
1

Debugging

Debugging

 Bugs happen. Don’t panic!
 (things break, the sun will continue to rise)

 Processing 3.0 + has decent debugging tools
 This was lacking in earlier versions

Debugging Techniques

 Simplify while coding
 When writing code, do a small piece at a time and

test each piece as you go.
 Catch bugs quickly

 Bug is isolated to the new code you just wrote

Debugging Techniques

 Simplify while debugging
 Same strategy: isolate the source of the bug

 Comment out sections of code to see what block
causes the bug /* */
 Once enough code has been eliminated to get rid of the

bug, add lines back in to see which line reintroduced the
bug

 Use as simple a test case as possible that will
replicate the bug
 e.g. instead of running algorithm on a photo, run it on a

two color image that just contains a circle or square

 Less issues to consider, can make bug clearer

Debugging Techniques

 Take a break
 Let your mind relax and think of other things

 Explain your code to a friend or out loud
 Especially good for finding logic errors

 Get more information
 Key technique

 Use println to print the value of key variables at
different points in time

 Look for unexpected values

The Processing Debugger

 Enable Debugger
 Debug->Enable Debugger

 OR click on the bug icon in the upper right

2

The Processing Debugger

 Break point
 Marks a line in your code where you can pause it

during execution to inspect what is happening

 Set by:
 Clicking on line number OR

 Ctrl + B OR

 Debug -> Toggle Breakpoint

 Variables window
 Displays the value of all the active variables

Advanced Steps

 Step will not enter any functions that you may have
called

 Debug -> Step Into
 Call when on a line with a function you wrote

 Will “step into” that function
 Go to the first line of the function

 Debug -> Step Out
 Leave the function you are in

 Return to the code that called the function

The Processing Debugger

 Debug
 Start the program running

 Will stop on the first break point

 Step
 Move to the next line of code

 Continue
 Run until the next breakpoint

 Stop
 End the program

