
1

Functions/Methods:
Coding to Scale

Functions/Methods
 Way to encapsulate or wrap up a piece of

functionality

 Creates a “command” that can be called

 For this course, will use the terms “function”
and “method” interchangeably

 Seen many examples. e.g.:
 draw()

 setup()

 rect(…)

 fill(…)

Methods Provide
 Modularity

 Divide and conquer
 Break code into smaller pieces

 Easier to understand, debug and maintain

 Function call can replace many lines of code
 Better readability

 Reusability
 Create functionality that can be reused anywhere

 Write once, use often

 New “commands”

 Other people could call the new function

 Can write your own

General Form of Method

<ReturnType> name(<arguments>)
{

//code
}

 Return type is required
 “void” means method doesn’t return a value

 Return type could be a variable or object type

 Arguments are optional
 0 or more. Must specify type (e.g. int or float)

Example of Function Returning a
Value

float average(float a, float b)

{

float avg = (a + b)/2.0;

//pass this value back to the calling code

return avg;

}

Arguments

Return Type
Example of Function Being

Called
float num = 100;

float result = average(num, 50);

println(result);

2

Simple Method to Build a
Function

1. Write code in draw()

2. Test it and make sure it does what you expect

3. Cut and paste the block of code to outside draw()

4. Add the return type, method name and braces

void foo() {

//your code

}

5. Replace code in draw with call to function

6. Add arguments

7. Use your function in other ways

Example: Drawing Stars

What does this code output?
void passVariable(int a){

a = a + 5;

}

void setup(){

size(600, 600);

int testInt = 5;

println("Before call: testInt " + testInt);

passVariable(testInt);

println("After call: testInt " + testInt);

}

Passing by Copy or Passing by
Reference

 Variables are passed by value
 “Passed by value” or “passed by copy” mean the

same thing

 Function gets the value of the variable

 Making changes to this copy will NOT change the
value of the original variable

 Output to previous code is 5

Pass By Copy Animation

Calling function: setup()
Called function:
passVariable(int a)

testInt

5

a

5

a

10

Passing by Copy or Passing by
Reference

 Objects are passed by reference
 Function gets a reference to the actual object

 Making changes to this reference will change the
object

 We’ll revisit this when we know what objects are!

3

Pass By Reference Animation

Calling function: setup()
Called function:
passReference()

testObj a

