math

 Processing will decide if the number is an integer or a
float based on whether it has a decimal place

 If neither number has a decimal place, it will perform
integer arithmetic. e.g.:

float a = 3/4; //integer division, result is 0

float b = 3.0/4; //floating point division, result is 0.75

println("a is " +a + " b is " + b);

 a is 0.0 b is 0.75

Math Short forms

 Increment: ++
 a++; is equivalent to a = a+1;

 Decrement: --
 a--; is equivalent to a = a-1;

 Add to: +=
 a += 5; is equivalent to a = a+5;

 Multiply by: *=
 a *= 5; is equivalent to a = a * 5;

 Also: /=, -=

Modulus

 Operator that returns the remainder of division

 A % B = C
 Divide A by B, and C equals the remainder

 C is always < B by definition

 Say A mod B

 Examples:

14 % 3 = 2

4 % 7 = 4

2

Angles

 Trigonometric functions in most programming
languages work in radians not degrees

 2 π radians = 360 degrees

 radians(); //converts number in degrees to
radians

 PI and TWO_PI are defined constants

 If theta is in radians, use sin(theta)

 If theta is in degrees, use sin(radians(theta))

(Pseudo-) Random Numbers

 random(); //returns a pseudorandom number
from a uniform distribution

Any one who considers arithmetical methods of
producing random digits is, of course,
in a state of sin. - John von Neumann

(Pseudo-) Random Numbers

 noise(<time>); //implementation of Perlin
noise that returns a number that must be
somewhat close to the number for the previous
time
 Number is in [0..1]

 1D, 2D or 3D

 noiseDetail(); //control the octaves used in the
noise function

noise() vs. random()

 Noise has more gradual change

(From Shiffman)

noise(<time>)

 Always return a value between 0 and 1

 Must increment time to get a different value

 Small increments will cause noise to change
slowly

 Larger increments will lead to larger changes

float r = random(1);

if(r< prob)

{

//do something random

}

//rain drops example

3

ellipse(random(width),random(height),64,64);
Seeding the Random Numbers

 noiseSeed(<int>); //used with noise()

 randomSeed(<int>);//used with random()

Cartesian and Polar Coordinates

 It takes two numbers to
specify a location in 2D

 These could be x-y
Cartesian Coordinates

Cartesian and Polar Coordinates

 It takes two numbers to
specify a location in 2D

 These could be x-y
Cartesian Coordinates

 Or, they could be (r, θ)
Polar Coordinates

 r : radius from origin

 θ : angle from axis

Cartesian and Polar Coordinates

 Polar Coordinates are more convenient in
certain cases
 When describing a circle

 When it is useful to specify an angle from the origin

 When it is useful to specify a distance from the
origin

Cartesian and Polar Coordinates

 // Polar to Cartesian conversion

float x = r * cos(theta);

float y = r * sin(theta);

4

Path Drawing Example Noise is Biased Around 0.5

 x axis is the value of
noise between 0
and 1
 Divided into 0.01

buckets

 y is the number of
times that value
occurred in a test
run

Noise is Biased Around 0.5 Noise is Biased Around 0.5

Trig Functions for Oscillation

 Trig functions provide a nice way to give natural
appearing variation
 e.g. sin(time);

 Pendulum Example (From Shiffman)

