® What if you have a collection of objects of the

More Complex Data same type, e.g. stones of different weights. How
Representations can you work with this data efficiently?

m Current approach:

int stoneWeightl = 3;

|
int stoneWeight2 = 54;

int stoneWeight3 = 7, Hard to access

particular entries!

m Arrays: indexed list of items Optional initialization
> All items must have the same type ® int [] stoneWeight = {3, 54, 7};
> Identified by a name and index
> Index starts at 0 m General form of declaration
m c.g. int [] stoneWeight = {3, 54, 7}; <type> [] <name> = new <type>[<size>];
> The value of stoneWeight[0] is 3 meg

> The value of stoneWeight[1] is 54, etc. > int [] intList = new int [42];

m Can use like any other variable. e.g. in = Arrays have a fixed size
assignment:

> stoneWeight[2] = 6 + stoneWeight[1];

items it can hold
int [| a = new int[10];
println(a.length);
m Note: length is not a method, so no ()
> Not length();
m What is the value of alength?

m What is the index of the last element in the
array?

m alength is 10, and the last element is a.length-1
or9

m To grow array

> Could allocate a larger array and copy first to it
m Processing functions to manipulate arrays:

> shorten();

> concat();

> subset();

> append();

> splice();

> expand();

m sort();

m reverse();

m Functions do not modify the otiginal array
> They return a new array
m For example:
String[] sal = { "OH ", "NY ","CA "};
String]] sa2 = shorten(sal);
println(sal); // 'sal' still contains OH, NY, CA
println(sa2); // 'sa2' now contains OH, NY
m Can update the array by assigning the result to it. e.g.

sal = shorten(sal);

int [][] intArray = { {1, 2,4},
{5,1,7},
{2,9,18} };

The value of intArray[1][2] is 7.

m Contain data AND methods
> Encapsulate a particular concept
me.g Star
m Both data and operations related to that entity
m Way of thinking about problems and organizing
solutions
> Object-Oriented programming

m Objects are data types
> User definable

» Can use like a variable name

m Class is the definition
m Object is a specific instance of that definition

m Like the difference between integer, the general
type, and a specific variable of type integer

m We know some things about a car:
> Mileage
» Color
> Model
> Weight

® And a car can do some things:
> Accelerate
> Brake

> Steer

class Car //functions car can perform
{ void Accelerate();

//data about car void Brake();

float mileage; void TurnLeft();

color color; void TurnRight();

String model; float GetWeight();

float weight; b

m create an instance of the class. i.e. an object
Car myBeatle = new Car();

m Call functions of the object
myBeatle.Accelerate();

myBeatle. TurnRight();

m Use data in the object

println(“My car weighs 7 + myBeatle.weight);

class foo

{

int val = 0;

foo(int v)
{
val = v;
}
}

foo testObj = new foo(5);

m “foo” is a class

m “testObj” is an object

> An instance of the class
“fo0”

m Object initiation
» Constructor

= Naming convention

» Prefix all member variables with m_

m Same for methods or variables. e.g.

foo testObj = new foo(5);
testObj.val = 15;

//The . accesses the val member of the foo class

m See code example

m Hide details that the world doesn’t need to know
about.

> e.g. car driver doesn’t need to know how the
carburetor works, just how to use the brake,
accelerator and steering wheel

m Simplifies what the user needs to know

m Allows details to be changed later as nothing
outside depends on them

m Not expected to write your own classes
> Encouraged to try
m Will use classes defined by other people

> e.g. when working with images and video

