
1

Moving to 3D

Shiffman Chpt. 14

The Mysterious Third
Dimension…

2D to 3D

 Add a third dimension, Z, corresponding to
depth

 Must change the rendering mode to a 3D mode
 JAVA2D is the default

 Two 3D modes can be set:
size(<x>, <y>, P3D);
size(<x>, <y>, OPENGL);

 OpenGL is hardware accelerated. (May need to
import the OpenGL library)

2D to 3D

 Some commands naturally extend. e.g.
 can use translate(x, y, z);

 Rotation becomes more complicated
 Rotation in 2D is one DOF

 Rotate around axis perpendicular to the screen

 Rotation in 3D is two DOF
 Can rotate around each of the x, y and z axes

Transformations

 rotate(<radian>);
 rotates around the origin, about the Z axis

 May need to translate first to rotate an object around
the desired pivot (e.g. to spin it in space).

 e.g. rotate rect(100,20, 20, 300); 45 degrees:

translate(-100, -20); //assuming rectMode(CENTER)

rotate(radians(45));

translate(100, 20);

Transformations

 rotate(<radian>);
 rotates around the origin, about the Z axis

 May need to translate first to rotate an object around
the desired pivot (e.g. to spin it in space).

 Axis specific rotations:
rotateX(<radian>);
rotateY(<radian>);
rotateZ(<radian>);

2

Transformations

 Rotation order matters
 For example:

rotateY(radians(90));

rotateZ(radians(-90));

 Is not the same as
rotateZ(radians(-90));

rotateY(radians(90));

Difference Between Two
Rotation Orders

Class Exercise

 A laser gun is oriented to fire along the X-axis

 It needs to hit a target at (10, 10, 10)

 What rotation(s) must be applied to the gun in
order for it to hit its target?

Transformations

 scale(<float>);
 Uniform scale in all dimensions

 scale(<float>, <float>, <float>);
 Vary the scale in each dimension

Transformations

 Transformations are stored in a matrix

 Can save and restore state

 pushMatrix();//saves the current state

 popMatrix();//retrieves the previous state

 (same as we did in 2D)

Simple Explosion

 Much research has been done on physically
simulating explosions for special effects

 This just uses randomness to create a basic
approximation, as follows
 Represent object by a grid of small objects

 Translate and rotate to add movement

 Apply some randomness to create variation

3

translate(0, 0, count); //translates in z

for(int i =0; i< numRows; i++) {

for(int j = 0; j<numCols; j++) {

pushMatrix();

//for each of x and y, specify the object offset, the offset of the

//small object within the block and a random offset that grows

//over time

translate(offsetX + (1-transFactor1[i][j])*count + i*sWidth,

offsetY + j*sWidth + (1-transFactor2[i][j])*count);

rotateY(radians(speedFactor[i][j]*count));

rotateX(radians(speedFactor[i][j]*count));

rotateZ(radians(speedFactor[i][j]*count));

3D Drawing Primitives

 Processing offers two
 box()

 sphere()

 Draw wireframe
 stroke(), noStroke()

 Object color
 fill()

 Basic version. More advanced options later.

3D Computer Graphics…

 … is like a movie set

 Have
 Models/objects (a set)

 Models are covered with different materials

 Lights

 Cameras

 Computer computes a 2D image as would be
seen from the camera, given the models, their
materials and the lights

Lights

 Create shading on the sufrace
 Default lights

 lights()

 Ambient

 Directional

 Point Light

 Spot Light

 Specular color

Actual 3D Objects

 Previous examples involved 2D (planar) objects
with 3D transformations

 Can also create 3D objects

Basic Drawing

//single polygon
beginShape();

vertex(50, 50);
vertex(150, 50);
vertex(150, 150);

endShape(CLOSE); //shape should be closed by
connecting the last and first vertex

4

Drawing Options

 beginShape(<type>)
<type>: POINTS, LINES, TRIANGLES,
TRIANGLE_FAN, TRIANGLE_STRIP,
QUADS, QUAD_STRIP

curveVertex(); //connected with curved lines.



Creation Process

 Specifying geometry in code is too time
consuming for most models

 A common workflow is to design a model in
other software (Maya, Studio Max, Blender) and
import it into Proccessing
 There are common image formats like .obj

Examples

 Basic drawing

 Icosahedron

More Advanced Surface Control

 Material Properties
 ambient()

 emissive()

 shininess()

 specular()

 Shaders
 Custom code that will control the appearance of the

surface

 Emulate various materials

Texture

 Can wrap an image around 3D geometry

Camera

 Can position, aim, tilt

 Change projection
 Perspective

 Orthographic

