

- Are analog signals necessarily as clean as the image suggests?
- No:
 - > "imperfections" in source
 - > Background noise, other interference
 - ➤ If recorded:
 - Limitations of recording technology
 Noise in the recording
 - Limitations of the playback technologyNoise in the playback

Analog to Digital Conversion

- Take *samples* of original signal
 - > Sample: measurement at a particular point in time
- Can vary:
 - > Frequency of the samples
 - > Number of levels of quantization

Quantization

- Original signal must be converted to a discrete value
- The range of values depends on the number of bits allocated
- 8 bits
 - Range from 00000000 to 11111111 (binary)0 to 255 (decimal)
- 16 bits

> 0 to 65535

> Range from 000000000000000 to 11111111111111

Demo on 1D Signals

- Varying sample frequency
- Varying quantization
- Lines to illustrate error

Rasterization

- Discretization of an image
- Continuous image must be mapped to a pixel grid
- Each pixel may store one and only one value
- Also have quantization
 - > # bits allocated for color
- Sampling frequency determined by grid resolution

Rasterization Demo

Vector vs. Raster Graphics

Vector Graphics

- Vector graphics use a continuous representation
 e.g. floating point coordinates,
 - > U.g. Hoating point coordinates, object parameters
 > Will be rasterized when they
 - are rendered, but this hasn't happened yet
 - Can be more compact to store
 Can be rendered at any resolution

Raster Graphics

- Raster graphics have already been converted to a pixel grid
 Can be larger
 - Resolution cannot be changed (easily)
 - > If a higher resolution is
 - needed, image will look jagged