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Abstract. Several concurrent programming languages and systems —
e.g., MPI and SR — provide mechanisms to facilitate communication
between one process and a group of others. One such mechanism is SR’s
concurrent invocation statement (co statement). It specifies a group of
operation invocations and normally terminates when all of its invocations
have completed. To make the co statement more flexible, it can specify
code in the invoker to execute as each invocation completes or to termi-
nate the entire co statement before all of its invocations have completed.
We have added an SR-like co statement to JR. Unlike SR, JR provides
exception handling mechanisms, which are integrated with Java’s excep-
tion handling mechanism. However, JR needs additional mechanisms to
deal with sources of asynchrony. The co statement introduces additional
such sources of asynchrony for the invocations it initiates. This paper
describes the design and implementation of an exception handling mech-
anism for JR’s co statement.

1 Introduction

Communication between one process and a group of others is important in many
concurrent programs. Several concurrent programming languages and systems
provide mechanisms to facilitate such communication. For example, MPI [9]
provides support for collective communication. As another example, SR [2, 1]
provides a concurrent invocation statement (co statement, for short), which can
be viewed as a form of collective communication. These mechanisms can be used
to broadcast data to a group of processes and gather back results from each in
the group, for instance, in applications such as initiating subparts of numerical
computations, reading/writing a distributed database, and distributed voting
schemes.
This paper focuses on the co statement. It specifies a group of operation

invocations and normally terminates when all invocations have completed. The
co statement also allows quantifiers to deal with groups of related operations and



post-processing code (PPC) that is executed as each invocation completes. The
co statement is allowed to terminate before all its invocations have completed.
All these features are useful in practice, as seen in the examples in SR [2, 1] and
later in this paper.
We have added a co statement, similar to SR’s, to the JR concurrent program-

ming language [7, 10]. Unlike SR, JR provides exception handling mechanisms,
which are integrated with Java’s exception handling mechanism. However, JR
needs additional mechanisms to deal with sources of asynchrony, as described in
Reference [8]. The concurrent invocation statement introduces additional such
sources of asynchrony for the invocations it initiates. Thus, we have also de-
signed and implemented an exception handling mechanism for the concurrent
invocation statement and added it to JR (available on the web [5]). Our work
should benefit others considering adding exception handing mechanisms to other
concurrent programming languages and systems.
The rest of this paper is organized as follows. Section 2 presents the con-

current invocation statement without exceptions, introduces our running exam-
ple, and summarizes our previous work with handling exceptions during asyn-
chronous method invocation. Section 3 gives an overview of our approach, illus-
trates it by extending our running example to use exceptions, and discusses and
justifies our design decisions. Section 4 presents an overview of our implementa-
tion and discusses its reasonable performance. Finally, Section 5 concludes.

2 Background

2.1 Concurrent Invocation Statement (without Exceptions)

Figure 1 shows a small JR program with a simple co statement.1 It simulates

public class main {
public static void main(String [] args){

co aliceVote();
[] bobVote();
System.out.println("Election is over.");

}
public static op void aliceVote() {

...
System.out.println("Alice votes yes.");
...

}
public static op void bobVote() {

...
System.out.println("Bob votes no.");
...

}
}

Fig. 1. A simple election program.

a two-person election, where each person announces his or her vote. This co

1 For simplicity and brevity of exposition, the examples use static operations. JR also
provides non-static operations, multiple dynamic virtual machines (possibly run on
multiple physical machines), asynchronous invocations (via send), and forward and
early reply statements (see References [7] and [10]). The new mechanisms described
in this paper work in these other contexts too.



statement contains two arms. The process executing the co statement initiates
the two co invocations (one of aliceVote and one of bobVote); it then waits
until both invocations have finished. Thus, the individual “votes” outputs are
guaranteed to occur before the “over” output.
Figure 2 shows a more interesting voting program fragment. Here, votes are

int yesCount = 0, noCount = 0; boolean vote[] = new boolean [voters];

co ((int i = 0; i < voters; i++)) vote[i] = getVote[i]();

for (int i = 0; i < voters; i++) {
if(vote[i]) ++yesCount; else ++noCount;

}
// announce decision
System.out.println("votes For: " + yesCount + " Against: " + noCount);
if (yesCount > noCount)

System.out.println("Victory!");
else

System.out.println("Defeat ;-(");

Fig. 2. Election with tallying of votes after voting.

received from an array of voters’ operations, getVote. This co statement uses
quantifier notation to initiate all invocations. As each invocation completes, the
result is recorded in the vote array. After all votes are received, the votes are
tallied and the decision is announced.
Figure 3 shows how votes can be tallied as they are received. This co statement

boolean vote;

co ((int i = 0; i < voters; i++)) vote = getVote[i](){
System.out.println("Voter "+i+ " voted "+vote);
if (vote)

++yesCount;
else

++noCount;
}
// announce decision -- same code as in earlier figure

Fig. 3. Election with tallying of votes during voting.

specifies post-processing code (PPC); the scope of the quantifier variable for the
arm includes the arm’s PPC. As each invocation completes, the corresponding
PPC is executed by the same process that initiates the co statement. Thus,
execution of PPCs is serial and variables local to this process used within the
PPC (e.g., vote) are not subject to race conditions. (The assignment to vote is
considered a part of the PPC; it is executed before the rest of the PPC.)
The co statement has an iterative nature with respect to it executing its

PPCs, so a break statement makes sense within a PPC. Figure 4 shows a co
statement that announces the election decision as soon as a majority of voters
has decided the election. A co statement now terminates when: all its invocations
have completed and their corresponding PPCs have terminated; or execution of
a PPC has executed a transfer of control out of the co statement. Note that, in
this example, invocations whose results are not tallied do continue to execute,
even if the co statement has terminated. However, their subsequent completion



int yesCount = 0, noCount = 0; boolean vote = false;

co ((int i = 0; i < voters; i++)) vote = getVote[i](){
if (vote) {

if (++yesCount > voters/2) break;
}
else

if (++noCount >= (voters+1)/2) break; // tie -> No
}
// announce decision -- same code as in earlier figure

Fig. 4. Election with decision announced as soon as majority has decided.

has no effect on the invoking process; indeed, the invoking process may have
completed and no longer exist.

2.2 Simulation of the co Statement Using Existing JR Mechanisms

The co statement can be simulated with other JR language mechanisms, but
doing so is cumbersome for the programmer. For example, Figure 5 shows how

public class main {
public static void main(String [] args){

op void aliceVoted();
op void bobVoted();
send aliceVote(aliceVoted);
send bobVote(bobVoted);
receive aliceVoted();
receive bobVoted();
System.out.println("Election is over.");

}
public static op void aliceVote(cap void() voted) {

...
System.out.println("Alice votes yes.");
...
send voted();

}
public static op void bobVote(cap void() voted) {

...
System.out.println("Bob votes no.");
...
send voted();

}
}

Fig. 5. Hand-coded simulation of Fig. 1.

to rewrite Figure 1. It uses send invocations (which are non-blocking) to initiate
the voting and the receive statement to wait until both voters have voted. Here,
and in general, the code requires changing the interface to the vote operations
to have an extra parameter, so that the voter can notify “election central” when
it has finished voting. This extra parameter is a capability (a special kind of
reference) to an operation.
The general simulation of a co statement with a PPC is more complicated.

To illustrate, Figure 6 shows how to rewrite Figure 4. The code again requires
the interface to be changed, e.g., the signatures of getVote and the body of that
operation (not shown). Although this simulation works fine for the program in
Figure 4, the general simulation is more complicated. For example, suppose the
co statement uses the quantifier variable in its PPC, as in Figure 3. At first look,



op void voted(boolean);
for (int i = 0; i < voters; i++) {

send getVote[i](voted);
}
for (int i = 0; i < voters; i++) {

boolean vote;
receive voted(vote);
if (vote) {

if (++yesCount > voters/2) break;
}
else

if (++noCount >= (voters+1)/2) break; // tie -> No
}
// announce decision -- same code as in earlier figure

Fig. 6. Hand-coded simulation of Fig. 4.

the code in Figure 6 might seem to work, but the index variable in the second
for loop (where the print statement would be placed) has no connection to the
the index variable in the first for loop. Also, if the co statement has multiple
arms, a simple receive statement no longer suffices. Section 4.1 discusses how to
deal with these problems in general.

2.3 Handling Exceptions During Asynchronous Method Invocation

This section summarizes our earlier work that shows how to handle exceptions
during asynchronous method invocation [8, 10]. Our approach bears some resem-
blance to that provided in both ABCL/1 [3] and Arche [4].
JR provides asynchronous method invocation via the send statement. To

facilitate the handling of exceptions thrown from an asynchronously invoked
method, JR requires the specification of a handler object as part of a send. Any
exceptions propagated out of the invoked method are directed to the handler
object. To be used as a handler, an object must implement JR’s Handler inter-
face and define a number of handler methods. A method is defined as a handler
through the use of the handler modifier (much like the public modifier). A
handler method takes only a single argument: a reference to an exception ob-
ject. Each handler method specifies the exact exception type that it can handle.
When an exception is delivered to a handler object, it is handled by the handler
method of the appropriate type.
Figure 7 shows an example definition of a handler object’s class and how it

public class IOHandler implements edu.ucdavis.jr.Handler {
public handler void handleEOF(java.io.EOFException e)
{ /* handle exception */ }
public handler void handleNotFound(java.io.FileNotFoundException e)
{ /* handle exception */ }

}

IOHandler iohandler = new IOHandler();
...
send readFile("/etc/passwd") handler iohandler;
...

Fig. 7. Class definition for and use of a simple handler object.

is used. In this example, handler objects of type IOHandler can handle end-of-
file and file-not-found exceptions. An exception of type java.io.EOFException



directed to such a handler object will be handled by the handleEOF method.
As seen in Figure 7, a send statement must specify, using a handler clause,
its handler object. The JR compiler statically checks that the specified handler
object can handle each of the potentially thrown exceptions.

3 Design

3.1 Overview of Exceptions in the Concurrent Invocation Statement

A key observation in integrating exception handling with the concurrent invoca-
tion statement is that the co statement adds another source of asynchrony in the
same sense as for the send statement (Section 2.3). Section 2.1 described how if
the co statement’s PPC contains a break statement, then the invoking process
may not even exist when one of its invocations completes; the same now also
pertains to an exception that occurs for one of its co invocations. Therefore, we
add a handler to co invocations that can throw exceptions.
Section 2.1 described when a co statement terminates. A co invocation that

throws an exception does not cause its associated PPC to be executed (discussed
further in Section 3.2). But, that invocation is now considered to have completed
and contributes toward the co statement’s overall termination.
Figure 8 shows how to extend the program in Figure 4 for when the getVote

boolean decided = false;

MyHandler mh = new MyHandler();

co ((int i = 0; i < voters; i++)) vote = getVote[i]() handler mh : {
if (vote){

if (++yesCount > voters/2) {decided = true; break;}
}
else

if (++noCount >= (voters+1)/2) {decided = true; break;} // tie -> No
}

System.out.println("votes For: " + yesCount + " Against: " + noCount);
if (!decided)

System.out.println("Too many non-participating voters to decide election");
else {

if (yesCount > noCount)
System.out.println("Victory!");

else
System.out.println("Defeat ;-(");

}

public class MyHandler implements edu.ucdavis.jr.Handler {
public handler void handleNonParticipVoter(NonParticipVoterException e) {

System.out.println("Non-participating voter");
}

}

public class NonParticipVoterException extends java.lang.Exception {
}

Fig. 8. Fig. 4 extended to handle exceptions.

operation can throw exceptions. The co invocation now specifies a handler, which
just outputs an error message. The code that outputs the results now makes sure
that enough voters actually voted yes or no.



3.2 Design Decisions

A simpler approach than using handler objects (Section 3.1) is to just enclose
the co statement, such as the one in Figure 4, within a try/catch statement.
However, if an exception occurs for an invocation, then control transfers to the
catch block and the entire co statement terminates. Thus, the results of those
invocations that complete normally after the exception occurs would be lost.
That would make dealing with code that can throw exceptions, such as that in
Figure 8, much more difficult.

Having invocation-specific handlers allows the co statement to continue in
such cases and terminate cleanly. Moreover, because the PPC can contain state-
ments such as break, exceptions on invocations must be handled somewhere, as
noted in Section 3.1. Thus, if an op can throw an exception, its invocation within
an arm of a co statement must have a handler.

Figure 8 illustrated the use of a handler that is specified for each invocation.
The co statement also allows a default handler for the entire statement so that
exceptions from all invocations are handled by the same handler object. The
default handler is used for any invocation that requires a handler but does not
itself specify a handler. Allowing a default handler is convenient so that users
do not need to specify a handler object for each arm while they can occasionally
provide a special handler for some arms to handle their exceptions. The default
handler is used only if an invocation-specific handler is not specified for a par-
ticular invocation. An alternative is to allow the default handler to be used in
addition to the invocation-specific handler, so that it can handle some types of
exception that a handler object for a specific invocation cannot handle. However,
we have not yet seen a real need for that functionality.

If an exception occurs during execution of a PPC, then execution of the
current block will terminate and control transfers out of the co statement, thus
terminating the co statement. Consider, for example, the following co statement

co f() {
... // PPCf -- throws exception (but contains no try/catch)

}
[] g() {

... // PPCg
}

If the invocation of f finishes before the invocation of g and PPCf throws an
exception that is not caught within PPCf, then PPCg will not be executed when
the invocation of g finishes. This behavior is consistent with exceptions in Java;
e.g., if an exception occurs within a loop in Java code and is not caught within
the loop, the rest of the loop is not executed.

If an exception occurs for a co invocation, the associated PPC is not executed.
This behavior was seen in Figure 8. In addition, if the co invocation assigns to a
variable (vote in Figure 8), that assignment is considered part of the PPC and
is not executed if an exception occurs. An alternative would, of course, be to
allow the PPC to execute, but it would need some way to distinguish between
success and exception (e.g., if "exceptionOccurred" ...), so that, for example,
it would know whether the variable was assigned.



4 Implementation

4.1 Internal Transformations

Section 2.2 showed how simple co statements can be simulated using other JR
language mechanisms. Internally, the JR translator transforms a co statement in
a way similar to those examples; however, the transformation handles the nec-
essary change of interface and deals with multiple arms and quantifier variables.
For example, the co statement in Figure 9 is translated internally to roughly

co f(5) {PPCf} [] g() {break;} [] ((int i = 0; i < N; i++)) x[i] = h(i) {PPCh}

Fig. 9. Example co statement.

the code in Figure 10. This transformed code first initiates the invocations of all

cap void (void) f_retOp = f.cocall(...);
cap void (void) g_retOp = g.cocall(...);
cap void (void) h_retOp [] = new cap void (void) [N];
for (int i = 0; i < N; i++) { h_retOp[i] = h.cocall(...); }
for (int JR_CO_COUNTER = 0; JR_CO_COUNTER < 2+N; JR_CO_COUNTER++) {

inni void f_retOp() {PPCf}
[] void g_retOp() {break;}
[] ((int i = 0; i < N; i++)) void h_retOp[i](int retVal) {x[i] = retVal; PPCh }

}

Fig. 10. Transformed version of Figure 9.

2+N operations.2 Internally, JR operations are objects with methods for various
ways of invoking them [7]. The new cocall method initiates an invocation of its
operation, but it does not block. It returns a capability for an operation that will
be invoked when the initiating invocation completes. The code in Figure 10 then
uses a loop to wait for all of the co’s invocations to complete (i.e., the _retOp
operations to be invoked), but the loop can be exited early. Its body contains
an inni statement, which is JR’s multi-way receive statement: each execution of
inni services an invocation for one of its arms. A multi-way receive is needed
here because the order in which the invocations complete is unknown; indeed, not
all invocations need to complete for a co statement to terminate, as illustrated in
Figure 4. Note how the PPCs in the original program in Figure 9 simply become
blocks of code in the inni in Figure 10; in particular, the break statement in the
co’s PPC simply becomes a break statement that now applies to the for loop.
Also note how the third arm of the inni has a quantifier that is identical to
the quantifier in the original program; thus, the quantifier variable’s value is the
same in the original invocation and in the PPC executed for the corresponding
_retOp invocation.
The implementation supports exception handlers in co statements by extend-

ing the above scheme. For example, consider adding a handler to the invocation
of f in Figure 9, as shown in Figure 11. If an exception occurs for the invocation

2 The code records for its later use the actual number of co invocations in case any of
the expressions in the quantifiers or co invocations have side effects.



MyHandler mh = new MyHandler();
co f(5) handler mh : {PPCf} [] g() {break;} [] ((int i = 0; i < N; i++)) x[i] = h(i) {PPCh}

Fig. 11. Example co statement with exception handler.

of f, then, without any change in the above scheme, the inni statement in Fig-
ure 10 would block forever waiting for f_retOp to be invoked. The extension,
then, prevents that by defining an additional operation that is invoked when an
exception occurs. Thus, the co statement in Figure 11 is translated internally to
roughly the code in Figure 12. Note how operation co_fail_retOp is created,

MyHandler mh = new MyHandler();
cap void (void) co_fail_retOp = new op void(void); // new op
cap void (void) f_retOp = f.cocall(mh, co_fail_retOp, ...); // extra parameters
cap void (void) g_retOp = g.cocall(...);
cap void (void) h_retOp [] = new cap void (void) [N];
for (int i = 0; i < N; i++) { h_retOp[i] = h.cocall(...); }
for (int JR_CO_COUNTER = 0; JR_CO_COUNTER < 2+N; JR_CO_COUNTER++) {

inni void f_retOp() {PPCf}
[] void g_retOp() {break;}
[] ((int i = 0; i < N; i++)) void h_retOp[i](int retVal) {x[i] = retVal; PPCh }
[] void co_fail_retOp() {} // new arm -- no body needed

}

Fig. 12. Transformed version of Figure 11.

passed with the handler mh as extra parameters to the cocall method (which is
now overloaded to allow such), and appears in a new arm in the inni. If ex-
ecution of the invocation of f throws an exception, then both the handler mh
is executed and the co_fail_retOp operation is invoked; otherwise, only the
f_retOp operation is invoked.

4.2 Performance

We ran several micro- and macrobenchmarks to assess the performance of our
co statement implementation. We ran these benchmarks on various PCs (1.4G
and 2.0G uniprocessors; 2.4G and 2.8G dual-processors) running Linux; specific
results, of course, varied according to platform, but the overall trends were the
same.
The benchmarks confirmed that our implementation of the co statement had

no noticeable impact on regular invocations; and that the cost of executing a
co statement with no exceptions is nearly the same as executing a co statement
with exceptions but with no exceptions actually thrown during its execution.
The benchmarks also showed that the execution costs for our implementation

of the co statement were nearly identical to the hand-coded simulations of the co
statement. For example, the execution costs of the programs in Figures 4 and 6
were about the same for various numbers of voters (10, 100, 500, 1000, 1200,
and 1500). (Actual code and execution times are available on the web [6].)
Our initial implementation did not perform as well as our current implemen-

tation for larger numbers of voters. It used the more straightforward approach
of creating a _fail_retOp operation for each operation in the co statement that
might throw an exception, including an array of such failure operations for each
quantified operation. The cost of allocation of these additional operations was



high (e.g., for large numbers of voters or when done repeatedly within a loop),
so our current implementation eliminates them.
We considered measuring the performance of our co implementation against

those for other language implementations, but as noted in Section 1, only SR
provides a co statement and it does not provide exception handling. We could
measure the costs of SR’s co statement versus JR’s co statement without excep-
tion handling, but that would really measure more the differences of C (in which
SR is implemented) versus Java (in which JR is implemented).

5 Conclusion
We have extended the JR programming language with a concurrent invocation
statement that includes support for exception handling. This paper described
the design tradeoffs, the implementation and performance of the new exception
handling mechanism, and some examples illustrating how to use this mechanism.
This new feature has been incorporated into the standard JR language release,
which is available on the web [5].
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