
1

Math, Angles and
Randomness

Shiffman Chpt 13

Basic Math

 Addition: +

 Subtraction: -

 Division: /

 Multiplication: *

 Assignment: =

float a = 6 + 5 * 4 /2 - 1;

 Follow standard order of operations (result is
15)

Math with Integers

 When working with integers, floating point
values will round down

 Examples:

 3/4 = 0 (integer)

 2.5 + 2 +. 1 = 4 (integer)

 (This only holds if you are doing integer math.
The above would be .75 and 4.6 respectively if
you are doing floating point math.)

(Surprising) Results from Integer
Math

 Processing will decide if the number is an integer or a
float based on whether it has a decimal place

 If neither number has a decimal place, it will perform
integer arithmetic. e.g.:

float a = 3/4; //integer division, result is 0

float b = 3.0/4; //floating point division, result is 0.75

println("a is " +a + " b is " + b);

 a is 0.0 b is 0.75

Math Short forms

 Increment: ++
 a++; is equivalent to a = a+1;

 Decrement: --
 a--; is equivalent to a = a-1;

 Add to: +=
 a += 5; is equivalent to a = a+5;

 Multiply by: *=
 a *= 5; is equivalent to a = a * 5;

 Also: /=, -=

Modulus

 Operator that returns the remainder of division

 A % B = C
 Divide A by B, and C equals the remainder

 C is always < B by definition

 Say A mod B

 Examples:

14 % 3 = 2

4 % 7 = 4

2

Angles

 Trigonometric functions in most programming
languages work in radians not degrees

 2 π radians = 360 degrees

 radians(); //converts number in degrees to
radians

 PI and TWO_PI are defined constants

 If theta is in radians, use sin(theta)

 If theta is in degrees, use sin(radians(theta))

(Pseudo-) Random Numbers

 random(); //returns a pseudorandom number
from a uniform distribution

Any one who considers arithmetical methods of
producing random digits is, of course,
in a state of sin. - John von Neumann

(Pseudo-) Random Numbers

 noise(<time>); //implementation of Perlin
noise that returns a number that must be
somewhat close to the number for the previous
time
 Number is in [0..1]

 1D, 2D or 3D

 noiseDetail(); //control the octaves used in the
noise function

noise() vs. random()

 Noise has more gradual change

(From Shiffman)

noise(<time>)

 Always return a value between 0 and 1

 Must increment time to get a different value

 Small increments will cause noise to change
slowly

 Larger increments will lead to larger changes

float r = random(1);

if(r< prob)

{

//do something random

}

//rain drops example

3

ellipse(random(width),random(height),64,64);
Seeding the Random Numbers

 noiseSeed(<int>); //used with noise()

 randomSeed(<int>);//used with random()

Cartesian and Polar Coordinates

 It takes two numbers to
specify a location in 2D

 These could be x-y
Cartesian Coordinates

Cartesian and Polar Coordinates

 It takes two numbers to
specify a location in 2D

 These could be x-y
Cartesian Coordinates

 Or, they could be (r, θ)
Polar Coordinates

 r : radius from origin

 θ : angle from axis

Cartesian and Polar Coordinates

 Polar Coordinates are more convenient in
certain cases
 When describing a circle

 When it is useful to specify an angle from the origin

 When it is useful to specify a distance from the
origin

Cartesian and Polar Coordinates

 // Polar to Cartesian conversion

float x = r * cos(theta);

float y = r * sin(theta);

4

Path Drawing Example Noise is Biased Around 0.5

 x axis is the value of
noise between 0
and 1
 Divided into 0.01

buckets

 y is the number of
times that value
occurred in a test
run

Noise is Biased Around 0.5 Noise is Biased Around 0.5

Trig Functions for Oscillation

 Trig functions provide a nice way to give natural
appearing variation
 e.g. sin(time);

 Pendulum Example (From Shiffman)

