m Consider we are tracking a fly

. m Sensor reports the fly’s position several times a
Filters P yep

second
m Some noise in the sensor
m Goal: reconstruct the fly’s actual path

m Problem: can’t rely on individual measurement
due to noise

= How should we proceed?

m Note: there is coherence between the reported

samples
m Looking at a few samples may give us a better
picture & (%
> Noise may “cancel out” t'i t'i "
m Instead of using a single sample, compute a ® This construction is a type of filfer

weighted average of a couple of samples before > Moving weighted average

and a couple after ® Looks at multiple samples to adjust the output signal

m The weights define the behavior of a filter

m Weights must add to 1

Input mmmmp| Filter | mmmp Output

m Filtering noise with a simple box filter = Can re-apply the filter .
> Take the output, and use it as the input to the filter
> Called Iterated Filtering
m Applying a moving weighted average filter to
itself multiple times will yield a filter with the
shape of Gaussian Probability Distribution

m Demo
> Iterated filtering on noisy sine wave

> Iterated filtering of box filter

m The range or number of samples needed to
compute the filter is referred to as the filter’s .
support More on Signals

> Filter in example has support 5

m Generally want support to be /ocal
> L.e. not to need too many samples
> Filter only reacts to local variation

> Easier to compute

m Lowest frequency is the pitch —
Called fund: 1 fi T ™ r
> % ~€ un amenta‘ reqt.wncy | Tiom — Taare ©
m Additional harmonics will affect the sound o
-
> Timbre of the sound] o : . : .
° . 1‘- ‘-r - -

> Harmonic frequencies are an integer multiple of the
fundamental frequency

[Trummet - midda g

st -

: il- l-i"

Source: http:/ /www.ux1.ciu.edu/~cfadd/1150/16Waves/char.html

m Low pass filter
> High frequency components are de-emphasized
> Low frequency components kept the same
m “passed”
> Averaging filter is low pass
m High pass filter
> Maintain high frequency, de-emphasize low
m Band pass
> Filters can be tuned to any range of frequencies, or band
> Pass that band and de-emphasize the other frequencies

m Want to extend the idea of filters to 2D images

> Many effects rely on using a pixel’s neighbors to
update its value

= (ADVANCED!") Convolution can be thought
of as the integral of the effect of one function f
(the filter) on a second function g (the image)

m In discrete representations, the filter and image
are both grids
> Do a summation instead of an integral

> Easier to understand with an example

1. You are not responsible for this formal definition. It is included for completeness.

= Convolution is done by replacing a pixel by the

weighted sum of its neighbors

m c.g. a Sharpen filter can be defined as:
ERERE!
119 -1
1 1-1|-1

> Convoultion: pixel (i, j) = -pixel(i-1,j-1) -pixel(i-1,j) -
pixel(i-1,j+1) -pixel(i,j-1) +9*pixel(i,j) -pixel(ij+1) -
pixel(i+1,j-1) -pixel(i+1,j) -pixel(+1,j+1)
® Must be done for every pixel

Working with Images

m Por every pixel

> Replace pixel color with “average” of its neighbors

m Meaning of “average” can vary

> In general, it is a “weighted average” where different
pixels are given different importance, or weight

m Similar to applying a filter to a 2D image

m Left rectis
intensity 200

m Right rect is
intensity 100

= Apply unsharp
mask

RN
ERERE
ERENE!

m A Blur filter can be defined as:

1/9|1/9 | 1/9

1/9|1/9 | 1/9

1/9 | 1/9 | 1/9

m Filters can be any size

m The filter components must sum to 1

> Avoids changing intensity

® What would I do if T wanted my image to be
more blurred?

m Can increase the filter size

m Can apply it repeatedly

m [eft rect is
intensity 200
m Right rect is
intensity 100
= Apply blur

1/9 [1/9 | 1/9

1/911/9 | 1/9

1/9 | 1/9 | 1/9

m Edge detection:

> Edges often marked by large differences in the value
of adjacent pixels

> In a copy image, store distance between adjacent
pixels in the original image

> Large differences often indicate an edge

m Window filter

m Whole image

// Pixel location and color
int loc = x + y*img.width;

color pix = img.pixels[loc];

// Pixel to the left location and color
int leftloc = (x - 1) + y*img.width;
color leftPix = img.pixels[leftLoc];

// New color is difference between pixel and left neighbor
float diff = abs(brightness(pix) - brightness(leftPix));
destination.pixels[loc] = color(diff);

= Won’t detect horizontal edges

® Numerous built in image processing filters
= Command:
> filter(<mode>);
> filter(<mode>, <level>);
= <mode> :
= THRESHOLD, GRAY, INVERT,

POSTERIZE, BLUR, OPAQUE, ERODE,
DILATE

m Rasterizing an image or font creates aliases
> Jagged borders that should be smooth
m Antialiasing creates a more visually appealing
image by slightly blurring the edges
m Implemented in Processing

» Command: smooth()

