
1

Moving to 3D

Shiffman Chpt. 14

The Mysterious Third
Dimension…

2D to 3D

 Add a third dimension, Z, corresponding to
depth

 Must change the rendering mode to a 3D mode
 JAVA2D is the default

 Two 3D modes can be set:
size(<x>, <y>, P3D);
size(<x>, <y>, OPENGL);

 OpenGL is hardware accelerated. (May need to
import the OpenGL library)

2D to 3D

 Some commands naturally extend. e.g.
 can use translate(x, y, z);

 Rotation becomes more complicated
 Rotation in 2D is one DOF

 Rotate around axis perpendicular to the screen

 Rotation in 3D is two DOF
 Can rotate around each of the x, y and z axes

Transformations

 rotate(<radian>);
 rotates around the origin, about the Z axis

 May need to translate first to rotate an object around
the desired pivot (e.g. to spin it in space).

 e.g. rotate rect(100,20, 20, 300); 45 degrees:

translate(-100, -20); //assuming rectMode(CENTER)

rotate(radians(45));

translate(100, 20);

Transformations

 rotate(<radian>);
 rotates around the origin, about the Z axis

 May need to translate first to rotate an object around
the desired pivot (e.g. to spin it in space).

 Axis specific rotations:
rotateX(<radian>);
rotateY(<radian>);
rotateZ(<radian>);

2

Transformations

 Rotation order matters
 For example:

rotateY(radians(90));

rotateZ(radians(-90));

 Is not the same as
rotateZ(radians(-90));

rotateY(radians(90));

Difference Between Two
Rotation Orders

Class Exercise

 A laser gun is oriented to fire along the X-axis

 It needs to hit a target at (10, 10, 10)

 What rotation(s) must be applied to the gun in
order for it to hit its target?

Transformations

 scale(<float>);
 Uniform scale in all dimensions

 scale(<float>, <float>, <float>);
 Vary the scale in each dimension

Transformations

 Transformations are stored in a matrix

 Can save and restore state

 pushMatrix();//saves the current state

 popMatrix();//retrieves the previous state

 (same as we did in 2D)

Simple Explosion

 Much research has been done on physically
simulating explosions for special effects

 This just uses randomness to create a basic
approximation, as follows
 Represent object by a grid of small objects

 Translate and rotate to add movement

 Apply some randomness to create variation

3

translate(0, 0, count); //translates in z

for(int i =0; i< numRows; i++) {

for(int j = 0; j<numCols; j++) {

pushMatrix();

//for each of x and y, specify the object offset, the offset of the

//small object within the block and a random offset that grows

//over time

translate(offsetX + (1-transFactor1[i][j])*count + i*sWidth,

offsetY + j*sWidth + (1-transFactor2[i][j])*count);

rotateY(radians(speedFactor[i][j]*count));

rotateX(radians(speedFactor[i][j]*count));

rotateZ(radians(speedFactor[i][j]*count));

3D Drawing Primitives

 Processing offers two
 box()

 sphere()

 Draw wireframe
 stroke(), noStroke()

 Object color
 fill()

 Basic version. More advanced options later.

3D Computer Graphics…

 … is like a movie set

 Have
 Models/objects (a set)

 Models are covered with different materials

 Lights

 Cameras

 Computer computes a 2D image as would be
seen from the camera, given the models, their
materials and the lights

Lights

 Create shading on the sufrace
 Default lights

 lights()

 Ambient

 Directional

 Point Light

 Spot Light

 Specular color

Actual 3D Objects

 Previous examples involved 2D (planar) objects
with 3D transformations

 Can also create 3D objects

Basic Drawing

//single polygon
beginShape();

vertex(50, 50);
vertex(150, 50);
vertex(150, 150);

endShape(CLOSE); //shape should be closed by
connecting the last and first vertex

4

Drawing Options

 beginShape(<type>)
<type>: POINTS, LINES, TRIANGLES,
TRIANGLE_FAN, TRIANGLE_STRIP,
QUADS, QUAD_STRIP

curveVertex(); //connected with curved lines.

Creation Process

 Specifying geometry in code is too time
consuming for most models

 A common workflow is to design a model in
other software (Maya, Studio Max, Blender) and
import it into Proccessing
 There are common image formats like .obj

Examples

 Basic drawing

 Icosahedron

More Advanced Surface Control

 Material Properties
 ambient()

 emissive()

 shininess()

 specular()

 Shaders
 Custom code that will control the appearance of the

surface

 Emulate various materials

Texture

 Can wrap an image around 3D geometry

Camera

 Can position, aim, tilt

 Change projection
 Perspective

 Orthographic

