
1

Video

Uses Video library

 Must add library to processing
 Sketch->Import Library->Add Library

 Select “Video”

 Click “Install”

 At the top of your code:

import processing.video.*;

Image Concepts Transfer

 Video is basically a series of images

 Many of the commands used with images
transfer directly
 translate(); rotate();

 tint();

Live Video
 Must setup and connect camera

 See book for instructions – varies on machine

 Capture is main video class
 Capture(this, <width>, <height>, <fps>);

 this is a reference to the current object

Capture video;

void setup()

{

video = new Capture(this, 320, 240, 30);

}

Live Video

 Must start the Capture object
 video.start()

 Do in setup

Must Read Each Frame of Video

 Option 1:

void draw()

{

if (video.available()) //checks if there is a

// new frame

{

video.read(); //reads the frame

}

}

2

Must Read Each Frame of Video

 Option 2:

//callback triggered when frame is ready

void captureEvent(Capture video)

{

video.read(); //reads the frame

}

Display Frame

 Same as an image:

image(video, 0, 0);

 Again, all the image commands apply

 Run example

Prerecorded Video (movie files)
 The main object is Movie

 Loading:

Movie movie;

movie = new Movie(this, “test.mov”);

 Playing (activating movie as input source):

movie.play(); //plays once

movie.loop(); //loops continuously

movie.stop(); //stops

movie.pause(); //pauses

Must Still Read Each Frame
 Option 1:

void draw()

{

if (movie.available()) //checks if there is a

// new frame

{

movie.read(); //reads the frame

}

}

Must Read Each Frame of Movie

 Option 2:

//callback triggered when frame is ready

void movieEvent(Movie movie)

{

movie.read(); //reads the frame

}

Movie Functions

 Display (same):

image(movie, 0, 0);

 Other functions:

movie.duration();

movie.jump(<time>);

 Demo

3

Photography is Becoming
Computational

darkroom

image

Pre-
computation

Post-
computation

image

image

New Cameras

light.co prototype
camera

Video Mirrors

 Insert computation into process
 Display something other than captured pixels

 Invert color

 Grayscale

 Rectangles proportional to the image brightness

 Display image is based on pixel data, but
transformed

 BrightnessMirror

Class Problem

 Modify code to create a mirror where:
 All squares are the same size (80% of block size)

 The squares are a shade of red corresponding to
how bright the original pixel is (black to bright red)

How are cameras used?

 Selfies

 Photography

 Reading QR codes

 Surveillance/security cameras

 Remote monitoring

 Driver assistance

 Motion capture

 Computer input
 Kinect, Leap, etc.

Video as Input

 Can view camera as an input device!
 Don’t need to display video at all to analyze it

 Track user’s movements or other items in scene
 Bright spot, flashlight, particular color

4

Tracking Algorithm

 Idea: Check every pixel to find the pixel that is
closest to the color you are trying to track

 Algorithm:
 Set match color (e.g. red)

 Set distToMatch large (used to see how close a pixel
is)

 Visit every pixel
 If pixel is closer to match color

 Save that location

 Update distToMatch

Video as Input

 Show demos
 Basic drawing

 Drawing a trail

 Put it all together: combine drawing with video
mirror

Background Subtraction

 Separate foreground from background

Take a static image of the background at the start

For each new image

For each pixel

If dist(background, newImage) > threshold

Pixel is foreground

Code

PImage background = createImage(video.width,
video.height, RGB);

background.copy(video, …);

Shiffman, Ex. 16-12

Codecs

Codecs

 Compression required for video
 Broadcast video requires more than 100 Mbits/s

 HDTV requires over 1 Gb/s

 A codec is a particular encoding scheme for
storing video
 Similar to image formats

 Compression based on statistical structure of data
and psychophysical redundancy

 Can take advantage of temporal nature of data

5

Codecs
 MPEG-1 (1991)

 1.5 Mbits/s

 Designed for CD ROMs

 MPEG-2, AKA H.262 (1994)
 2-15 Mbits/s for DVDs, 19.2 Mbits/s

 MPEG-4 Part 2 (1999)
 Multimedia content

Codecs
 H.261 (1990)

 Target rate 64 – 1920 kbit/s

 Designed for teleconferencing

 H.263 (1996 and on)
 Very low bit rate, < 64 bits/s

 MPEG-4 Part 10, AKA H.264/AVC (2005)
 Higher coding efficiency (double MPEG-2)

 Suitable for many applications

Codecs
 VC-1 (2005)

 Developed by Microsoft and implemented as WMV
9

 Performance close to H.264/AVC

