
ECS 120 Lesson 16 – Turing Machines, Pt. 2

Oliver Kreylos

Friday, May 4th, 2001

In the last lesson, we looked at Turing Machines, their differences to finite
state machines and pushdown automata, and their formal definition. Today
we will concentrate on the computation of Turing Machines. First, let us
recollect the informal notion of how a Turing Machine processes an input
word:

1. Before a Turing Machine starts computation, the input word w =
w1w2 . . . wn ∈ Σ∗ will be written into the leftmost n cells of the work
tape. All other tape cells will be filled with the special blank sym-
bol t ∈ Γ. The read/write head will be located over the leftmost tape
cell, and the state control will be in the start state q0.

2. In each step of computation, the machine will read the character a ∈ Γ
located underneath the read/write head and transition from its current
state q1 ∈ Q guided by the transition function δ: If δ(q1, a) = (q2, b, D),
then the machine will transition to state q2 ∈ Q, will replace the char-
acter in the tape cell underneath the read/write head by the tape char-
acter b ∈ Γ, and will move the read/write head one cell to the left
if D = L or one cell to the right if D = R. If the read/write head
is currently located over the leftmost tape cell, and D = L, then the
read/write head will remain in its current position.

3. To finish the computation, the machine must enter either the accept
state qaccept ∈ Q or the reject state qreject ∈ Q. In the former case,
the machine accepts the input word; in the latter case, it rejects. If
the machine never enters either the accept state or the reject state,
computation will continue forever and the machine will never halt.

1



1 Formal Definition of Turing Machine Com-

putation

To formalize our understanding of how a Turing Machine computes, we have
to find a way of describing its current configuration. In the study of PDAs, we
encountered instantaneous descriptions, which exactly describe the status of
computation of a PDA. We will use the same mechanism for Turing Machines
as well. To specify a Turing Machine’s configuration, we have to know:

• The current state it is in,

• The current contents of the work tape, and

• the current position of the read/write head.

As for PDAs, we will encode the work tape’s contents as a string over Γ.
Since all the tape cells to the right of the rightmost position the read/write
head ever was in are filled with blank symbols, we will not explicitly include
those into the tape string. To encode the read/write head’s position, we
will split the tape string into two parts u, v ∈ Γ∗; the first, u, containing all
characters from tape cells to the left of the read/write head’s current position,
and the second, v, containing the characters underneath the tape head and
to the right. Together with the machine’s current state, an instantaneous
description (ID) for a Turing Machine is a triple (u, q, v) ∈ Γ∗ × Q × Γ∗,
where the current state is q, the current tape content is uvt∗ (u followed
by v followed by any number of blank symbols), and the read/write head’s
current position is over the first character of v. For notational convenience,
and to visualize the tape contents and the read/write head’s position, an ID
for a Turing Machine is often written as “u q v,” just concatenating the left
tape string, the current state and the right tape string. See Figure 1 for
an illustration how a Turing Machine’s configuration is represented by an
instantaneous description.

We can now define computation as moving from one instantaneous de-
scription to the other. We will express that an ID can be reached from
another ID in one step by the turnstile relation `, similarly to PDAs. We
define the turnstile relation by the following cases:

1. (u, q1, av) ` (ub, q2, v) if and only if δ(q1, a) = (q2, b, R). This is the
case where the machine is in state q1, reads the character a, and the

2



accept

reject

M
q7

1 1 0 1 0 0 1 1 0

Figure 1: A Turing Machine M with the current configuration 1101 q7 00110.

transition function tells it to transition to state q2, replace the read
character by b, and move the read/write head to the right. In this
case, the just written character will be the last one to the left of the
read/write head, i. e., it will be the last character of the left tape string.

2. (uc, q1, av) ` (u, q2, cbv) if and only if δ(q1, a) = (q2, b, L). This is the
case where the machine is in state q1, reads the character a, and the
transition function tells it to transition to state q2, replace the read
character by b, and move the read/write head to the left. In this
case, the just written character will be the first one to the right of the
read/write head, i. e., it will be the second character of the right tape
string, and the former last character of the left tape string will be the
next character underneath the read/write head.

3. (ε, q1, av) ` (ε, q2, bv) if and only if δ(q1, a) = (q2, b, L). This is the
special case where the read/write head is at the left end of the tape,
the machine is in state q1, reads the character a, and the transition
function tells it to transition to state q2, replace the read character by b,
and move the read/write head to the left. In this case, the read/write
head will not move but stay in its position; this means, the just written
character is going to be the next character underneath the read/write
head.

This definition does not handle the case when the right tape string is the
empty string ε. This means the machine is past the right end of its input;
since the tape is not limited to the right, and all tape cells are filled with the
blank symbol, we will just append another blank symbol to the end of the

3



right tape string, and continue as usual. In this way, the right tape string
will always be as long as needed.

We can now define the extended turnstile relation `∗ as usual, as the
transitive closure of the turnstile relation `:

Base Case (u, q, v) `∗ (u, q, v). Any ID can be reached from itself by zero
computation steps.

Inductive Case If (u1, q1, v1) `∗ (u2, q2, v2), and (u2, q2, v2) ` (u3, q3, v3),
then (u1, q1, v1) `∗ (u3, q3, v3). If ID2 can be reached from ID1 in n com-
putation steps, and ID3 can be reached from ID2 in exactly one com-
putation step, then ID3 can be reached from ID1 in n + 1 computation
steps.

We also have to define some special instantaneous descriptions:

• (ε, q0, w), corresponding to the machine being in its start state, the
input word contained the leftmost tape cells, and the read/write head
positioned over the leftmost tape cell, is called the initial configuration.

• Any configuration (u, qaccept, v) is called an accepting configuration.

• Any configuration (u, qreject, v) is called a rejecting configuration.

• A configuration is called a halting configuration, if it is either an ac-
cepting or a rejecting configuration.

Using the definitions above, a Turing Machine M = (Q, Σ, Γ, δ, q0, qaccept,
qreject) accepts a word w ∈ Σ∗, if and only if there exist u, v ∈ Γ∗ : (ε, q0, w) `∗

(u, qaccept, v), in other words, if an accepting configuration can be reached
from the initial configuration. Turing Machine M rejects a word w ∈ Σ∗, if
and only if there exist u, v ∈ Γ∗ : (ε, q0, w) `∗ (u, qreject, v).

2 The Language of a Turing Machine M

The language of a Turing Machine M is the set of strings the machine accepts:
L(M) =

{
w ∈ Σ∗

∣∣ ∃u, v ∈ Γ∗ : (ε, q0, w) `∗ (u, qaccept, v)
}
. We also say that

L(M) is the language that is recognized by Turing Machine M . For finite state
machines and pushdown automata, there were only two possible outcomes
for any computation: The machine would either accept or reject. For Turing

4



Machines, however, there is a third possible outcome: The machine could
continue computing forever, never reaching a halting configuration. This
leads to two different classes of languages defined by Turing Machines:

• A language A ⊂ Σ∗ is called Turing-recognizable or recursively enumer-
able if and only if it can be recognized by some Turing Machine M ,
i. e., if it is the language L(M). This means machine M accepts every
word w ∈ A; but if it is given a word w /∈ A, it can either reject or
never halt.

• A language A ⊂ Σ∗ is called Turing-decidable or just decidable if and
only if it is the language of a Turing Machine M that halts on all w ∈
Σ∗; in other words, M accepts every word w ∈ A and rejects every
word w /∈ A. A Turing Machine that halts on all input words is called
a decider.

By this definition, every Turing-decidable language is automatically a Turing-
recognizable language, but the reverse is not true. We will see that there are
(important) languages that can be recognized by Turing Machines but cannot
be decided.

3 Turing Machines and the Chomsky Hierar-

chy

So far, we have seen that there are classes of machine models matching the
lower two levels of the Chomsky Hierarchy: The languages accepted by finite
state machines are exactly the languages in CH–3, and the languages ac-
cepted by (nondeterministic) pushdown automata are exactly the languages
in CH–2. As it turns out, Turing Machines match the upper two levels of
the Chomsky Hierarchy: The class of languages recognized by general Turing
Machines, the Turing-recognizable or recursively enumerable languages, are
exactly the languages in CH–0.

We can now restrict the Turing Machine model by requiring that certain
Turing Machines will never access the tape beyond the right end of the input
word given to them. Essentially, these are machines that only have a limited
amount of tape – exactly the amount that is needed to write down the input.
These Turing Machines, called linearly limited Turing Machines, can exactly
accept the languages in CH–1.

5



Furthermore, for every language in CH–1, there is a deciding Turing Ma-
chine that determines whether a given word is in the language or not. There-
fore, CH–1 is a subset of the class of decidable languages. As we will see later,
there are decidable languages which cannot be decided by Turing Machines
never writing past the end of their input; therefore, CH–1 is a proper subset
of the class of decidable languages. Altogether, the structure of languages
that we have seen so far can be illustrated by the inclusion diagram shown
in Figure 2.

RL D-CFL CFL CSL DL RE

Figure 2: Inclusion diagram of the Chomsky Hierarchy, as we know it at
this point. Later, we will discover the fine structure of the class of de-
cidable languages in more detail. Legend: RL: regular languages (CH–3),
D–CFL: languages accepted by deterministic PDAs, CFL: context-free lan-
guages (CH–2), CSL: context-sensitive languages (CH–1), DL: decidable lan-
guages, RE: recognizable languages (CH–0).

4 Nondeterministic Turing Machines

As with finite state machines, Turing Machines also come as a nondetermin-
istic variant. The definition is very similar; the only difference between a

6



nondeterministic Turing Machine and a deterministic one is the definition
of the transition function δ: Q × Γ → P

(
Q × Γ × {L, R}

)
. Computation in

nondeterministic TMs proceeds as in NFAs: Whenever a current state and
read character allow several different transitions in δ, the computation will
branch into all those transitions in parallel. The machine is defined to accept
a word w, if at least one branch of computation will reach the accept state.

The question now is whether nondeterministic Turing Machines are more
powerful than deterministic ones. We have seen before that NFAs are equiva-
lent to DFAs, but that nondeterministic PDAs are indeed more powerful than
deterministic PDAs. For Turing Machines, it turns out that nondeterminism
does not add to the capabilites of the machine model: For every nonde-
terministic Turing Machine N , there is an equivalent deterministic Turing
Machine D, such that L(N) = L(D).

The proof for this statement constructs a deterministic Turing Machine
(DTM) that can simulate all possible branches of computation of a nondeter-
ministic Turing Machine (NTM). This is similar to the way a DFA simulates
an NFA, but for Turing Machines, the simulation comes at a price: The
computation of the DTM needs much more steps than the computation of
the NTM. The reason is that an NTM can perform all branches of com-
putation in parallel, whereas the DTM must simulate the branches serially,
one at a time. Since the number of branches of computation can grow ex-
ponentially, the number of steps the simulating DTM has to perform can
grow prohibitively large for even simple computations. We will explore this
phenomenon in detail later in the lecture.

5 Enumerating Turing Machines

The Turing Machines we have seen so far are all accepting Turing Machines,
i. e., they are fed a word and accept the word if it is an element of the ma-
chine’s language; otherwise, they either reject or loop. In this way, they are
similar to finite state machines or pushdown automata. For the classes of
regular and context-free languages, we have also looked at mechanisms gen-
erating languages: Regular expressions and context-free grammars. Though
there exist grammars to generate the languages recognized by Turing Ma-
chines, they are never1 used.

1Well, hardly ever. . .

7



To generate Turing-recognizable languages, we use a different version of
Turing Machine instead. These special machines, called enumerators, are
like printers: They start with an empty work tape, and write all words of
their language onto the work tape, one at a time, in any order, and maybe
with repetition. This means, that if a language has an infinite number of
words in it, an enumerator printing it can never halt. But since a lan-
guage can have at most a countable number of words in it, we know that
an enumerator for any language will print any word in the language sooner
or later (or very much later); but no word in the language will never be
printed. We define the language of an enumerator M as L(M) =

{
w ∈ Σ∗

∣∣
w is printed by M at some point in time

}
.

The languages that can be generated by enumerators are called Turing-
enumerable. As it turns out, the classes of Turing-recognizable and Turing-
enumerable languages are identical. To prove this claim, we show how to
convert any enumerator into an acceptor for the same language, and vice
versa. The proofs for these two claims will exhibit a structure that is typ-
ical for more complicated proofs about Turing Machines. Instead of giv-
ing the formal definition of a Turing Machine and proving that it behaves
in the intended way, we give a high-level description how to build the in-
tended machine, and argue using that high-level description. Basically, we
are building “libraries” of more and more complicated Turing Machines,
and argue in terms of their properties, instead of going all the way down
to M = (Q, Σ, Γ, δ, q0, qaccept, qreject).

5.1 Enumerable Languages ⊂ Recognizable Languages

Let L be an enumerable language. Then there exists an enumerator E that
generates it. To construct a recognizer R for L, we construct a Turing Ma-
chine R that will have E as a “subroutine.” This new machine will run E,
and for every word v that E prints, it will compare v to w and will transition
to the accept state if they are identical. If w ∈ L, then it will be printed
by E at some point in time (by definition of L(E)). At that moment, R will
accept. On the other hand, if w /∈ L, E will never print it; thus, R will never
accept and loop. Thus, by definition, L is the language accepted by R.

8



5.2 Recognizable Languages ⊂ Enumerable Languages

Let L be a recognizable language. Then there exists a recognizer R that
accepts it. To construct an enumerator E for L, we first construct an enu-
merator E0 for Σ∗, the set of all words over the alphabet Σ. This enu-
merator will work by enumerating the words sorted in lexicographical order:
Sorted by length of the word, and then by alphabetical order. For example,
E0 for the alphabet Σ = {0, 1} would generate Σ∗ in the following order:
{ε, 0, 1, 00, 01, 10, 11, 000, 001, . . .}. Here is the algorithm for an enumerator
for an alphabet Σ = {s1, s2, . . . , sn}:

1. Print the current word. Initially, the tape is completely blank; there-
fore, the current word is the empty word.

2. Put the first character of the alphabet, s1, into the first tape cell and
print the current word.

3. Move the read/write head to the rightmost non-blank character.

4. If the current character is si, where 1 ≤ i < n, replace it with si+1,
print the resulting word, and repeat from step 3.

5. Otherwise, the current character must be sn. If the read/write head is
not at the left end of the tape, replace the current character with s1,
move the read/write head one to the left, and repeat from step 4.

6. The read/write head is at the left end of the tape. Scan all the way to
the first blank symbol, replace it with s1, print the current word and
repeat from step 3.

We will now combine the enumerator E0 and the recognizer R to form an
enumerator E for L. The basic idea is to have E0 generate all words over Σ
in order, and to run R on each of these words in turn. When R accepts a
word, the enumerator E will print it. Since every possible word is generated
by E0 at some point in time, every word in L will be fed into R and printed
at some point in time. Therefore, E enumerates L.

There is a problem with this approach, though: R is only a recognizer
for L, not a decider. This means, that if a word not in L is fed into R, it
might never halt and the enumerator would be stuck in a loop, stopping to
print words. This problem can be overcome by a strategy called dovetailing2:

2Another bird principle.

9



Instead of running R to completion on every word printed by E0, the enu-
merator E starts another “recognizer process.” As long as there are multiple
recognizer processes running, every one of them will be executed one com-
putation step at a time in a round-robin3 fashion. Whenever one of those
processes finishes in an accept state, the word that was fed into it is printed
by E. Since all recognizer processes started on a word w ∈ L must finish
and accept sooner or later, all words in L will be printed – not necessarily in
order.

If R were a decider instead of just a recognizer, the construction would
have been much easier: Deciders must terminate on all input; therefore,
dovetailing is not necessary to make the enumerator work.

3Yet another bird principle.

10


